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Abstract

Cross-domain Relation Extraction aims to
transfer knowledge from a source domain to a
different target domain to address low-resource
challenges. However, the semantic gap caused
by data bias between domains is a major chal-
lenge, especially in few-shot scenarios. Previ-
ous work has mainly focused on transferring
knowledge between domains through shared
feature representations without analyzing the
impact of each factor that may produce data
bias based on the characteristics of each do-
main. This work takes a causal perspective
and proposes a new framework CausalGF. By
constructing a unified structural causal model,
we estimate the causal effects of factors such
as syntactic structure, label distribution, and
entities on the outcome. CausalGF calculates
the causal effects among the factors and adjusts
them dynamically based on domain character-
istics, enabling adaptive gap filling. Our ex-
periments show that our approach better fills
the domain gap, yielding significantly better
results on the cross-domain few-shot relation
extraction task.

1 Introduction
Relation Extraction (RE) is one of the key tasks of
Natural Language Processing (NLP), which aims
to identify the relations between given entities. RE
models (Zhang et al., 2017; Yamada et al., 2020)
have impressive performance through large-scale
supervised learning based on BERT (Devlin et al.,
2019) and LSTM (Hochreiter and Schmidhuber,
1997). However, collecting sufficient amounts of
data for certain classes may be laborious in prac-
tice. Although finetuning prompt-based pre-trained
language models (He et al., 2023; Liu et al., 2022)
have shown superior performance in few-shot RE
tasks, they have encountered challenges in dealing
with cross-domain problems. The main issue is
that variables such as labels, syntactic structure,

∗†Ruifang Liu is the corresponding author.

Figure 1: (a) An unified SCM for the task (b) Denoting
variable C by S and E (c) Blocking backdoor path by
intervention and counterfactual generation

and entities having different distributions in each
domain, resulting in data bias across different do-
mains. From a causal perspective, the essence of
this bias is that these variables have different causal
effects on the results in different domains. Do-
main adaptation methods (Ganin et al., 2016; Shen
et al., 2018) offer new insights to tackle these is-
sues by transferring knowledge between domains
through shared feature representations extracted
from multiple domains. However, these work re-
lies excessively on extracting shared features and
label distributions while ignoring the unique fea-
ture of each domain, which would lead to inferior
results when domains have significant semantic
gaps. Therefore, Zhang and Lu (2022) proposed
a label prompt dropout approach to eliminate the
model’s over-reliance on labels, but it is difficult
to adequately capture the critical features of each
domain by randomized dropout.

To address this issue, our work focuses on iden-
tifying and adjusting the causal effects of variables
by considering the distinct characteristics of dif-
ferent domains. We propose a novel framework
CausalGF and build a unified structural causal
model (SCM) (Pearl et al., 2000) to describe the
cross-domain RE task, as shown in Figure 1. The
values and relationship in the graph can be altered
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Figure 2: An overview of CausalGF. We utilize counterfactual to acquire representations for each variable and
estimate their causal effects. The final effects are dynamically adjusted by intervention. Prompt generation, dynamic
weighting, and loss function design are used to implement causal operations.

by intervention and counterfactual generation to
study the causal effect of various factors. Further-
more, to adapt to the feature of different domains,
it is necessary to estimate the causal effects of vari-
ous factors and adjust them dynamically. CausalGF
implements causal operations and dynamically ad-
justs the causal effects of variables through prompt
generation, dynamic weighting, and loss function
improvement, enabling adaptive gap filling based
on domain characteristics.

We summarize the contributions as follows:
• To the best of our knowledge, CausalGF is

the first work analyzing data bias and the in-
fluence of various factors from a causal per-
spective in cross-domain few-shot RE task.

• We dynamically estimate and adjust the causal
effects of factors in training and inference,
enabling adaptive gap filling according to the
domain characteristics.

