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Abstract

Semi-inductive link prediction (LP) in knowl-
edge graphs (KG) is the task of predicting
facts for new, previously unseen entities based
on context information. Although new enti-
ties can be integrated by retraining the model
from scratch in principle, such an approach is
infeasible for large-scale KGs, where retrain-
ing is expensive and new entities may arise
frequently. In this paper, we propose and
describe a large-scale benchmark to evaluate
semi-inductive LP models. The benchmark
is based on and extends Wikidata5M: It pro-
vides transductive, k-shot, and 0-shot LP tasks,
each varying the available information from
(i) only KG structure, to (ii) including textual
mentions, and (iii) detailed descriptions of the
entities. We report on a small study of re-
cent approaches and found that semi-inductive
LP performance is far from transductive per-
formance on long-tail entities throughout all
experiments. The benchmark provides a test
bed for further research into integrating con-
text and textual information in semi-inductive
LP models.

1 Introduction

A knowledge graph (KG) is a collection of facts
describing relations between real-world entities.
Facts are represented in the form of subject-
relation-object triples such as (Dave Grohl, mem-
berOf, Foo Fighters). In this paper, we consider
link prediction (LP) tasks, i.e., the problem of infer-
ring missing facts in the KG. LP can be transductive
(TD; all entities known a priori), semi-inductive
(SI; some entities known a priori), and inductive
(no entities known a priori). We concentrate on
semi-inductive and transductive LP.

SI-LP focuses on modeling entities that are un-
known or unseen during LP, such as out-of-KG
entities (not part or not yet part of the KG) or
newly created entities, e.g., a new user, product,
or event. Such previously unknown entities can be

handled by retraining in principle. For large-scale
KGs, however, retraining is inherently expensive
and new entities may arise frequently. Therefore,
the goal of SI-LP is to avoid retraining and perform
LP directly, i.e., to generalize beyond the entities
seen during training.

To perform LP for unseen entities, context infor-
mation about these entities is needed. The amount
and form of context information varies widely and
may take the form of facts and/or textual informa-
tion, such as an entity mention and/or its descrip-
tion. For example, a new user in a social network
may provide a name, basic facts such as gender
or country of origin, and perhaps a textual self-
description.

In this paper, we introduce the Wikidata5M-SI
benchmark for SI-LP. Our benchmark is based on
the popular Wikidata5M (Wang et al., 2021) bench-
mark and has four major design goals: (G1) It
ensures that unseen entities are long tail entities
since popular entities (such as, say, Foo Fighters)
and/or types and taxons (such as human and organi-
zation) are unlikely to be unseen. (G2) It allows to
evaluate each model with varying amounts of con-
textual facts (0-shot, few-shot, transductive), i.e., to
explore individual models across a range of tasks.
(G3) It provides a controlled amount of textual in-
formation (none, mention, full description), where
each setting demands different modeling capabil-
ities. Finally, (G4) the benchmark is large-scale
so that retraining is not a suitable approach. All
prior SI-LP benchmarks violate at least one of these
criteria.

We report on a small experimental study with
recent LP approaches. In general, we found that

1. SI performance was far behind TD perfor-
mance in all experiments for long-tail entities,

2. there was generally a trade-off between TD
and SI performance,

3. textual information was highly valuable,
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4. proper integration of context and textual infor-
mation needs further exploration, and

5. facts involving less common relations pro-
vided more useful context.

Our benchmark provides directions and a test bed
for further research into SI-LP.

