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Abstract

We explore the connection between presuppo-
sition, discourse and sarcasm and propose to
leverage that connection in a transfer learning
scenario with the goal of improving the per-
formance of NLI models on cases involving
presupposition. We exploit advances in train-
ing transformer-based models that show that
pre-finetuning—–i.e., finetuning the model on
an additional task or dataset before the actual
finetuning phase—–can help these models, in
some cases, achieve a higher performance on
a given downstream task. Building on those
advances and that aforementioned connection,
we propose pre-finetuning NLI models on care-
fully chosen tasks in an attempt to improve their
performance on NLI cases involving presuppo-
sition. We notice that, indeed, pre-finetuning
on those tasks leads to performance improve-
ments. Furthermore, we run several diagnos-
tic tests to understand whether these gains are
merely a byproduct of additional training data.
The results show that, while additional training
data seems to be helping on its own in some
cases, the choice of the tasks plays a role in the
performance improvements.

1 Introduction

In linguistics and the philosophy of language, pre-
suppositions are beliefs that are mutually shared
between discourse participants. They are assump-
tions that are taken for granted and that play a
crucial role in understanding the proper meaning
being conveyed in a certain context. For example,
in the statement “Roger Federer won the match”,
the fact that Roger Federer played a match (which
he ended up winning) is not explicitly stated and as-
sumed, hence, we say it is presupposed. The study
of presupposition could be traced to more than a
century ago with Frege’s work (1892). Given its

1Most of the work was completed during Jad’s PhD at
McGill.

2Canada CIFAR AI Chair.

importance in understanding meaning and preva-
lence in everyday speech, scholars studied how pre-
supposition fits into different contexts and aspects
of language. Specifically, they investigated how
presupposition is intricately related to discourse
(Heim, 1992; Kamp and Reyle, 1993) and essen-
tial for understanding not only the meaning of an
utterance but also essential for the coherence of the
semantic relations between sentences forming a dis-
course (Domaneschi, 2016). Similarly, numerous
studies underline how presupposition is linked to
sarcasm, dating back to two millennia ago with the
work of the Roman rhetorician Quintilian and more
recent investigations (Grice, 1975; Camp, 2012).

In this work, we set to exploit this connection
between presupposition on one hand and discourse
and coherence models and sarcasm on the other
hand. We choose a popular NLU task, natural lan-
guage inference (NLI) (Dagan et al., 2005; Mac-
Cartney and Manning, 2008; Bowman et al., 2015)
as a testbed for exploring this connection and ask
the following question: Could we leverage learning
tasks that center around discourse coherence and
sarcasm to improve the ability of NLI models at
making inferences involving presupposition?

To this end, we propose exploring how such
learning tasks can be leveraged in a transfer learn-
ing scenario that could benefit the training of NLI
models for the final goal of improving their perfor-
mances on NLI cases involving presupposition. To
do so, we utilize pre-finetuning, a training strategy
that has received attention in the context of trans-
former (Vaswani et al., 2017) models such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
BART (Lewis et al., 2020) and GPT-3 (Brown et al.,
2020). Generally, prefinetuning a pretrained model
is to finetune it on a task/dataset before the actual
finetuning stage on the downstream task of inter-
est. The effect of pre-finetuning varies depending
on different factors, such as whether (and to what
extent) a pre-finetuning task is relevant to the fine-
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tuning task. Pre-finetuning has been explored in
the context of question answering (Tafjord et al.,
2019), named entities (Shwartz et al., 2020) and
broader multi-task learning scenarios (Gururangan
et al., 2020; Aghajanyan et al., 2021).

We believe this to be an interesting study for
two reasons. First, previous work (Williams et al.,
2018; Jeretic et al., 2020) suggested that MNLI
(Williams et al., 2018), a popular NLI benchmark,
includes some instances of presupposition triggers,
thus raising the question of whether transformer-
based models trained on MNLI can generalize to
other pragmatic inferences. However, previous
work (Jeretic et al., 2020; Kabbara and Cheung,
2022) found that BERT does not perform well on
many types of presupposition. This underlines how
hard it is to design computational models of prag-
matic reasoning. In our case, it is thus interesting
to explore ways to improve the performance of NLI
models on those hard cases of presupposition. Sec-
ond, given the aforementioned intricate connection
between the notions of presupposition, discourse
and sarcasm, it would be interesting to investigate
whether such tasks—expected to be beneficial in
principle—would be useful, in practice, for NLI
involving presuppositions.