• Extensive experiments on different datasets
and settings demonstrate the effectiveness of
our approach. CausalGF outperforms previ-
ous state-of-the-art methods in all scenarios.

2 Methodology
The overall framework of CausalGF is shown in
figure 2. Sections 2.1 and 2.2 describe the structural
causal modeling and causal operation. 2.3 and 2.4
describe the implementation of the our method.
2.1 Structural Causal Modeling
As shown in Figure 1(a), cross-domain RE task
is represented by unified SCM G. The variable C
indicates the contextualized representations of an
input text, which is output by the pretrain BERT
encoder (Devlin et al., 2019). The variables S and
E denote the syntactic structure and the representa-
tion of entities in the sentence respectively, which
have a direct causal effect on C. Further, as there
are no other parent nodes for node C, we can rep-
resent it by the nodes S and E, as shown in Figure

1(b). L denotes the label description. The variable
X is the representation of a relation for RE which
is computed from C, and Y indicates the output
logits for prediction. On the edge C → X , we fuse
the semantic information and linguistic structures
into SCM by adopting Transformer (Vaswani et al.,
2017) to obtain the representation of node X . The
causal effect of the parent node on Y is obtained by
full connectivity with a nonlinear transformation.
The concepts and theories of causal inference are
detailed in Appendix A.

2.2 Causal Operations
In our work, we aim to explore the causal effects
of variables on the outcomes. From a causal per-
spective, that is, utilizing intervention and counter-
factual generation as causal operations to explore
the causal effects of the variables S, E, L, and X
on Y in SCM G. Since the variables S and E have
causal effects on both X and Y , their changes in-
terfere with the calculation of the causal effect of
X → Y . Therefore, counterfactuals S∗ and E∗ are
generated and intervened on X upon to block the
backdoor path (Morgan and Winship, 2014) and
eliminate the causal effect of the original S and
E on X (Figure 1(c)). Meanwhile, the original S
and E are preserved and restored to the original
C to estimate C → Y and maintain the semantic
information of the original input.

For SCM G, X∗ and YX∗ , counterfactual of X
and the original prediction YX are computed as:

X∗ = XS∗,E∗ (1)

YX∗ = fY (do(X = X∗), S = S,E = E) (2)

Where fY is the function that computes Y .

2.3 Prompt Generation and Encoding
In order to implement the above causal operations,
we obtained a representation of the above variables
through prompt generation and encoding.
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As shown in Figure 2, variable L is represented
by the label description. Counterfactual E∗ is ob-
tained by extracting all entities in the sentence and
connecting them in sequence. We mask these en-
tities to obtain the counterfactual syntactic struc-
ture S∗. Besides, the original input C is retained
in prompt, and we add [CLS], [L], [S], and [E]
as placeholder separators between variables. The
given entity pair {ehead, etail} are warped with spe-
cial token [E1], [/E1], [E2] and [/E2] following the
approach of Zhang et al. (2019).

Tall = [CLS] L [L] C [S] S∗ [E] E∗
1 ... E∗

m (3)
After prompt generation, the entire input in-

stance Tall is fed to the encoder:
hL, hS∗ , hE∗ = Encoder(Tall)L,S,E (4)

hC = [Encoder(Tall)h, Encoder(Tall)t] (5)

hX∗ = [hS∗ , hE∗ ] (6)

where h is the output embedding for each token
in Tall. hL, hS∗ and hE∗ represent the respective
representation of L, S∗ and E∗, which formed by
final layer representations of the marker [L], [S]
and [E], respectively. Base on SCM G, hX∗ is
formed by concatenating hS∗ and hE∗ . hC stands
for the representation of the original sentence C
which is formed by concatenating the final layer
representations of the entity markers [E1] and [E2].