2 Related Work

Multiple SI-LP datasets have been proposed in the
literature. The benchmarks of Daza et al. (2021),
Albooyeh et al. (2020), and Galkin et al. (2021) are
obtained by first merging the splits of smaller trans-
ductive LP datasets and subsequently sampling un-
seen entities uniformly to construct validation and
test splits. These benchmarks do not satisfy goals
G1–G4. Shi and Weninger (2018) follow a similar
approach but focus on only 0-shot evaluation based
on textual features. Xie et al. (2016) and Shah et al.
(2019) select entities from Freebase with connec-
tion to entities in FB15k (Bordes et al., 2013), also
focussing on 0-shot evaluation using rich textual
descriptions. These approaches do not satisfy G2
and G3. Finally, Wang et al. (2019) and Hamaguchi
et al. (2017) uniformly sample test triples and mark
occurring entities as unseen. These approaches do
not focus on long-tail entities (and, in fact, the ac-
cumulated context of unseen entities may be larger
than the training graph itself) and they do not sat-
isfy G1–G3.

There are also several of fully-inductive LP
benchmarks (Teru et al., 2020; Wang et al., 2021)
involving KGs. While SI-LP aims to connect un-
seen entities to an existing KG, fully-inductive LP
reasons about a new KG with completely separate
entities (but shared relations). We do not consider
this task in this work.

3 The Wikidata5M-SI Benchmark

Wikidata5M-SI is based on the popular Wiki-
data5M (Wang et al., 2021) benchmark, which
is induced by the 5M most common entities of
Wikidata. Our benchmark contains transductive
and semi-inductive valid/test splits; see Tab. 1
for an overview. Generally, we aimed to keep
Wikidata5M-SI as close as possible to Wikidata5M.
We did need to modify the original transductive
valid and test splits, however, because they unin-
tentionally contained both seen and unseen entities
(i.e., these splits were not fully transductive). We

Transductive Semi-inductive

Train Valid Test Valid Test

Triples 20,600,187 4,983 4,977 5,500 5,500
Entities 4,593,103 7,768 7,760 3,722 3,793
Entities unseen - 0 0 500 500
Relations 822 217 211 126 115

Table 1: Statistics of the Wikidata5M-SI splits.

did that by simply removing all triples involving
unseen entities.

Unseen entities. To ensure that unseen entities
in the semi-inductive splits are from the long tail
(G1), we only considered entities of degree 20 or
less. To be able to provide sufficient context for
few-shot tasks (G2), we further did not consider
entities of degree 10 or less. In more detail, we sam-
pled 500 entities of degrees 11–20 (stratified sam-
pling grouped by degree) for each semi-inductive
split. All sampled entities, along with their facts,
were removed from the train split. Note that these
entities (naturally) have a different class distribu-
tion than all entities; see Sec. A.1 for details.

Tasks and metrics. For TD tasks, we follow the
standard protocol of Wikidata5M. To construct SI
tasks, we include 11 of the original facts of each
unseen entity into its SI split; each split thus con-
tains 5,500 triples. This enables up to 10-shot SI
tasks (1 fact to test, up to 10 facts for context). For
entities of degree larger than 11, we select the 11
facts with the most frequent relations; see Tab. 2
for an example. The rationale is that more common
relations (such as instanceOf or country) may be
considered more likely to be provided for unseen
entities than rare ones (such as militaryBranch or
publisher). We then construct a single k-shot task
for each triple (s, p, o) in the SI split as follows.
When, say, s is the unseen entity, we consider the
LP task (s, p, ?) and provide k additional facts of
form (s, p′, o′) as context. Context facts are se-
lected by frequency as above, but we also explored
random and infrequent-relation context in our study.
Models are asked to provide a ranking of predicted
answers, and we determine the filtered mean re-
ciprocal rank (MRR) and Hits@K of the correct
answer (o).

Textual information. For each entity, we pro-
vide its principal mention and a detailed description
(both directly from Wikidata5M); see Tab. 2. This
allows to differentiate model evaluation with vary-
ing amounts of textual information per entity (G3):
(A) atomic, i.e., no textual information, (M) men-
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ID Q18918

Mention Sam Witwer

Description Samuel Stewart Witwer (born October 20, 1977) is an American actor and mu-
sician. He is known for portraying Crashdown in Battlestar Galactica, Davis
Bloome in Smallville, Aidan Waite in Being Human, and Ben Lockwood in
Supergirl. He voiced the protagonist Galen Marek / Starkiller in Star Wars: The
Force Unleashed, the Son in Star Wars: The Clone Wars and Emperor Palpatine
in Star Wars Rebels, both of which he has also voiced Darth Maul.