Beyond the motivating reasons for this specific
study, finetuning is still a very popular learning
paradigm despite the recent rise of other paradigms
like prompt-based methods (Brown et al., 2020)
and recent works continue to investigate ways to
improve and apply this paradigm (Gira et al., 2022;
Zhang et al., 2023; Tinn et al., 2023). Accordingly,
we see our effort as complementing the body of
work attempting to explore the efficacy and appli-
cability of this learning paradigm.

Our investigation pursues these questions in the
context of three pre-finetuning tasks: discourse
relation classification, coherence modeling and sar-
casm detection. For each of the tasks, we run ex-
periments on two different datasets. We find that,
indeed, pre-finetuning on the selected tasks leads to
an improvement in the performance of these mod-
els on NLI cases involving presupposition given
in the ImpPres dataset (Jeretic et al., 2020). Fur-
thermore, we run several diagnostic tests to under-
stand whether these performance improvements are
merely a byproduct of additional training data. The
results show that, while additional training data
seems to be helping on its own in some cases, the
choice of the tasks seems to be playing a role in the

performance improvement.
Our contribution is three-fold. First, we draw

this connection between presupposition, discourse
and sarcasm, showing its effects in neural models
which could be beneficial for future investigations
in the computational pragmatics area. Second, we
present a new case study pointing to a promising
direction to train transformer-based models to bet-
ter handle hard NLI cases involving pragmatic phe-
nomena. Third, through an extensive array of exper-
iments and diagnostic tests, we show that the type
of learning tasks used in pre-finetuning, namely
discourse-based and pragmatics-based tasks, could
play a crucial role in improving the performance
of NLI models on cases involving presupposition
and show that the performance improvements are
not solely due to additional training data, but rather
influenced by the learning signal coming from the
pre-finetuning task.

2 Related Work

2.1 Presupposition, Discourse and Sarcasm

The philosophy of language and linguistics liter-
ature covered amply the connection between dis-
course, sarcasm and presupposition. While earlier
work on presupposition focused on the pragmatic
meaning at the level of utterances (Strawson, 1950;
Austin, 1962; Stalnaker, 1973), in recent decades,
linguists started looking at presupposition from
the angle of dynamic semantic theories and how
this pragmatic phenomenon fits within representa-
tions of language structure that model the change
in information in the course of a discourse (Heim,
1992; Kamp and Reyle, 1993; Potts, 2015). This
(re)focus from the level of singular utterances to
the level of discourse structure was crucial in high-
lighting how presuppositions are essential for un-
derstanding not only the meaning of an utterance
but also essential for the coherence of the semantic
relations between sentences forming a discourse
(Domaneschi, 2016). In this light, several works
presented discourse modeling architectures with
the goal of presupposition resolution (Kasper et al.,
1999; Davis, 2000). Similarly, the connection be-
tween sarcasm and presupposition has been inves-
tigated as far back as two millennia ago with the
Roman rhetorician Quintilian explaining sarcasm
as speech that could be understood as the opposite
of what is actually being said. In his authoritative
work Logic and Conversation (1975), Grice argues
that a speaker speaking sarcastically exploits a pre-
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supposition; i.e., a mutually shared assumption,
that they could not have plausibly meant what they
said. On the other hand, Camp (2012) holds the
view that sarcasm does not need to involve a maxim
violation (which is usually the case in the Gricean
view) and argues that sarcasm is speech that presup-
poses a normative scale where the speaker pretends
to evoke a commitment to this scale but communi-
cates an inversion of that evoked scale. According
to Camp, the speaker pretends to mean the inverse
of what is being expressed or presupposes someone
else to have meant that meaning.