2.4 Training and Inference
In the SCM G, the parents of the outcome vari-
able Y are denoted as E = {X,C,L}. During
the training phase, we calculate the causal effect
t of each variable in E on Y by utilizing the class
prototype r and variable representation h. To
flexibly adjust the influence of each variable on
the output, we introduce a learnable weight ma-
trix W = [wX∗ , wC , wL]. The final causal effect
Qtotal is computed using Formula (8).

tki = r⊤k hi (i = C,L,X∗) (7)

Qk
total =

∑

i∈E
weighti · effecti

=
∑

i=X∗,C,L

wi · tki =
∑

i=X∗,C,L

Qi

(8)

The class prototype r ∈ RNC×H is calculated by
averaging the relation representations of the N sup-
port instances of each class. Where NC indicates
the number of classes, H indicates the input hidden
dimension. We optimize a hinge loss function by
introducing the total casual effect Qtotal.

L =

∑NC
k=1,k ̸=y max(0,m−Qy

total +Qk
total)

NC
(9)

During inference, we choose the relation y as the
prediction by finding the closest class prototype to
the query sentence’s relation representation:

ŷ = argmax
k=0...NC

r⊤k Q
q
total (10)

Where rk is the class prototype of class k, Qq
total

is representation of the query instance.

3 Experiment
3.1 Datasets and Implementation
We evaluate CausalGF on two cross-domain few-
shot RE datasets: CrossRE (Bassignana and Plank,
2022): A manually-curated corpus contains 5265
sentences covering 6 domains with a unified la-
bel set of 17 relation types. To assess the domain
adaptation of the model, we conducted experiments
on CrossRE in single source domain and muitiple
source domain scenarios. FewRel: FewRel 1.0
(Han et al., 2018) is collected from Wikipedia arti-
cles which contain 100 relations and 700 instances
for each relation. FewRel 2.0 (Gao et al., 2019) con-
tains test set from the biomedical contains domain
25 relations and 100 instances for each relation.

We compare CausalGF with the following base-
line methods: Proto-BERT (Snell et al., 2017) is a
prototypical network with BERT-base (Devlin et al.,
2019) serving as the backbone. BERT-PAIR (Gao
et al., 2019) is a method that measures the similar-
ity of a sentence pair. CP (Peng et al., 2020) pre-
trains Proto-BERT using a contrastive pre-training
approach that divides sentences into positive pairs
and negative pairs. HCRP (Han et al., 2021) equips
Proto-BERT with a hybrid attention module and a
task adaptive focal loss. Improved Domain Adap-
tion (IDA) (Yuan et al., 2022) proposes an encoder
learned by optimizing a representation loss and an
adversarial loss to extract the relation of sentences
in the source and target domain. LPD (Zhang and
Lu, 2022) introduces a label prompt dropout ap-
proach which is adaptable to cross-domain tasks.

We follow the pretraining method of LPD
(Zhang and Lu, 2022) which pretrained on the
Wikipedia dataset and on top of BERT-base from
the Huggingface Transformer library. We perform
multiple experiments with different random seeds
and report the average accuracy together with the
standard deviation. Detailed descriptions of experi-
mental settings can be found in Appendix C.
3.2 Results and Analysis
Main Results: Table 1 shows that CausalGF out-
performs all baseline models in CrossRE, achiev-
ing an average improvement of at least 1.90% and

10535



Models
5-way-1-shot 5-way-5-shot 10-way-1-shot 10-way-5-shot Avg.

Multi Single Multi Single Multi Single Multi Single Multi Single

Proto-Bert* 67.70±0.5 52.2±0.7 80.71±1.0 64.65±0.8 58.65±0.9 39.86±1.2 76.82±1.1 50.82±00.8 70.97 51.83

HCRP* 70.47±1.0 60.34±0.9 85.05±0.3 70.68±1.5 59.17±0.5 48.53±0.6 78.51±1.0 60.70±0.9 73.30 60.06

CP* 78.33±0.9 49.96±0.7 86.89±1.1 70.70±1.2 70.95±1.1 44.45±0.9 78.36±1.4 53.82±0.7 78.63 54.73

LPD* 81.90±0.8 62.35±0.5 86.87±1.4 75.39±0.5 69.81±1.7 47.39±1.2 78.65±0.5 63.36±0.9 79.30 62.12

CausalGF 84.02±0.7 63.88±1.1 88.35±0.3 76.44±0.6 73.64±0.4 49.57±1.4 78.80±0.8 64.93±0.9 81.20 63.71

Table 1: Accuracy (%) of cross-domain few-shot classification on CrossRE music domain. (* These works have not
been evaluated on CrossRE, so the results are produced by our implementation.)

