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Abstract

Graph neural networks (GNNs) have shown
promising performance for knowledge graph
reasoning. A recent variant of GNN called
progressive relational graph neural network
(PRGNN), utilizes relational rules to infer
missing knowledge in relational digraphs and
achieves notable results. However, during rea-
soning with PRGNN, two important proper-
ties are often overlooked: (1) the sequentiality
of relation composition, where the order of
combining different relations affects the seman-
tics of the relational rules, and (2) the lagged
entity information propagation, where the
transmission speed of required information
lags behind the appearance speed of new en-
tities. Ignoring these properties leads to in-
correct relational rule learning and decreased
reasoning accuracy. To address these issues,
we propose a novel knowledge graph reason-
ing approach, the Relational rUle eNhanced
Graph Neural Network (RUN-GNN). Specifi-
cally, RUN-GNN employs a query related fu-
sion gate unit to model the sequentiality of
relation composition and utilizes a buffering
update mechanism to alleviate the negative ef-
fect of lagged entity information propagation,
resulting in higher-quality relational rule learn-
ing. Experimental results on multiple datasets
demonstrate the superiority of RUN-GNN is su-
perior on both transductive and inductive link
prediction tasks.

1 Introduction

Knowledge graph (KG) such as FreeBase (Bol-
lacker et al., 2008), NELL (Carlson et al., 2010)
and YAGO (Suchanek et al., 2007), is essentially a
semantic network used to store and organize knowl-
edge, which is extensively applied in a variety of
scenarios, such as question answering (Yasunaga
et al., 2021; Galkin et al., 2022), recommendation
systems (Wang et al., 2018), semantic search (Be-
rant and Liang, 2014), etc. Each of these KGs, how-
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ever, faces the problem of incompleteness, mak-
ing it difficult to provide effective knowledge ser-
vices for downstream applications. As a result,
KG reasoning, known as link prediction in KG, is
proposed to automatically complete the missing
knowledge and has attracted much attention from
researchers.

Various methods for link prediction are explored
to facilitate reasoning for missing knowledge. Pre-
vious methods such as TransE (Bordes et al., 2013)
and ConvE (Dettmers et al., 2018) perform reason-
ing by learning and utilizing distributed represen-
tations of entities and relations in triples. Since
these methods can only capture the features of a
single triple, some methods such as MINERVA
(Das et al., 2018) and M-walk (Shen et al., 2018),
are proposed to mine the path semantic information
composed of triples. To further learn the semantic
association of graph structures, methods such as
CompGCN (Vashishth et al., 2019) and KE-GCN
(Yu et al., 2021) use graph neural networks (GNNs)
to aggregate neighbor information.

The recent progressive relational graph neural
network (PRGNN) such as NBFNet (Zhu et al.,
2021) and RED-GNN (Zhang and Yao, 2022), is
a kind of advanced KG link prediction method
that learns relational rules to infer missing knowl-
edge. Relational rules refer to the Horn Clause
that consists only of ordered relations, such as
has_father_in_law(a, c) ← has_wife(a, b) ∧
has_father(b, c). In PRGNN-based methods, the
representation of each entity encodes the informa-
tion of the specific relational digraph (r-digraph)
(Zhang and Yao, 2022). Yet, we observe that the
sequentiality of relation composition and lagged
entity information propagation would affect the
quality of encoded relational rule during inference,
and the aforementioned methods lack the ability to
deal with these two properties.

The sequentiality of relation composition
means that the order of combining differ-
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Figure 1: Figure (a) shows a toy KG. Figures (b), (c), and (d) depict the sequential inference process of the
PRGNN-based methods for the query (Andrew, has_mather_in_law, ?)→Mia on the toy KG. (e) is the state
of the KG after using our buffer module. −−−→r2, r1 refers to the relational path r2(a, b) ∧ r1(b, c). The representations
of entities depicted in Figure (c) are generated by employing the entity representations from Figure (b) and the
relations that interconnect them, including Figures (d) and (e).

ent relations affects the semantics of the re-
lational rules. For example, both the rela-
tional rules has_father(a, c)← has_sister(a, b)
∧ has_father(b, c) and has_aunt(a, c) ←
has_father(a, b) ∧ has_sister(b, c) contain the
two same relations has_sister and has_father.
The combination of two different relations in a dif-
ferent order can lead to different conclusions. How-
ever, existing PRGNN-based methods face limita-
tions in encoding such sequential information due
to the standard practice of using addition and multi-
plication operations to integrate representations of
entities and relations. Consequently, these methods
are prone to misinterpreting the encoded relational
rule information, which ultimately restricts their
reasoning ability.