2.2 Natural Language Inference

Early work on natural language inference (NLI)
such as (Dagan et al., 2005; Manning, 2006; Mac-
Cartney and Manning, 2008) framed the task as
one concerned with learning the “directional re-
lation” between two statements t and h such that
t would entail h if, typically, a human reading t
would infer that h is most likely true (Dagan et al.,
2005). Contemporary work on NLI (Bowman et al.,
2015; Williams et al., 2018) formulates the task as
learning the relationship between a premise and
a hypothesis such that the relationship is one of
entailment, contradiction or neither (in which the
two statements are considered to be neutral with
respect to each other). Many NLI datasets have
been introduced including SNLI (Bowman et al.,
2015), MNLI (Williams et al., 2018), MPE (Lai
et al., 2017), XNLI (Conneau et al., 2018), Sci-
Tail (Poliak et al., 2018), JOCI (Zhang et al., 2017)
and others. In our work, we investigate the ca-
pabilities of pre-trained transformer-based models
finetuned on MNLI (Williams et al., 2018) and
their performance on pragmatic inferences in the
ImpPres dataset (Jeretic et al., 2020). MNLI is a
crowdsourced dataset of 433k sentence pairs that
follows the structure of the original SNLI dataset
(Bowman et al., 2015) but is richer as it covers a
range of genres of spoken and written text and is
tailored towards a cross-genre generalization evalu-
ation. The ImpPres dataset is a collection of 25.5k
semi-automatically generated sentences also struc-
tured following SNLI/MNLI with the goal of eval-
uating how well NLI-trained models recognize sev-
eral classes of presupposition and implicature. In
this work, we focus on the presupposition part of
ImpPres and show in Table 1 an example from each
sub-dataset to make the later discussions clearer.
By construction, each of the 9 sub-datasets (target-

ing the different types of presupposition shown in
Table 1) contains 1900 samples.

2.3 Pre-finetuning Transformer-based
Learning Models

In (Tafjord et al., 2019), the authors found that an
additional pre-finetuning stage on a different mul-
tiple choice question (MCQ) dataset improves the
model’s generalization to another MCQ dataset,
suggesting that the pre-finetuning stage seems
to have helped the model learn some representa-
tions about MCQs in general. In (Shwartz et al.,
2020) which investigates the robustness of lan-
guage models to name swaps, it was found that a
pre-finetuning stage on a different dataset (in some
cases pertaining to a different NLP task) led to
small performance improvements on the main task
of interest (Winogrande (Sakaguchi et al., 2020)
or SQUAD (Rajpurkar et al., 2018)) but seemed
to increase the model’s robustness with respect to
name swaps. Gururangan et al. (2020) consider
different domains and classification tasks and show
that an intermediate stage (between pre-training
and finetuning) of further pre-training on a relevant
task leads to a performance boost for their model
(RoBERTa). Finally, Aghajanyan et al. (2021)
present an extensive study on the benefits of pre-
finetuning with 50 different tasks. They show that
pre-finetuning consistently improves performance
for pre-trained discriminators (e.g. RoBERTa) and
generation models (e.g. BART) on a wide range of
tasks (sentence prediction, commonsense reason-
ing, machine reading comprehension, etc.), while
also significantly improving sample efficiency dur-
ing fine-tuning. Their experiments show that a
small number of pre-finetuning tasks does not al-
ways help but that for 15+ tasks (up to 50), the
improvements become consistent and linear in the
number of tasks. Given that pre-finetuning is not
always helpful (Aghajanyan et al., 2021), one con-
tribution of this work is to highlight that a carefully
chosen task that exploits the connection between
presupposition, discourse and sarcasm could im-
prove the performance of NLI models on NLI cases
involving presupposition. Other works, e.g., (Pruk-
sachatkun et al., 2020; Poth et al., 2021), while not
specifically focused on the notion of pre-finetuning,
also showed that further (pre-)training on a care-
fully chosen can also improve performance on
downstream tasks.
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Type Premise Hypothesis

All N All six roses that bloomed died. Exactly six roses bloomed.
Both Both flowers that bloomed died. Exactly two flowers bloomed.
Change of State Rene might have hidden. Rene hid.
Cleft Existence It might be Becky who researched Jesus. Someone researched Jesus.
Cleft Uniqueness It is Sandra who disliked Veronica. Exactly one person disliked Veronica.
Only Susan only writes. Susan writes.
Possessed Definites Alice’s light did vanish. Alice has a light.
Question Did Bill wonder when Omar hunted? Omar hunted.

Table 1: Examples showing the different presupposition types in the ImpPres dataset.

3 Proposed Method

The learning framework consists of using a pre-
trained transformer-based model to be finetuned on
the MNLI dataset. This last stage is preceded by a
pre-finetuning stage in which the model is trained
on another task different than NLI. The model is
finally evaluated on the ImpPres presupposition
dataset whose goal is to test NLI models’ ability
to recognize different classes of presupposition.
Given that the final evaluation is concerned with
the model’s ability to make pragmatic inferences,
we believe an interesting case study would be to use
pre-finetuning tasks that deal with aspects of dis-
course and pragmatics. That way, we could attempt
to understand whether relevant knowledge learned
from the pre-finetuning stage is passed down to the
latter stages.