Figure 3: The final causal effects of the variable C, E, S
and L in six different cross-domain scenarios.

1.59% for single and multiple source domain sce-
narios, respectively. Compared to the previous
state-of-the-art LPD, our 10-way-1-shot results
show enhancements of 3.83% and 2.18% with sin-
gle and multiple sources, respectively. This high-
lights that adjusting causal effects adaptively is su-
perior to random strategies in reducing the model
over-dependence on labeling and data distribution.
As shown in Table 2, our approach significantly
outperforms HCRP, IDA, and CP by at least 4.44%
and 4.10% in 1-shot and 5-shot settings, respec-
tively. This indicates that learning the influence of
variables based on causal theory is more effective
than previous adaptive and contrastive methods in
cross-domain few-shot tasks.

Experimental results for other domains can be
found in Appendix D.

Ablation Studies: We construct ablation exper-
iments on the music domain of CrossRE and Fel-
rel2.0 dataset to investigate the contribution of each
component in our approach. We implement a w/o
counterfactual generation experiment by removing
prompt generation, a w/o causal effect estimation
by removing the weight matrix W , and a w/o causal
effect adjustment experiment by initializing fixed
W . Table 3 and 4 indicate that removing any part
of our approach leads to varying degrees of de-
cline in model performance. Notably, the results of

Model 5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

Proto-Bert 40.12 51.50 26.45 36.93

BERT-PAIR 67.41 78.57 54.89 66.85

HCRP 76.34 83.03 63.77 72.94

IDA 76.30 84.71 67.87 75.84

CP 79.70 84.90 68.10 79.80

LPD 82.81±0.5 88.98±1.4 70.51±1.5 78.76±1.6

CausalGF 84.14±0.9 91.10±1.5 72.90±1.1 83.92±1.3

Table 2: Accuracy (%) of cross-domain few-shot clas-
sification on the FewRel2.0 test set.

Model muti source single source

CausalGF 81.20 63.45

w/o counterfactual generation 75.63 59.59

w/o causal effects estimation 77.17 61.71

w/o causal effects adjustment 75.33 60.29

Table 3: Ablation study results (%) of our methods on
CrossRE dataset.

Model 5-way-1-shot 10-way-1-shot

CausalGF 84.14 72.90

w/o counterfactual generation 79.77 68.69

w/o causal effects estimation 81.10 71.35

w/o causal effects adjustment 80.65 70.89

Table 4: Ablation study results (%) of our methods on
Fewrel2.0 dataset.

the w/o causal effect adjustment experiment reveal
that improper utilization of causal effects can be
counterproductive to the model’s performance.

3.3 Causal Effects Across Different Domains
To verify the ability of our model adaptively filling
gaps according to different domain characteristics,
we explored the causal effect of each variable (L,
S, E, C) on the results in different cross-domain
tasks. Figure 3 shows the normalized average pre-
diction logits for the ground truth which obtain
from final causal effects Qi (i = L, S,E,C) un-
der six different cross-domain scenarios. The fi-
nal causal effects of the same variables differ in
different cross-domain scenarios, demonstrating
that CausalGF adaptively fills gap by adjusting for
causal effects.

For instance, in domains with significant dif-
ferences, entities are less influential while syntax
structure plays a more critical role since entities

10536



Figure 4: The t-SNE visualization results for 100 samples from 5 labels in a 5-way-1-shot scenario on CrossRE.