Context triples instance of | human M: ◦ D: ◦
country of citizenship | United States of America M: × D: ◦
occupation | musician M: × D: X
occupation | actor M: × D: X
place of birth | Glenview M: × D: ×
given name | Samuel M: ◦ D: X
given name | Sam M: X D: ◦
cast member | Battlestar Galactica M: × D: X
cast member | Being Human - supernatural drama television series M: × D: X
cast member | Star Wars: The Force Unleashed II M: × D: ◦
cast member | The Mist M: × D: ×

Table 2: Example of an entity from the semi-inductive validation set of Wikidata5M-SI. For each triple, we anno-
tated whether the answer is contained in (X), deducible from (◦), or not contained in (×) mention (M) or description
(D).

tions only, and (D) detailed textual descriptions as
in (Kochsiek et al., 2023). This differentiation is
especially important in the SI setting, as detailed
text descriptions might not be provided for unseen
entities and each setting demands different model-
ing capabilities. In fact, (A) performs reasoning
only using graph structure, whereas (D) also bene-
fits from information extraction to some extent. We
discuss this further in Sec. 5.

4 Semi-Inductive Link Prediction
Models

We briefly summarize recent models for SI-LP; we
considered these models in our experimental study.

Graph-only models. ComplEx (Trouillon et al.,
2016) is the best-performing transductive KGE
model on Wikidata5M (Kochsiek et al., 2022). To
use ComplEx for SI-LP, we follow an approach
explored by Jambor et al. (2021). In particular,
we represent each entity as the sum of a local em-
bedding (one per entity) and a global bias embed-
ding. For 0-shot, we solely use the global bias for
the unseen entity. For k-shot, we obtain the local
embedding for the unseen entity by performing a
single training step on the context triples (keep-
ing all other embeddings fixed). An alternative

approach is taken by oDistMult-ERAvg (Albooyeh
et al., 2020), which represents unseen entities by
aggregating the embeddings of the relations and
entities in the context.1 A more direct approach
is taken by HittER (Chen et al., 2021), which con-
textualizes the query entity with its neighborhood
for TD-LP. The approach can be used for SI-LP
directly by using a masking token (akin to the
global bias above) for an unseen entity. We origi-
nally planned to consider NodePiece (Galkin et al.,
2021) (entity represented by a combination of an-
chor embeddings) and NBFNet (Zhu et al., 2021)
(a GNN-based LP model); both support SI-LP di-
rectly. However, the available implementations did
not scale to Wikidata5M-SI (out of memory).2

Text-based models. As a baseline approach
to integrate textual information directly into KGE
models, we consider the approach explored in the

1To address the high memory footprint (Galkin et al.,
2021) of oDistMult-ERAvg, we extend it with neighborhood
sampling.

2For NBFNet (Zhu et al., 2021), the large memory foot-
print is inherent to the model; it is a full-graph GNN and hard
to scale. For NodePiece (Galkin et al., 2021), however, the
problem mainly lies in the expensive evaluation. All inter-
mediate representations are precomputed, leading to a large
memory overhead.
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WikiKG90M benchmark (Hu et al., 2021); see
Sec. A.2 for details. The remaining approaches
are purely textual. SimKGC (Wang et al., 2022)
utilizes two pretrained BERT Transformers: one
to embed query entities (and relations) based on
their mention or description, and one for tail en-
tities. Using a contrastive learning approach, it
measures cosine similarity between both represen-
tations for ranking. KGT5 (Saxena et al., 2022) is
a sequence-to-sequence link prediction approach,
which is trained to generate the mention of the an-
swer entity using the mention or description of the
query entity and relation as input. Both approaches
support 0-shot SI-LP when textual information is
provided for the query entity. They do not utilize
additional context, however, i.e., do not support
k-shot SI-LP. KGT5-context (Kochsiek et al., 2023)
is an extension of KGT5, which extends the in-
put of KGT5 by the one-hop neighborhood of the
query entity and consequently supports k-shot LP
directly.