The phenomenon of lagged entity information
propagation refers to the situation where the trans-
mission speed of required information lags behind
the appearance speed of new entities. The PRGNN
updates entity representations by propagating infor-
mation on a growing subgraph, with entities in the
subgraph considered as candidate answer entities.
Consequently, as PRGNN undergoes forward prop-
agation, new candidate answer entities continually
emerge. However, these new entities often possess
limited relational path information, while a substan-
tial amount of crucial information remains trapped
within the old candidate answer entities without
being promptly conveyed to the new entities. Tak-
ing Figure 1 as an example, suppose we want to
infer who Andrew’s mother-in-law is. The correct
answer entity Mia is a new candidate answer en-
tity in Figure 1 (d) that can only obtain informa-
tion about the shortest relational path −−−→r2, r1 from
Andrew to Mia. The true key information −−−→r1, r3,

however, remains in the old candidate answer en-
tity Ethan. Therefore, it becomes challenging to
make the correct judgment for the given question.
This phenomenon makes the model more prone to
learning erroneous relation rules during the training
phase and producing incorrect conclusions during
the inference phase.

To address the properties mentioned above,
we propose a novel KG link prediction method
called Relational rUle eNhanced Graph Neural
Network(RUN-GNN), equipped with two strate-
gies for enhancing relational rules. The first en-
hancement strategy involves employing a query
related fusion gate unit to update the representa-
tion of relational rules. This allows RUN-GNN to
better encode various combination patterns among
relations and identify the most valuable relational
rules from a pool of candidate rules. The second
proposed strategy is the utilization of a buffering
update mechanism. This involves adding a buffer
module to the PRGNN encoder, allowing the trans-
mission of lagged information to the entities that re-
quire it. By doing so, the candidate answer entities
promptly receive the necessary information, thus
reducing the risk of the model learning incorrect
rules. Both of the above strategies allow the method
to learn and utilize enhanced relational rules effec-
tively, thereby improving the performance of the
method.

Briefly, the main contributions of this paper are
as follows:

• To the best of our knowledge, we are the first
to study the sequentiality of relation compo-
sition and the lagged entity information prop-
agation in KG link prediction, and a novel
PRGNN-based KG link prediction framework
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RUN-GNN is proposed to enhance relational
rules.

• A query related fusion gate unit (QRFGU) is
proposed to orderly fuse different relational
rules according to the query relation. Using
QRFGU as a message-passing function can
model the sequentiality of relation composi-
tion and significantly improve inference per-
formance.

• A buffering update mechanism is designed
to help entities obtain richer reasoning rule
information and overcome the problem of the
lagged entity information propagation.

• Experiments are conducted on multiple
datasets under the inductive and transductive
settings, and the experimental results show
that RUN-GNN obtains substantial improve-
ment over state-of-the-art methods.

2 Related Work

2.1 Inductive Knowledge Graph Reasoning

Inductive KG reasoning methods can perform rea-
soning on unseen entities. Some inductive methods
aggregate the representations of seen entities to gen-
erate representations for unseen entities. Examples
of such methods include LAN(Wang et al., 2019a)
and CFAG (Wang et al., 2022). There are also some
inductive methods that do not rely on representa-
tions of seen entities at all, instead relying solely
on relational subgraphs for reasoning. Examples of
these methods include GraIL (Teru et al., 2020) and
CoMPILE (Mai et al., 2021), RED-GNN (Zhang
and Yao, 2022).

2.2 Triple Information based Link Prediction

Methods based on triple information directly rea-
son on triples with the entity and relation repre-
sentations, including TransE (Bordes et al., 2013),
TransR (Lin et al., 2015), TransH (Wang et al.,
2014), HypE (Fatemi et al., 2021), RotatE (Sun
et al., 2018), DistMult (Yang et al., 2015), ConvE
(Dettmers et al., 2018), HAKE (Zhang et al., 2020),
HousE (Li et al., 2022). These methods are simple
and efficient, but cannot take advantage of graph
structure features and are not interpretable.

2.3 Path Information based Link Prediction

Methods based on path information mainly in-
clude path-based methods and rule-based meth-

ods. Path-based methods predict triples by learn-
ing and utilizing paths, including MINERVA (Das
et al., 2018), M-walk (Shen et al., 2018), CURL
(Zhang et al., 2022) etc. The rule-based methods
find rules by mining a series of paths and employ
those paths with high reliability as rules for reason-
ing, including RNNLogic (Qu et al., 2020), DRUM
(Sadeghian et al., 2019), NeuralLP (Yang et al.,
2017), RLogic (Cheng et al., 2022). Path infor-
mation based methods are well interpretable but
challenging to reason with long paths.