Model 5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

Proto-Bert 89.13 94.38 82.77 90.05

BERT-PAIR 88.32 93.22 80.63 87.02

HCRP 96.42 97.96 93.97 96.46

CP 95.10 97.10 91.20 94.70

LPD 98.17±0.0 98.29±0.2 96.66±0.0 96.75±0.2

CausalGF 98.311±0.3 98.54±0.5 97.15±0.3 97.04±0.2

Table 5: Accuracy (%) of in-domain few-shot classifi-
cation on the FewRel1.0 test set.

Model 5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

Proto-Bert* 59.69±0.5 73.65±0.9 59.69±0.3 65.04±0.5

HCRP* 65.34±0.8 79.39±1.1 56.58±0.5 66.86±0.6

CP* 69.71±1.1 80.76±1.0 59.24±0.9 72.18±0.7

LPD* 76.62±1.0 79.70±1.2 69.14±1.2 70.69±1.5

CausalGF 78.51±1.3 82.49±1.0 70.90±1.1 72.19±0.8

Table 6: Accuracy (%) of in-domain few-shot classifi-
cation on the CrossRE test set. (* are produced by our
implementation.)

are domain-specific and semantic information of
them is difficult for the target domain to utilize.
In contrast, syntactic structure is more universal
and applicable across various domains. This phe-
nomenon is consistent with our intuition. We visu-
alize the feature space to further demonstrate the
effectiveness of CausalGF in Appendix ??.

3.4 In-Domain Experiments
To further demonstrate the effectiveness of our
method, we conducted additional experiments on
in-domain tasks. We conducted experiments on
Fewrel 1.0 and CrossRE datasets, and the results
are shown in Table 5 and 6, respectively. The re-
sults demonstrate that our method achieves com-
petitive performance in in-domain tasks. This in-

dicates that CausalGF has a universal capability
to enhance the model’s ability to learn features
and make accurate predictions. It also proves the
general significance of the causal effect estimation
method in relation extraction tasks.

3.5 Visualization
During the process of model forwarding, we collect
the vector representations of the test samples along
with their respective category labels. The t-SNE
toolkit (Van der Maaten and Hinton, 2008) is used
to map the high-dimensional feature space of the
test samples onto a two-dimensional plane, allow-
ing for the measurement of sample similarity based
on these representations. To evaluate the effective-
ness of CausalGF, we implemented three ablation
experiments and a random dropout method (LPD)
to compare with our approach. Figure 4 shows
the visualization results for 100 samples from 5 la-
bels in a 5-way-1-shot scenario. The results clearly
show that CausalGF outperforms other methods in
terms of classification effectiveness. This signifies
that the inclusion of counterfactual generation and
the adaptation of causal effects greatly enhance the
ability to learn domain-specific features.

4 Conclusion
In this paper, we propose CausalGF, a novel frame-
work based on a causal perspective. By building
a unified structural causal model, CausalGF esti-
mates the causal effects of factors contributing to
data bias and dynamically adjusts them to accom-
modate domain characteristics. Our model effec-
tively fills the domain gap, outperforming strong
baselines in various cross-domain scenarios.
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Limitations

Some limitations exist in our work. Our effec-
tiveness is only examined on the task of relation
extraction, while whether this method is able to
generalize to other information extraction tasks,
such as named entity recognition (NER) and event
detection (ED), is not yet explored in this paper. In
addition, a more fine-grained partition of variables
with causal effects on the outcome may enhance the
efficacy of counterfactual generation. The above
issues will be explored in our future studies.

Ethics Statement

Our contribution in this work is fully methodologi-
cal, namely a novel framework from a causal per-
spective (CausalGF) to boost the performance of
the cross-domain few-shot RE. Hence, there are no
direct negative social impacts of this contribution.
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A Theory of Causal Inference
In this section we present the theory of causal ref-
erence involved in our approach.