3.1 Pre-finetuning Tasks and Datasets

3.1.1 Discourse Relation Classification

Discourse relation classification (DRC) is a com-
monly used task for evaluating the understanding of
discourse relations. The task focuses on character-
izing the relation between two adjacent text spans
(either clauses or sentences) which could be related
by an explicit or implicit relation. In our work,
we focus on the top-level (L1) classification sce-
nario (according to the PDTB 2.0 structure (Prasad
et al., 2008)) in which a discourse relation takes
one of 4 labels: Comparison, Contingency, Expan-
sion and Temporal. We use two datasets for this
task: PDTB3.0 (Prasad et al., 2019) and the TED
Multilingual Discourse Bank (TED-MDB) (Zeyrek
et al., 2019) which is a PDTB-style multilingual
dataset consisting of TED-talks that are annotated
at the discourse level in 6 languages. We use in our
work the English portion of the dataset only.

3.1.2 Closed-Domain Coherence Modeling
We focus here on another discourse-based task: Co-
herence Modeling (CM), the task concerned with
classifying a passage as being coherent or incoher-
ent. The most popular task used to test a coherence
model in NLP is sentence ordering3, for example,
to distinguish between a coherently ordered list of
sentences and a random permutation thereof. In
the closed-domain setup (Tien Nguyen and Joty,
2017), training and testing are done on the same do-
main. Similar to previous work (Tien Nguyen and
Joty, 2017; Xu et al., 2019), we use use the WSJ
portion of the PTB dataset (Marcus et al., 1993).
We also use the Wiki-A dataset (Xu et al., 2019)
(which uses one domain/topic “Person” and splits
all the different categories therein randomly into
training/testing parts).

3.1.3 Sarcasm Detection
In the last task, we focus on a task whose successful
execution requires an understanding of the under-
lying pragmatics conveyed in the text or conversa-
tion. The task is sarcasm detection (SD) in which a
model is to classify a text as being sarcastic or not.
For this task, we use the following two commonly
used datasets: The Irony and Sarcasm dataset (Fi-
latova, 2012) which is a collection of Amazon re-
views annotated as being sarcastic/ironic or not,
and the News Headlines Dataset (Misra and Arora,
2019) which is a dataset consisting of headlines of
articles from the Huffington Post (labeled as non-
sarcastic) and from the satirical online media outlet,
The Onion (labeled as sarcastic).

3We use this task as it is still the most popular for the
evaluation of coherence models. However, we note that some
recent work, e.g., (O’Connor and Andreas, 2021; Laban et al.,
2021; Jeon and Strube, 2022) has pointed out the limitations
of this task in effectively evaluating coherence models (e.g.,
simplicity, reliance on local word co-occurrences but not word
order). And so, for an investigation that is solely focused on
coherence modeling, it is advised to also use other tasks for
evaluation purposes. See the cited work for suggestions.
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4 Experiments

In this work, we attempt to answer whether pre-
finetuning an NLI model on learning tasks that deal
with aspects of discourse and pragmatics would
help that model, when finetuned on MNLI, per-
form better on pragmatic NLI cases (the ImpPres
dataset). To do so, we carry out three different
experiments.

1. The main setup (MAIN): We pre-finetune the
model on each dataset of the three learning
tasks (6 in total - Section 3). Following fine-
tuning on MNLI, the model is evaluated on
the ImpPres dataset.

2. Randomizing the labels (RANDOM): To un-
derstand whether any performance improve-
ments are due to extra training data or some
actual learning signal coming from the pre-
finetuning stage, we randomly shuffle the la-
bels (using a uniform distribution) in each of
the datasets used in the pre-finetuning stage.
The rationale behind this experiment is to
see whether, given corrupted data, the perfor-
mance would drop. This was can be thought
of as a "sanity check”.

3. Using the datasets for further pre-training
(PRETRAIN): Here, we use the input sam-
ples from each dataset to further pre-train the
BERT model using a Masked Language Mod-
eling objective. This is to further understand
whether extra pre-training would lead to simi-
lar changes in the performance (thus possibly
suggesting that a perfomance gain is due to ex-
tra training data and not to the learning tasks
used in the pre-finetuning stage).

Finally, we also run an experiment (MULTI)
where we pre-finetune the model on all three tasks,
one after the other. Due to limited computational re-
sources, we do not run all possible combinations of
datasets. We chose one order at random to be pre-
sented as a proof of concept. The chosen sequence
of tasks/datasets is: DRC/PDTB then CM/WSJ
then SD/Reviews.