2.4 Graph Structure Information based Link
Prediction

2.4.1 Graph Neural Network based Link
Prediction

After the introduction of Graph Convolutional Net-
works (GCN) (Kipf and Welling, 2016) for homo-
geneous graphs, the attention of researchers was
also drawn to the heterogeneous graph. R-GCN
(Schlichtkrull et al., 2018), which focuses on the
relations between entities, was quickly proposed.
Subsequent researchers further developed various
graph neural network methods for heterogeneous
graph reasoning, such as HAN (Wang et al., 2019b),
BA-GNN (Iyer et al., 2021), CompGCN (Vashishth
et al., 2019) and KE-GCN (Yu et al., 2021).

2.4.2 Subgraph-based Link Prediction
In contrast to conventional GNN-based approaches,
subgraph-based methods often explicitly sample
and encode neighborhood subgraphs of entities for
reasoning. Early subgraph-based methods required
sampling multi-hop subgraphs for each involved
entity during each inference step, resulting in a
high time complexity that limited their application
to small datasets and relation prediction tasks. Ex-
amples of such methods include GraIL (Teru et al.,
2020), SNRI (Xu et al., 2022), LogCo (Pan et al.,
2022), ConGLR (Lin et al., 2022), CoMPILE (Mai
et al., 2021), CFAG (Wang et al., 2022).

2.4.3 PRGNN-based Link Prediction
The PRGNN-based reasoning method is an ad-
vanced subgraph-based KG link prediction method
that performs inference by encoding r-digraph se-
quences as relational rule representation, including
NBFNet (Zhu et al., 2021) and RED-GNN (Zhang
and Yao, 2022). Zhu et al. (2021) extended the
Bellman-Ford algorithm using neural networks to
propose NBFNet, whose best-performing instance
model follows the reasoning pattern of PRGNN,
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providing the first validation of the effectiveness of
PRGNN. Zhang and Yao (2022) formally proposed
the efficient progressive relational graph neural net-
work framework RED-GNN for the first time by
recursively encoding the r-digraphs. This signifi-
cantly improves the problem of high time complex-
ity of subgraph-based methods.

2.5 Link Prediction with Extra Information

Most KG reasoning methods typically learn how
to perform reasoning from existing factual triplets.
However, some methods have also incorporated
additional information for reasoning. For instance,
methods like JOIE (Hao et al., 2019) and DGS (Iyer
et al., 2022) introduce ontology information, while
KG-BERT (Yao et al., 2019) and StAR (Wang
et al., 2021) incorporate textual information. MKG-
former (Chen et al., 2022), on the other hand, lever-
ages extra multimodal information for reasoning.

3 Methodology

3.1 Problem Definition

The knowledge graph is denoted as G = (V,R,F),
where V represents entity set, R represents rela-
tions set, and F = {(s, r, o)|s, o ∈ V, r ∈ R}
represents the fact triples set.

The task of link prediction in KG aims to infer
the missing entity oq by giving an incomplete query
triple (sq, q, ?). To simplify the process of link
prediction, we follow the works (Vashishth et al.,
2019; Sadeghian et al., 2019) to augment the KG
by adding inverse and identity triples.

Depending on whether the entities in the test set
appear in the training set, link prediction tasks can
be divided into inductive settings and transductive
settings. With the inductive setting, entities in the
test sets do not appear in the training set. Our
proposed method RUN-GNN is capable of both
transductive and inductive tasks.

3.2 Progressive Relational Graph Neural
Network

PRGNN is an advanced variant of GNNs, which
performs KG link prediction by learning relational
rules in KG. Unlike traditional GNNs, which up-
date the representations of all entities in the graph
during each propagation, the PRGNN-based ap-
proach only updates the representations of i-hop
neighbors of the query head entity during the i-th
propagation. In addition, it does not learn represen-
tations of entities, but only learns representations

of relations and relational rules. It encodes the r-
digraph into a rule information representation for
link prediction.

Both rule-based methods and PRGNN-based
methods use only the combinations of relations
for reasoning, but there are some differences in
the form of utilization. Rule-based methods search
for candidate answer entities in the neighborhood
of the query head entity using a set of relational
rules and select the answer entity from the candi-
date answer entities based on the matching rules.
In contrast, PRGNN-based methods consider all
entities in the neighborhood as candidate answer
entities and encode the r-digraph as representations
for the candidate entities using GNNs. The answer
entity is then selected based on the representations
of the entities. Therefore, PRGNN-based methods
perform inference by learning relational rules, in
which the entity representations can be considered
representations of relational rules.