Structural Causal Model (SCM): Figure 5(a)
shows an example of SCM. In general, the struc-
tural causal model (G = {V,U, F}) consists of two
sets of variables and a set of functions (Glymour
et al., 2016). The variable set V = {V1. . . Vn}
represents the endogenous variables, which are
the variables with observable causes (e.g. node
X and Y ). The variable set U = {U1. . . Un} repre-
sents the exogenous variables, which usually do not
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Figure 5: Example of a structural causal model. (a)
Structural causal modeling (b) Intervening on variable
X (c) Counterfactual generation for variable Z

Target Domain Single Source Multiple Source

Music AI Domains w/o Music

AI Music Domains w/o AI

Literature Science Domains w/o Literature

Science Literature Domains w/o Science

Politics News Domains w/o Politics

News Politics Domains w/o News

Table 7: Domain segmentation of single source and
multiple source on CrossRE dataset .

have parent nodes and whose causes are not usually
taken into consideration (e.g. node Z). The func-
tion set F is defined as F = {f1, ..., fn}, where fi
represents the corresponding relationship between
variables. The variables Vi are determined by the
functions as Vi = fi(Ai, Ui), where Ai and Ui

represent the endogenous and exogenous variables,
respectively, which have a direct causal effect on
Vi. In terms of causality, the parent node is the
cause and the children are the effect. As depicted
in Figure 5(a), variable X has a direct causal effect
on variable Y (X → Y ), while variable Z has a
direct causal effect (Z → Y ) and an indirect causal
effect (Z → X → Y ) on Y . The structural causal
model provides a framework for comprehending
the causal relationships between variables, allow-
ing us to conduct experiments, make predictions,
and intervene in these relationships.

Intervening: Intervening on a variable in a struc-
tural causal model involves fixing the value of that
variable in order to study its correlation with other
variables and its causal effects. Intervention can
be represented by the do-calculus. For instance,
the intervention on variable X can be denoted as
do(X = x∗), where x∗ represents the given value
(Pearl, 2009). As shown in Figure 5(b), after inter-
vening on variable X , the causal relationship be-

tween X and its parents will be cut off. Meanwhile,
the backdoor path from X to Y (X ← Z → Y )
will also be blocked. At this point, variable Z no
longer has a simultaneous causal effect on X and
Y . Therefore, intervention can remove the confu-
sion between variables and facilitate the estimation
of the causal effect between variables.

Counterfactual: Counterfactuals emphasize the
outcome of a hypothetical condition if a variable
is hypothesized under identical conditions of re-
ality. The concept of a counterfactual reflects a
hypothetical scenario of "what would the outcome
be if the variables were different". Unlike inter-
ventions which examine the effects on outcomes
of implementing certain dispositional observations
on variables in reality, counterfactuals focus on fic-
tional scenarios that did not occur. As shown in
Figure 5(c), assuming that the variable Z is Z∗ in
the case, the estimate of the causal effect on X can
be expressed as XZ∗ .

B Related Work
Cross-Domain Few-Shot Learning: In cross-
domain few-shot learning, base and novel classes
are both drawn from different domains, and the
class label sets are disjoint. Although the super-
vised paradigm is effective in fundamental tasks, it
suffers from the limitation of insufficient labeled
data. To address this issue, previous work has pro-
posed a variety of methods for Few-shot learning
as well as domain adaptation.

Data-based few-shot learning methods augment
the data with prior knowledge to overcome the dif-
ficulty of insufficient data (Gao et al., 2018; Wu
et al., 2018; Cong et al., 2021). Algorithm-based
methods leverage prior knowledge to search for an
initial solution that is effective for multiple tasks si-
multaneously, which makes it facilitating the adap-
tation to new tasks (Finn et al., 2017; Yoo et al.,
2018). Metric-based methods employ an encoder
based on a metric to refine the sentence embedding
in the latent space, allowing the learned latent space
to generalize to novel relations with few labeled
samples in the same domain (Triantafillou et al.,
2017; Baldini Soares et al., 2019).