5 Experimental Study

We evaluated all presented baseline models in the
TD and SI setting on the atomic, mentions, and
descriptions dataset. Further, we evaluated in de-
tail which context was most useful and what in-
formation was conveyed by textual mentions and
descriptions.

Setup. Source code, configuration, and the
benchmark itself are available at https://github.
com/uma-pi1/wikidata5m-si. For further de-
tails on hyperparameter tuning and training see
Sec. A.3.

Main results. Transductive and SI performance
in terms of MRR of all models is presented in
Tab. 3; Hits@K in Tab. 7-9 (Sec. A). Note that
overall transductive performance was oftentimes
below best reported SI performance. This is due to
varying degrees of query entities between both set-
tings. Typically, models perform better predicting
new relations for an entity (e.g., the birthplace) than
predicting additional objects for a known relation
(e.g., additional awards won by a person) (Saxena
et al., 2022; Kochsiek et al., 2023). For a direct
comparison between both settings, we additionally
report TD performance on long tail query entities.3

Atomic. TD performance on the long tail was
considerably higher than SI performance. As no in-

3We define long tail query entities as entities with degree
≤ 10 as in the SI setting.

formation was provided for unseen entities, 0-shot
was not reasonably possible. Without text-based
information, context was a necessity. A simple
neighborhood aggregation—entity-relation average
(ERAvg)—offered the best integration of context.

Mentions. Integrating mentions did not improve
performance on its own, as provided text informa-
tion was still limited. However, additionally provid-
ing context information during inference (KGT5-
context) simplified the learning problem and im-
proved TD performance significantly. But for 0-
shot, the limited text information provided with
mentions allowed for reasonable performance. To
analyze what information is conveyed for 0-shot,
we annotated 100 valid triples; see Tab. 4. In 10%
of cases, the answer was already contained in the
mention, and it was deducible in at least 7%. This
enabled basic reasoning without any further infor-
mation. In contrast to the TD setting, KGT5 outper-
formed its context extension. KGT5-context was
reliant on context which was lacking especially dur-
ing 0-shot. This showed a trade-off between best
performance in the SI and TD setting. This trade-
off could be mitigated by applying (full and partial)
context hiding. With such adapted training, KGT5-
context reached a middle ground with a transduc-
tive MRR of 0.366 and 0-shot MRR of 0.283.4

However, even with full context (10-shot), perfor-
mance was still only on par with KGT5. Therefore,
context information did not bring any further bene-
fits when text was provided.

Descriptions. Further, integrating descriptions
improved performance for both settings, TD and SI,
considerably; see Tab. 3. Similar to the mentions-
only setting, KGT5-context performed best in TD
and KGT5 in the SI setting. Applying the same
trade-off with context-hiding reached a middle
ground with 0.418 TD-MRR and 0.449 SI-MRR.

Descriptions were very detailed and partially
contained the correct answer as well as the same in-
formation as contained in context triples; see Tab. 4.
Therefore, performance did not further improve
with context size. In such cases, models mainly
benefit from information extraction capabilities. To
judge how much information extraction helps, we
grouped performance of KGT5+description in the
0-shot setting on validation data into the groups
contained, deducible and not contained in descrip-

4In 25%/25%/50% of cases, we hid the full con-
text/sampled between 1-10 neighbors/used the full context,
respectively.
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Transductive Semi-inductive (num. shots) Pre-
trainedModel All Long tail 0 1 3 5 10