3.3 Model Architecture

Figure 2 illustrates the overall structure of our pro-
posed method RUN-GNN. The RUN-GNN follows
an encoder-decoder structure. The encoder con-
tains an exploration module and a buffer module
connected in series.

The primary objective of the exploration module
is to explore more candidate answer entities and to
generate entity representations of relational rules
for them. The purpose of the buffer module, which
operates as the latter component, is to update the
information of changed relational rules to the rele-
vant entities in a timely manner. The decoder is a
linear layer that provides candidate answer entities
with scores.

3.4 Query Related Fusion Gate Unit

The query related fusion gate unit (QRFGU), a
variant of GRU(Chung et al., 2014), is designed to
effectively model the properties of relational rules,
specifically to ensure the sequentiality of relation
composition. The QRFGU integrates the relation
message representation hmsg ∈ Rd into the entity’s
rule representation hrule ∈ Rd to obtain a new
query-related relational rule representation hfuse ∈
Rd, where d denotes the size of the embedding
dimension.

The structure of QRFGU is shown in Figure 3.
QRFGU can be denoted as:

hfuse = QRFGU(hrule, hmsg, hq), (1)
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where hq ∈ Rd denotes query relation represen-
tation. The QRFGU computes the forget gate
gf ∈ [0, 1]d and update gate gu ∈ [0, 1]d based on
hrule, hmsg, and hq firstly. And then, the QRFGU
computes the candidate hidden state hc ∈ Rd based
on gf , hrule, and hmsg, and subsequently derives
the fused state hfuse by combining hc, hrule, and
gu. The detailed calculation process of QRFGU
can be described as:

gu = σ(Wu[hrule, hmsg, hq] + bu), (2)

gf = σ(Wf [hrule, hmsg, hq] + bf ), (3)

hc = tanh(Wc(hmsg + (hf ⊙ hrule)) + bc), (4)

hfuse = (1− fu)⊙ hrule + fu ⊙ hc. (5)

Among them, σ represents the sigmoid activate
function. [, ] denotes the concatenation operation.
Wu,Wf ∈ Rd×3d,Wc ∈ Rd×d, bu, bf , bc ∈ Rd

all denote trainable parameters, ⊙ represents the
Hadamard product.

3.5 Enhancing Relational Rules Using Query
Related Fusion Gate Unit

In RUN-GNN , the exploration module consists of
n Gated Graph Attention Netwok (G-GAT) layers,

in which the i-th G-GAT layer propagates relational
information in i-hop subgraphs G

(i)
sq centered on

the query head entity sq, treating entities in these
subgraphs as candidate answer entities and gener-
ating corresponding entity representations of rela-
tional rules.

To better handle the sequentiality of relation
composition, the G-GAT layer leverages the QR-
FGU to fuse the representations of the head entity
and relation of each triple (s, r, o) and generates
the representation of the corresponding candidate
relation rule message ms,r,o,q. The computation of
ms,r,o,q is formalized as follows:

ml
s,r,o,q = QRFGU(hl−1

s , hlr, h
l
q), (6)

where hs, hr ∈ Rd represent the representation of
the head entity and relation of the current triple
separately, the variable l in hlr denotes the l-th G-
GAT layer.

The G-GAT layers compute the attention score
als,r,o,q for each triple (s, r, o) in the subgraph Gl

sq

based on hlq, ml
s,r,o,q. The attention score als,r,o,q is

calculated by:

cls,r,o,q = W l
aReLU(W l

sm
l
s,r,o,q +W l

qh
l
q), (7)

als,r,o,q =
exp(cls,r,o,q)∑

(s̃,r̃,o)∈T l
o
exp(cls̃,r̃,o,q)

, (8)

where W l
a ∈ R1×da and W l

s,W
l
q ∈ Rda×d repre-

sent trainable weight matrices, da is the attention
space dimension. T l

o is the set of triples centered on
o in G

(l)
sq . So the candidate relational rule represen-

tations for entities are calculated by the Equation:

h̃lo = φ(
∑

(s,r,o)∈T l
o

als,r,o,qm
l
s,r,o,q), (9)
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where φ represents the ReLU activation function,
tanh activation function or no operation.