Domain adaption studies how to benefit from
different but related domains. Shen et al. (2018)
introduced Wasserstein distance to improve the gen-
eralization ability by constructing domain-invariant
space between the source and target domain. Shi
et al. (2018) employed an adversarial paradigm to
extract class agnostic features in different domains.
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Models
5-way-1-shot 5-way-5-shot 10-way-1-shot 10-way-5-shot Avg.

Multi Single Multi Single Multi Single Multi Single Multi Single

Proto-Bert* 52.2±0.7 48.88±1.0 64.65±0.8 60.04±0.5 39.86±1.2 38.66±0.8 50.82±0.8 47.78±1.1 51.88 48.84

HCRP* 60.34±0.9 58.05±0.6 70.68±1.5 69.82±0.5 48.53±0.6 45.07±1.1 60.70±0.9 54.69±0.3 60.06 56.91

CP* 62.58±0.7 43.46±0.9 69.82±1.2 69.68±0.6 51.99±0.9 41.63±0.7 62.37±0.7 58.35±0.3 61.69 53.28

LPD* 76.51±0.5 59.44±0.3 69.85±0.5 72.00±0.5 68.44±1.2 48.97±0.8 68.99±0.9 60.54±0.5 70.95 60.24

CausalGF 77.87±1.1 61.34±0.9 72.43±0.6 67.90±0.3 69.20±1.4 50.65±0.8 71.61±0.9 61.71±1.0 72.78 60.40

Table 8: Accuracy (%) of cross-domain few-shot classification on CrossRE AI domain. (* These works have not
been evaluated on CrossRE, so the results are produced by our implementation.)

Models
Music AI Literature Science News Politics

Multi Single Multi Single Multi Single Multi Single Multi Single Multi Single

Proto-Bert* 70.97 51.83 51.88 48.84 66.78 54.28 67.16 67.53 67.22 62.86 66.20 44.69

HCRP* 73.30 60.06 60.06 56.91 70.38 62.45 68.72 63.97 68.29 61.41 66.70 53.76

CP* 78.63 54.73 61.69 53.28 75.93 55.97 69.77 56.51 61.65 62.85 72.80 48.40

LPD* 79.30 62.12 70.95 60.24 83.28 67.53 75.55 68.42 70.12 62.86 79.09 54.50

CausalGF 81.20 63.71 72.78 60.40 84.15 67.75 77.43 69.60 73.58 65.88 80.02 55.38

Table 9: Average accuracy (%) of cross-domain few-shot classification on CrossRE each domain. (* These works
have not been evaluated on CrossRE, so the results are produced by our implementation.)

Yuan et al. (2022) proposed an encoder to extract
the relation of sentences in the source and target
domain and an adversary loss to merge the source
domain and target domain.

Different from the above works that are based
on conventional approaches, we tackle the cross-
domain few-shot RE problem from the perspective
of causal inference.

Causal Inference: Causal inference offers new
insights for addressing the problem of data bias.
In computer vision tasks, previous work has ad-
dressed the problem of unbalanced data distribution
by causal manipulation of images through detection
or segmentation methods (Tang et al., 2020; Ab-
basnejad et al., 2020). In NLP tasks, recent causal
models have been applied in various tasks, such as
text generation (Wu et al., 2020) and language un-
derstanding (Feng et al., 2021). Zeng et al. (2020);
Wang and Culotta (2021) generated counterfactuals
for weakly-supervised namely entities recognition
(NER) and text classifications by replacing the tar-
get entity with another entity or their antonyms,
respectively. Nan et al. (2021) mitigating the spu-
rious correlations in long-tailed label distribution
for information extraction tasks by counterfactual
generation.