ComplEx + Bias + Fold in (Jambor et al., 2021) 0.308 0.523 0.124 0.151 0.176 0.190 0.206 no
DistMult + ERAvg (Albooyeh et al., 2020) 0.294 0.512 - 0.171 0.246 0.295 0.333 no
HittER (Chen et al., 2021) 0.284 0.512 0.019 0.105 0.153 0.179 0.221 no

DistMult + ERAvg + Mentions 0.299 0.535 - 0.187 0.235 0.258 0.280 yes
SimKGC (mentions only) 0.212 0.361 0.220 - - - - yes
KGT5 (Saxena et al., 2022) 0.281 0.542 0.310 - - - - no
KGT5-context (Kochsiek et al., 2023) 0.374 0.678 0.220 0.217 0.236 0.259 0.311 no

DistMult + ERAvg + Descriptions 0.313 0.585 - 0.278 0.281 0.285 0.292 yes
SimKGC + Descriptions (Wang et al., 2022) 0.353 0.663 0.403 - - - - yes
KGT5 + Descriptions (Kochsiek et al., 2023) 0.364 0.728 0.470 - - - - no
KGT5-context + Descriptions (Kochsiek et al., 2023) 0.420 0.777 0.417 0.420 0.416 0.420 0.437 no

Table 3: Transductive and semi-inductive link prediction results in terms of MRR on the dataset Wikidata5M-SI.
The first group presets results on the atomic, the second on the mentions and the third on the descriptions dataset.
Best per TD/SI in bold. Best per group underlined.

Mention Description
Contained 10% 44%
Deducible 7% 10%
Not contained 83% 46%

Table 4: Information about a query answer contained in
mentions and descriptions. Annotated for 100 sampled
triples from 0-shot valid. For an example, see Tab. 2.

Context selection 1 3 5
Most common 0.217 0.236 0.259
Least common 0.253 0.273 0.290
Random 0.237 0.260 0.281

Table 5: Influence of context selection. Semi-inductive
test MRR of KGT5-context.

tion; see Fig. 1 in Sec. A. When contained, the
correct answer was extracted in ≈ 70% of cases.

Context selection. We selected the most com-
mon relations as context triples so far, as this may
be a more realistic setting. To investigate the ef-
fect of this selection approach, we compared the
default selection of choosing most common rela-
tions to least common and random. Results for
KGT5-context are shown in Tab. 5; for all other
models in Tab. 10 in Sec. A. We found that the less
common the relations of the provided context, the
better the SI performance. More common context
relations often described high-level concepts, while
less common provided further detail; see the exam-
ple in Tab. 2. While more common context may be
more readily available, less common context was
more helpful to describe a new entity.

6 Conclusion

We proposed the new WikiData5M-SI large-scale
benchmark for semi-supervised link prediction.
The benchmark focuses on unseen entities from the
long tail and allows to evaluate models with vary-
ing and controlled amounts of factual and textual
context information. In our experimental evalua-
tion, we found that semi-inductive LP performance
fell behind transductive performance for long-tail
entities in general, and that detailed textual informa-
tion was often more valuable than factual context
information. Moreover, current models did not in-
tegrate these two types of information adequately,
suggesting a direction for future research.

Limitations

This study was performed on Wikidata5M-SI, i.e.,
a subset of a single knowledge graph. Model per-
formance and insights may vary if graph structure
and/or availability and usefulness of mentions and
description is different. In particular, the entity
descriptions provided with Wikidata5M-SI partly
contained information relevant for link prediction
so that models benefited from information extrac-
tion capabilities.

Ethics Statement

This research adapts publicly available data, bench-
marks, and codebases for evaluation. We believe
that this research was conducted in an ethical man-
ner in compliance with all relevant laws and regu-
lations.

10638



References
Marjan Albooyeh, Rishab Goel, and Seyed Mehran

Kazemi. 2020. Out-of-sample representation learn-
ing for knowledge graphs. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 2657–2666.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Neural Information Processing
Systems (NIPS), pages 1–9.

Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek,
Patrick Betz, and Rainer Gemulla. 2020. LibKGE
- A knowledge graph embedding library for repro-
ducible research. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 165–
174.

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao,
Ruofei Zhang, and Yangfeng Ji. 2021. Hitter: Hi-
erarchical transformers for knowledge graph embed-
dings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 10395–10407.

Daniel Daza, Michael Cochez, and Paul Groth. 2021.
Inductive entity representations from text via link
prediction. In Proceedings of the Web Conference
2021, pages 798–808.

Mikhail Galkin, Etienne Denis, Jiapeng Wu, and
William L Hamilton. 2021. Nodepiece: Compo-
sitional and parameter-efficient representations of
large knowledge graphs. In International Confer-
ence on Learning Representations.

Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo,
and Yuji Matsumoto. 2017. Knowledge transfer for
out-of-knowledge-base entities: a graph neural net-
work approach. In Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence,
pages 1802–1808.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata,
Yuxiao Dong, and Jure Leskovec. 2021. Ogb-lsc:
A large-scale challenge for machine learning on
graphs. Advances in Neural Information Processing
Systems, 35.

Dora Jambor, Komal Teru, Joelle Pineau, and
William L Hamilton. 2021. Exploring the limits of
few-shot link prediction in knowledge graphs. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2816–2822.

Adrian Kochsiek, Fritz Niesel, and Rainer Gemulla.
2022. Start small, think big: On hyperparameter
optimization for large-scale knowledge graph em-
beddings. In Machine Learning and Knowledge
Discovery in Databases: European Conference,
ECML PKDD 2022, Grenoble, France, September

19–23, 2022, Proceedings, Part II, pages 138–154.
Springer.

Adrian Kochsiek, Apoorv Saxena, Inderjeet Nair, and
Rainer Gemulla. 2023. Friendly neighbors: Con-
textualized sequence-to-sequence link prediction. In
Proceedings of the 8th Workshop on Representation
Learning for NLP.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
2022. Sequence-to-sequence knowledge graph com-
pletion and question answering. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2814–2828.

Haseeb Shah, Johannes Villmow, Adrian Ulges, Ul-
rich Schwanecke, and Faisal Shafait. 2019. An
open-world extension to knowledge graph comple-
tion models. In Proceedings of the AAAI conference
on artificial intelligence, volume 33, pages 3044–
3051.

Baoxu Shi and Tim Weninger. 2018. Open-world
knowledge graph completion. In Proceedings of
the AAAI conference on artificial intelligence, vol-
ume 32.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. Mpnet: Masked and permuted pre-
training for language understanding. Advances in
Neural Information Processing Systems, 33:16857–
16867.

Komal Teru, Etienne Denis, and Will Hamilton. 2020.
Inductive relation prediction by subgraph reasoning.
In International Conference on Machine Learning,
pages 9448–9457.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Interna-
tional conference on machine learning, pages 2071–
2080.

Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming
Liu. 2022. Simkgc: Simple contrastive knowledge
graph completion with pre-trained language models.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4281–4294.

Peifeng Wang, Jialong Han, Chenliang Li, and Rong
Pan. 2019. Logic attention based neighborhood ag-
gregation for inductive knowledge graph embedding.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7152–7159.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
Kepler: A unified model for knowledge embedding
and pre-trained language representation. Transac-
tions of the Association for Computational Linguis-
tics, 9:176–194.

10639



Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and
Maosong Sun. 2016. Representation learning of
knowledge graphs with entity descriptions. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 30.

Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jian-
feng Gao, and Li Deng. 2015. Embedding entities
and relations for learning and inference in knowl-
edge bases. In Proceedings of the International Con-
ference on Learning Representations (ICLR) 2015.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhon-
neux, and Jian Tang. 2021. Neural bellman-ford net-
works: A general graph neural network framework
for link prediction. Advances in Neural Information
Processing Systems, 34.