4.1 Implementation details

The main building block of our experiments is
HuggingFace’s bert-large-uncased implementation
(Wolf et al., 2019) of BERT that was trained on
lower-cased English text.

Depending on the pre-finetuning task, the base
BERT model is followed by a corresponding lin-
ear layer and softmax for classification (2-way or
4-way classification depending on the task) or none
in the case of the PRETRAIN experiment (where the
data is used to further pre-train the model and not
to predict labels). For the classification-based pre-
finetuning stages and the MNLI finetuning stage
(common to all experiments), the model is trained
to minimize the standard cross-entropy cost with
Adam (Kingma and Ba, 2015) as the optimizer. For
the PRETRAIN experiments, in the pre-finetuning
stage, the model is (further pre-)trained using a
masked language modeling objective. For the
MNLI finetuning stage, similar to previous work
using BERT for NLI, we concatenate the premise
and hypothesis separated by the [SEP] token, with
the special [CLS] token preceding them.

Following the recommended ranges for fine-
tuning hyperparameters in the BERT paper (De-
vlin et al., 2019), our preliminary experiments
showed that, for finetuning BERT only (i.e. no
pre-finetuning), the optimal performance on the
dev set is reached for a batch size of 8, learning
rate of 2e-5 and weight decay of 0.01. Our model
achieves a dev set accuracy of 85.14% (comparable
to that reported in (Jeretic et al., 2020) and (De-
vlin et al., 2019). We fix those hyperparameters
for the finetuning stage across all experiments and
vary the learning rate and weight decay for the
pre-finetuning stage across the following ranges re-
spectively: {1e-5, 2e-5, 3e-5, 4e-5} and {0.1, 0.01,
0.001}.4 All other parameters are kept as default.
All models are implemented in PyTorch (Paszke
et al., 2019). All input data is tokenized by Hug-
gingFace’s BERT tokenizer (bert-large-uncased).
All experiments were run on a Quadro RTX 6000
GPU.

5 Results

Table 2 shows the accuracy results of the three
experiments MAIN, RANDOM and PRETRAIN.
MAIN: In the first sub-table, we notice that the
addition of a pre-finetuning stage leads to an im-
provement in accuracy in the vast majority of cases
across pre-finetuning tasks/datasets through the dif-
ferent sub-datasets of ImpPres–at least 6 out of the
9 sub-datasets of ImpPres for all tasks/datasets and

4We include in the appendix the exact learning rate and
weight decay found for optimal performance on dev set for
the pre-finetuning stage for each of the experiments.
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MAIN
Discourse Relation

Classification
Coherence
Modeling

Sarcasm
Detection

Vanilla PDTB TED-MDB WSJ Wiki Reviews Headlines

Possessed definites existence 70.61 71.85 71.78 72.06 71.27 71.32 71.48
Question 66.42 65.23 64.90 67.33 67.33 65.18 63.34
Cleft Existence 62.97 62.13 61.97 61.55 65.44 61.66 60.24
Only 62.24 62.24 61.26 60.56 62.76 62.87 60.03
All n 43.49 49.21 46.69 44.85 44.59 45.80 46.01
Both 32.62 34.30 33.91 33.25 24.32 27.78 38.66
Change of state 30.43 31.93 33.63 32.62 34.19 31.57 32.62
Possessed definites uniqueness 23.35 33.04 25.33 35.71 30.36 31.57 33.98
Cleft uniqueness 11.10 14.60 16.51 20.90 16.91 13.24 13.92

Average 44.80 47.17 46.22 47.42 46.35 45.67 46.70

RANDOM
Discourse Relation

Classification
Coherence
Modeling

Sarcasm
Detection

Vanilla PDTB TED-MDB WSJ Wiki Reviews Headlines

Possessed definites existence 70.61 61.71 68.33 68.96 66.86 69.17 69.07
Question 66.42 62.71 63.92 63.81 63.66 64.97 65.39
Cleft Existence 62.97 60.56 60.77 60.61 60.14 60.87 60.82
Only 62.24 61.03 55.46 60.29 56.51 60.98 60.98
All n 43.49 44.91 42.12 38.76 43.80 41.91 43.80
Both 32.62 25.16 22.48 22.95 27.63 24.63 26.58
Change of state 30.43 26.21 27.21 31.25 28.36 31.36 29.57
Possessed definites uniqueness 23.35 24.74 34.09 23.21 18.59 25.95 27.21
Cleft uniqueness 11.10 12.39 14.71 14.02 10.77 12.18 12.50