Unlike the previous methods, our approach uti-
lizes causal operations to bridge the domain gap.
We not only generate counterfactuals for cross-
domain few-shot RE task, but also estimate and
dynamically adjust causal effects to better align

with the characteristics of each domain.

C Implementation Details

We implemented our model with PyTorch 1.8.1.
We use the Adam optimizer and set maximum
length = 128, learning rate = 2e-5, batch size
= 4, max iteration = 20,000 for CrossRE and
FewRel 2.0. The learnable weight matrix W =
[wX∗ , wC , wL] is initialized to [0.5, 1, 1], and the
learning rate for weight matrix = 5e-5.

During inference, we randomly sample 1,000
episodes from the N-way-K-shot support set and
a query instance to evaluate our model. Following
previous works (Han et al., 2018; Gao et al., 2019),
we set N to 5 and 10, and K to 1 and 5. For all
the experiments, we train and test our model on
the 3090Ti GPU. It takes an average of 2.5 hours
to run on the training dataset. All experiments are
repeated five times with different random seeds
under the same settings.

For Fewrel dataset, we follow the official split to
use 64 relations of Fewrel 1.0 for training, 16 for
validation and use FewRel 2.0 for testing to evalu-
ate the domain adaptation of few-shot models. For
CrossRE dataset, we construct our experiment with
two scenarios: single source domain and multiple
source domain. Domain segmentation on CrossRE
dataset is shown in Table 7. For single source
experiments, we select two different domains for
source and tar, respectively. For multiple source
experiments, we adopt the leave-one-out strategy.
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Label Instance Prediction of LPD Prediction of CausalGF Causal Effects

opposite the Kingdom of Judah rebelled against the
Neo-Babylonian Empire and was destroyed

win-defeat 0.427 com-
pare 0.233 opposite
0.177 . . . . . .

opposite 0.720 role
0.101 win-defeat 0.087
. . . . . .

QC 0.454 QS 0.212
QE 0.079 QL 0.225

win-defeat United Kingdom lacks the charismatic
leader needed to keep the country together
and Nazi Germany successfully conquers
Great Britain via Operation Sea Lion in 1940.

opposite 0.335 win-
defeat 0.306 cause
0.197 . . . . . .

win-defeat 0.681 op-
posite 0.209 named
0.091 . . . . . .

QC 0.361 QS 0.104
QE 0.327 QL 0.178

Table 10: Two cases from CrossRE dataset, their source domain is news and target domain is politics.

D Supplementary Experiments on
CrossRE

we conducted 12 cross-domain experiments in 6
domains on the CrossRE dataset, as shown in the
table 7. Except for the Music domain shown in
section 3.2, we present the results of the remaining
experiments here. For the AI domain, we present
the detailed results of each few-shot setting in Table
8. For the other 4 domains, we report the average
results of their experiments in Table 9. Specifi-
cally, CausalGF achieves an average improvement
of at least 3.42% and 3.02% for single and multi-
ple source domain scenarios, respectively. Further-
more, our approach achieves the best performance
in all of the aforementioned cross-domain experi-
ments, demonstrating that CausalGF adapts to do-
main characteristics and fills the gap in different
cross-domain scenarios.

E Case Study
As shown in Table 10, we show the content of two
cases in the CrossRE dataset, and the prediction
results of the previous sota LPD and our method.
Since the semantics and application scenarios of the
two labels (win-defeat and opposite) are relatively
similar, LPD, a method that focuses mainly on
the semantics of the labels, tends to confuse them,
resulting in prediction errors.

Our approach can adaptively fill the domain
gap by recognizing and dynamically adjusting the
causal effects of different variables in a sentence.
As a result, causalGF will not be overly dependent
on a single variable in a sentence or be negatively
affected by the similarity of a single variable in an
instance. The table above shows the adjustment of
causal effects by our method. It can be found that
after adjustment, different variables have different
causal effects, and our model can make correct and
clear predictions in this way.
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