A Appendix

A.1 Distribution of Unseen Entities
Long-tail entities have a different distribution than
entities from the whole KG; see Tab. 6 for an
overview of the distribution shift for the top 10
entity types. This difference is natural. In particu-
lar, high-degree entities in a KG such as Wikidata
often refer to types/taxons (e.g, human, organiza-
tion, ...) as well as popular named entities (e.g.,
Albert Einstein, Germany, ...). These entities are
fundamental to the KG and/or of high interest and
have many facts associated with them. For this
reason, they do not form suitable candidates for
benchmarking unseen or new entities. In addition,
removing high-degree entities for the purpose of
evaluating SI-LP is likely to distort the KG (e.g.,
consider removing type "human" or "Germany").
In contrast, Wikidata5M-SI focuses on entities for
which knowledge is not yet abundant: long-tail en-
tities are accompanied by no or few facts (at least
initially) and our SI-LP benchmark tests reasoning
capabilities with this limited information.

A.2 Integrating Text into KGE Models
To integrate text into traditional KGE models, we
follow the baseline models of the WikiKG90M
link prediction challenge (Hu et al., 2021). We
embed mentions combined with descriptions us-
ing MPNet (Song et al., 2020), concatenate the
resulting descriptions embedding with the entity
embedding, and project it with a linear layer for the
final representation of the entity. In combination
with oDistMult-ERAvg (Albooyeh et al., 2020), we
apply the aggregation of neighboring entities and
relations on the entity embedding part only. The
resulting aggregation is then concatenated with its
description and finally projected.

This approach is closely related to BLP (Daza
et al., 2021). The main differences to BLP are:

1. Hu et al. (2021) use MPNet, BLP uses BERT.

2. In combination with DistMult-ERAvg, we
concatenate a learnable "structural embed-
ding" to the CLS embedding of the language
model, whereas BLP does not.

A.3 Experimental Setup
For hyperparameter optimization for Com-
plEx (Trouillon et al., 2016), DistMult (Yang
et al., 2015), and HittER (Chen et al., 2021), we
used the multi-fidelity approach GraSH (Kochsiek
et al., 2022) implemented in LibKGE (Broscheit
et al., 2020) with 64 initial trials and trained for
up to 64 epochs. For fold-in, we reused training
hyperparameters and trained for a single epoch on
the provided context. For text-based approaches,
we used the hyperparameters and architectures
proposed by the authors for the transductive split of
Wikidata5M. We trained on up to 5 A6000-GPUs
with 49GB of VRAM.
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WikidataID Mention All entities Long-tail entities

Q5 human 39% 61%
Q11424 film 3% 8%
Q484170 commune of France 1% 7%
Q482994 album 3% 1%
Q16521 taxon 9% 1%
Q134556 single 1% 1%
Q747074 commune of Italy 0% 1%
Q2074737 municipality of Spain 0% 1%
Q571 book 1% 1%
Q7889 video game 1% 1%

Table 6: Distribution of top 10 entity types over long-tail entities with degree between 11 and 20 compared to all
entities.
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Figure 1: Number of correct (rank=1) and incorrect predictions by KGT5+descriptions on annotated examples per
annotation label.

Semi-inductive (num. shots)

Model Trans. 0 1 3 5 10

Complex + Bias + Fold in (Jambor et al., 2021) 0.260 0.058 0.097 0.118 0.124 0.132
DistMult + ERAvg (Albooyeh et al., 2020) 0.237 - 0.115 0.151 0.185 0.209
HittER (Chen et al., 2021) 0.234 0.005 0.076 0.115 0.132 0.153

DistMult + ERAvg + Mentions 0.239 - 0.106 0.142 0.153 0.167
SimKGC (mentions only) 0.182 0.187 - - - -
KGT5 (Saxena et al., 2022) 0.249 0.263 - - - -
KGT5-context (Kochsiek et al., 2023) 0.347 0.184 0.177 0.195 0.218 0.263