Average 44.80 42.16 43.23 42.65 41.81 43.56 43.99

PRETRAIN
Discourse Relation

Classification
Coherence
Modeling

Sarcasm
Detection

Vanilla PDTB TED-MDB WSJ Wiki Reviews Headlines

Possessed definites existence 70.61 69.36 66.6 72.87 71.94 65.96 70.16
Question 66.42 64.48 65.97 65.46 65.63 62.91 64.64
Cleft Existence 62.97 62.76 58.77 61.33 61.92 62.07 63.33
Only 62.24 63.39 62.87 60.49 59.72 57.39 59.70
All n 43.49 43.80 40.91 40.04 42.02 38.41 42.56
Both 32.62 29.46 30.93 30.26 24.68 20.48 27.37
Change of state 30.43 31.88 32.35 31.02 30.57 29.84 28.84
Possessed definites uniqueness 23.35 20.41 11.45 24.79 35.59 11.04 39.14
Cleft uniqueness 11.10 14.44 13.39 10.17 12.55 9.70 15.27

Average 44.80 44.44 42.58 44.04 44.96 39.76 45.67

Table 2: Results showing accuracy performance on the various sub-datasets of ImpPres for the three experiments:
MAIN, RANDOM and PRETRAIN . Vanilla refers to no pre-finetuning. For each column, we emphasize in bold the
cases where the accuracy is higher than the corresponding one in the Vanilla case. As a reminder, all sub-datasets
have the same number.
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Vanilla Multi

Possessed definites existence 70.61 71.36
Question 66.42 67.58
Cleft Existence 62.97 65.34
Only 62.24 63.15
All n 43.49 42.03
Both 32.62 25.11
Change of state 30.43 35.77
Possessed definites uniqueness 23.35 27.38
Cleft uniqueness 11.10 14.83

44.80 45.84

Table 3: Accuracy results for the MULTI experiment.

going up to 8/9 sub-datasets in the case of the Co-
herence Modeling task with the Wiki dataset. More-
over, in all 6 scenarios (pre-finetuning task/dataset),
we notice that there is an improvement in the aver-
age accuracy performance compared to the average
performance in the Vanilla case. This suggests that
a pre-finetuning stage using suitable tasks/datasets
could help the performance of MNLI-trained mod-
els on pragmatic NLI cases.
RANDOM: To further validate that hypothesis, we
notice in the RANDOM experiment (second sub-
table) that when we randomize the labels the aver-
age performance drops in all 6 scenarios compared
to the Vanilla scenario. Moreover, the performance
drops in the vast majority of cases (pre-finetuning
task/dataset × ImpPres sub-dataset).
PRETRAIN: On the other hand, when we use the
training data from the pre-finetuning stage for fur-
ther pre-training (the PRETRAIN experiment) in-
stead of the corresponding learning tasks, we no-
tice that the average performance drops in 4 of
the 6 scenarios (pre-finetuning task/dataset) along
with a drop in most individual cases (pre-finetuning
task/dataset × ImpPres sub-dataset). This suggests
that, in certain cases, the use of extra pre-training
data could help in boosting the performance. How-
ever, the performance gains due to further pre-
training is far from consistent compared to what
we saw as a result of using a pre-finetuning stage
(i.e. the MAIN experiment).
MULTI: Table 3 shows the accuracy results ob-
tained when using three simultaneous tasks in the
pre-finetuning stage. We notice that using a pre-
finetuning stage with 3 tasks leads to an increase in
the accuracy performance in 7 out of 9 sub-datasets
as well as an improvement in the average accuracy

performance. Comparing these results to those of
the MAIN experiment, we observe that using 3 si-
multaneous tasks is not necessarily beneficial as the
average accuracy performance in this case is lower
than most scenarios seen in the MAIN experiment.

5.1 Discussion

While the margin of improvement is mostly small
between a given case (pre-finetuning task/dataset ×
ImpPres sub-dataset) and the corresponding vanilla
case, we note this margin is comparable to what
is reported in related studies using pre-finetuning
(e.g., (Aghajanyan et al., 2021; Shwartz et al.,
2020)). Moreover, we notice that for 4 of the 9
sub-datasets (namely, the All n, Change of state,
Possessed definites uniqueness and Cleft unique-
ness datasets), there is full consistency in terms of
performance improvement across all pre-finetuning
tasks and corresponding datasets (that is, for these 4
sub-datasets, pre-finetuned models outperform the
vanilla model in all tasks/corresponding datasets).