DistMult + ERAvg + Descriptions 0.252 - 0.152 0.153 0.153 0.161
SimKGC + Descriptions (Wang et al., 2022) 0.311 0.349 - - - -
KGT5 + Descriptions 0.332 0.430 - - - -
KGT5-context + Descriptions 0.400 0.379 0.382 0.373 0.378 0.393

Table 7: Transductive and semi-inductive link prediction results in terms of H@1 on the dataset Wikidata5M-SI.
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Semi-inductive (num. shots)

Model Trans. 0 1 3 5 10

ComplEx + Bias + Fold in (Jambor et al., 2021) 0.337 0.165 0.180 0.202 0.219 0.242
DistMult + ERAvg (Albooyeh et al., 2020) 0.328 - 0.190 0.292 0.352 0.401
HittER (Chen et al., 2021) 0.309 0.013 0.109 0.158 0.188 0.242

DistMult + ERAvg + Mentions 0.332 - 0.239 0.289 0.314 0.340
SimKGC (mentions only) 0.223 0.227 - - - -
KGT5 (Saxena et al., 2022) 0.296 0.332 - - - -
KGT5-context (Kochsiek et al., 2023) 0.390 0.236 0.234 0.257 0.278 0.335

DistMult + ERAvg + Descriptions 0.344 - 0.368 0.373 0.378 0.380
SimKGC (Wang et al., 2022) 0.367 0.421 - - - -
KGT5 + Descriptions 0.385 0.490 - - - -
KGT5-context + Descriptions 0.432 0.441 0.443 0.443 0.447 0.463

Table 8: Transductive and semi-inductive link prediction results in terms of H@3 on the dataset Wikidata5M-SI.

Semi-inductive (num. shots)

Model Trans. 0 1 3 5 10

ComplEx + Bias + Fold in (Jambor et al., 2021) 0.387 0.231 0.245 0.282 0.309 0.336
DistMult + ERAvg (Albooyeh et al., 2020) 0.389 - 0.270 0.409 0.493 0.564
HittER (Chen et al., 2021) 0.376 0.050 0.157 0.226 0.270 0.359

DistMult + ERAvg + Mentions 0.411 - 0.320 0.392 0.440 0.478
SimKGC (mentions only) 0.266 0.283 - - - -
KGT5 (Saxena et al., 2022) 0.344 0.398 - - - -
KGT5-context (Kochsiek et al., 2023) 0.423 0.293 0.295 0.310 0.336 0.400

DistMult + ERAvg + Descriptions 0.425 - 0.465 0.472 0.484 0.491
SimKGC (Wang et al., 2022) 0.432 0.504 - - - -
KGT5 + Descriptions 0.416 0.544 - - - -
KGT5-context + Descriptions 0.455 0.484 0.489 0.489 0.495 0.516

Table 9: Transductive and semi-inductive link prediction results in terms of H@10 on the dataset Wikidata5M-SI.
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Model Context selection 1 3 5

ComplEx + fold-in
Most common 0.151 0.161 0.168
Least common 0.166 0.185 0.195
Random 0.164 0.187 0.196

DistMult + ERAvg
Most common 0.171 0.246 0.295
Least common 0.217 0.299 0.323
Random 0.215 0.303 0.318

oDistMult + ERAvg + Mentions
Most common 0.187 0.235 0.258
Least common 0.237 0.274 0.279
Random 0.232 0.265 0.272

HittER
Most common 0.105 0.153 0.179
Least common 0.151 0.195 0.216
Random 0.136 0.190 0.206

KGT5-context
Most common 0.217 0.236 0.259
Least common 0.253 0.273 0.290
Random 0.237 0.260 0.281

KGT5-context + Desc.
Most common 0.420 0.416 0.420
Least common 0.423 0.424 0.430
Random 0.422 0.430 0.430

Table 10: Influence of context selection. Semi-inductive test MRR. Best per model in bold.
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