The results from the MAIN experiment on their
own are quite interesting because previous work
(Aghajanyan et al., 2021) that ran an extensive em-
pirical study on 50 different pre-finetuning tasks
showed that using a small number of pre-finetuning
tasks does not necessarily lead to a performance
gain on downstream NLI-based tasks and, in fact,
could sometimes hurt the performance. The results
presented here suggest that a single suitable pre-
finetuning task could indeed help MNLI-trained
models perform better on pragmatic NLI cases.

Beyond accuracy improvements, what is even
more interesting is what the two diagnostic tests
RANDOM and PRETRAIN–combined with the accu-
racy improvements seen in the MAIN experiment–
seem to be suggesting. The suggestion is that the
choice of the learning task in the pre-finetuning
stage is playing a role in the performance improve-
ments and that those improvements are in most
cases not a result of simply extra training data.
Moreover, given that these pre-finetuning tasks are
heavily based on aspects of discourse and prag-
matics, the nature of these tasks is relevant to the
pragmatic nature of the NLI cases that make up the
ImpPres dataset. We thus believe that the perfor-
mance improvement is due in large part to cross-
task knowledge transfer from the pre-finetuning
stage to the later stages: This is because the learn-
ing model was exposed to little focus on notions of
pragmatics when it was (originally) only finetuned
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Vanilla POS NER

Poss. def. existence 70.61 70.17 58.93
Question 66.42 61.34 63.87
Cleft Existence 62.97 60.77 64.71
Only 62.24 59.19 58.51
All n 43.49 39.55 32.77
Both 32.62 23.48 27.84
Change of state 30.43 31.14 32.04
Poss. def. uniqueness 23.35 22.15 18.80
Cleft uniqueness 11.10 15.70 18.99

44.80 42.61 41.83

Table 4: Accuracy results for the experiments involving
pre-finetuning on POS tagging and NER.

on MNLI and was now being made richer through
the aforementioned cross-task knowledge transfer.

Regarding the MULTI experiment, the fact that
the performance of the model pre-finetuned on 3
simultaneous tasks is comparable or lower in some
cases is in line with previous work (Aghajanyan
et al., 2021) that found that performance improve-
ments become linear with the number of tasks only
starting from 15 pre-finetuning tasks. Also, as we
already mentioned, due to computational resources,
the hyperparameters (learning rate, weight decay)
were fixed for all 3 pre-finetuning tasks and not
optimized for each task on its own which could’ve
been sub-optimal thus affecting the performance.

5.2 Pre-finetuning on other tasks

One question that might arise is whether other pre-
finetuning tasks that are not directly related to no-
tions of discourse or pragmatics would help in a
similar fashion to what we’ve seen in the main
experiments (Section 4). To further explore this,
we carry out two experiments with different pre-
finetuning tasks: POS tagging and Named Entity
Recognition (NER). For the first experiment, we
use WSJ-PTB (Marcus et al., 1993) with the stan-
dard section splits. For the second experiment, we
use the English portion of the CoNLL-2003 NER
dataset (Tjong Kim Sang and De Meulder, 2003).
We follow the same training setup as in Section
4.1. Results in Table 4 show a drop in overall
average performance for both experiments along
with a drop in performance for the vast majority of
ImpPres sub-datasets, further strengthening the hy-
pothesis that pre-finetuning on tasks specifically
centering on discourse and pragmatics leads to

PDTB Wiki Reviews

No-P W/P No-P W/P No-P W/P
neutral 0 55 0 58 0 52
entailment 46 1 56 0 47 1
contradiction 10 0 2 0 6 0

Table 5: Distribution of predictions for the Possessed
Definites Existence sub-dataset for the samples that
were incorrectly predicted by the Vanilla model (no
pre-finetuning - No-P) but correctly predicted by the
pre-finetuned model (W/P). The No-P column shows the
distribution of predictions that were incorrectly made
by the Vanilla model (No-P) and how their distribution
became when the predictions (on the same samples)
were correctly made by the pre-finetuned model (W/P).

an improvement in the performance of transfomer
models on NLI cases involving presupposition.

6 Sample Analysis

To understand better the effect of the pre-finetuning
stage, we analyze the outputs of the model with and
without pre-finetuning. Specifically, we look at the
models that are pre-finetuned on PDTB (Discourse
Relation Classification), Wiki (Coherence Model-
ing) and the Reviews dataset (Sarcasm Detection).
As a case study, we choose the Possessed Definites
Existence sub-dataset of ImpPres as the models
performance is the highest on this sub-dataset. We
investigate the samples that were incorrectly pre-
dicted by the Vanilla model (no pre-finetuning) but
correctly predicted by the pre-finetuned model for
each of these 3 cases. In all 3 cases, there were less
than 60 such samples. Table 5 shows the results.

In all 3 pre-finetuning tasks, we notice that, in
the vast majority of samples (>95%), the correct
label is neutral. While the ImpPres dataset is struc-
tured such that the neutral cases are generally easier
than the other cases (e.g. the contradiction cases
are generally the hardest), the model still got these
cases wrong, instead predicting them as entailment
in most cases and contradiction in others. How-
ever, with pre-finetuning, the models correctly pre-
dicted those cases as neutral instead. For exam-
ple, in cases predicted incorrectly as contradiction,
we notice the presence of negation in the premise.
The model might have been using this (incorrectly)
as an indicator for contradiction. One example is
the following: The premise is "That actor’s poli-
tics didn’t upset Nancy", the hypothesis is "Ken-
neth has politics." The Vanilla model predicted this
sample to be one of contradiction whereas the pre-
finetuned model predicted it correctly as neutral.
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7 Conclusion

Pre-finetuning transformer-based models has been
explored in recent literature as a means to im-
prove the performance of these models on various
tasks. In our work, we investigate the use of a
pre-finetuning step in attempt to improve the per-
formance of MNLI-trained models on pragmatic
NLI cases. Particularly, we examine three pre-
finetuning tasks: discourse relation classification,
coherence modeling and sarcasm detection. We fo-
cus on these tasks because they are discourse-based
or require some notion of pragmatic understanding
of the text. We notice that, indeed, pre-finetuning
on the selected tasks leads to an improvement in the
performance of these models on NLI cases involv-
ing presupposition. Furthermore, we run several
diagnostic tests to understand whether these per-
formance improvements are merely a byproduct
of additional training data. The results show that,
while additional training data seems to be helping
on its own in some cases, the choice of the tasks
seems to be playing a role in the performance im-
provement. In future work, we intend to investigate
other pre-finetuning tasks for the final goal of eval-
uating NLI models on NLI cases involving other
types of pragmatic phenomena (e.g., implicature).
Moreover, we are interested in exploring different
learning strategies for making transformer-based
models better at pragmatic NLI cases.

8 Limitations

Evidently, one limitation of this work is that results
are shown for the English language only. In princi-
ple, we expect that cross-task knowledge transfer
from tasks involving notions of discourse and prag-
matics to help in the performance of learned models
on downstream tasks that also involve notions of
pragmatics (as is the case in this work). However,
to what other languages this generalizes to (and to
what extent)–especially languages that are morpho-
logically richer than English–remains a question
for further exploration. Another limitation is that
the ImpPres dataset which is the focus of evaluation
in our work is a dataset of semi-automatically gen-
erated sentences. The generation process involves
pre-specified templates that are to be filled with
constituents sampled from a limited vocabulary
(3000 lexical items). Thus a large-scale quality
check process would be required to validate the
quality of the entirety of the dataset (e.g., it is men-
tioned in (Jeretic et al., 2020) that the generated

sentences often describe highly unlikely scenarios
or might include combinations of lexical items that
make the sentence sound unnatural).
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A Appendix

A.1 Additional training details
We present here the learning rate and weight de-
cay that were obtained for each model following
hyperparameter search as explained in Section 4.1.

MAIN
Discourse Relation

Classification
Coherence
Modeling

Sarcasm
Detection

PDTB TED-MDB WSJ Wiki Reviews Headlines
Weight decay 0.1 0.1 0.001 0.1 0.1 0.01
Learning rate 2e-5 4e-5 2e-5 1e-5 4e-5 2e-5

RANDOM
Discourse Relation

Classification
Coherence
Modeling

Sarcasm
Detection

PDTB TED-MDB WSJ Wiki Reviews Headlines
Weight decay 0.001 0.1 0.1 0.1 0.001 0.1
Learning rate 1e-5 2e-5 2e-5 1e-5 2e-5 3e-5

PRETRAIN
Discourse Relation

Classification
Coherence
Modeling

Sarcasm
Detection

PDTB TED-MDB WSJ Wiki Reviews Headlines
Weight decay 0.001 0.01 0.001 0.1 0.1 0.01
Learning rate 4e-5 4e-5 3e-5 1e-5 1e-5 4e-5
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