After that, to further retain the valuable exist-
ing relational rules, RUN-GNN utilizes QRFGU to
control the updating of representations of entities.
The l-th G-GAT layer calculates the representation
of any entity o in G

(i)
sq in by:

hlo = QRFGU(hl−1
o , h̃lo, hq). (10)

It is worth emphasizing that the exploration module
commences by initializing all entity representations
as zero vectors.

3.6 Enhancing Relational Rules Using
Buffering Update Mechanism

The generation of representations for candidate an-
swer entities is a key feature of the exploration
module. However, incomplete encoding of rela-
tional rule information presents a challenge due to
lagged entity information propagation. A possible
solution is to increase the number of G-GAT layers
in the exploration module. However, this approach
may lead to a larger subgraph during inference, re-
sulting in higher resource consumption and a larger
number of candidate answer entities. Furthermore,
new candidate answer entities are still susceptible
to lagged entity information propagation.

In this work, we propose a simple and elegant
buffering update mechanism that can alleviate the
problem of lagged entity information propagation
with relatively low resource consumption, and sig-
nificantly improve the performance of the model
in queries where the answer entity is far away. In
detail, We add a buffer module after the exploration
module, which consists of m G-GAT layers, each
of which propagates information on the same sub-
graph G

(n)
sq . The buffer module acts as a buffer

that allows candidate answer entities to wait for
important relational rule information retained in
dependent entities. This ensures that all candidate
answer entities have enough relational rule infor-
mation before proceeding with decoding.

3.7 Model Prediction and Optimization
The score of each entity is calculated based on a
representation containing the appropriate relational
rules. The score of entity o is given by

score(o) = f(sq, q, o) = Wscoreh
n+m
o , (11)

where Wscore ∈ R1×d is the weight matrix. If an
entity in RUN-GNN doesn’t obtain a representation

from encoder at last, it will be assigned a score that
values 0.

The link prediction task can be regarded as a
multi-label classification problem. To optimize the
parameters of the model, we use the multi-class log-
loss (Lacroix et al., 2018; Zhang and Yao, 2022),
i.e.

L =
∑

(sq ,q,oq)∈Ftrain

(−f(sq, q, oq) + log(
∑

o∈V
exp(f(sq, q, o)))),

(12)
where (sq, q, oq) represents positive triple in train
triplesFtrain , and (sq, q, o) denotes any triple with
the same query (sq, q, ?).

4 Experiments

To demonstrate the effectiveness of RUN-GNN,
many experiments under inductive and transduc-
tive tasks are conducted for KG link prediction on
multiple benchmark datasets.

4.1 Transductive Experiments

4.1.1 Datasets and Baselines
We use four commonly used public datasets to
conduct our experiments, including WN18RR
(Dettmers et al., 2018), FB15k-237 (Toutanova and
Chen, 2015), NELL-995 (Xiong et al., 2017) and
YAGO3-10 (Chami et al., 2020). The details of
these datasets can be found in Appendix B.1.

To verify the effectiveness of our method, we
compare RUN-GNN with various types of KG
link prediction methods, including triple informa-
tion based methods ConvE (Dettmers et al., 2018),
HousE (Li et al., 2022), HAKE (Zhang et al.,
2020) and RotatE (Sun et al., 2018); path informa-
tion based methods MINERVA (Das et al., 2018),
DRUM (Sadeghian et al., 2019), CURL (Zhang
et al., 2022) and RNNLogic (Qu et al., 2020); nor-
mal GNN-based methods CompGCN (Vashishth
et al., 2019); existing PRGNN-based methods
RED-GNN (Zhang and Yao, 2022) and NBFNet
(Zhu et al., 2021). For most baseline methods, the
experimental results are derived from related pub-
lished papers and (Zhang and Yao, 2022). Since
there are problems with the evaluation methodol-
ogy of the RED-GNN, we re-evaluate the perfor-
mance of the method using the code and hyperpa-
rameters published in paper (Zhang and Yao, 2022).
We also evaluate the performance of CURL, RNN-
Logic, CompGCN, RED-GNN, and NBFNet on
YAGO3-10 using publicly available codes and hy-
perparameters.
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Type Methods WN18RR FB15k-237 NELL-995 YAGO3-10
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

Triple

ConvE 0.430 39.0 49.0 0.325 23.7 50.1 0.514 44.2 63.2 0.440 35.0 62.0
QuatE 0.480 44.0 55.1 0.350 25.6 53.8 0.533 46.6 64.3 0.495 40.2 67.0
HousE 0.511 46.5 60.2 0.361 26.6 55.1 0.528 45.8 64.5 0.571 49.1 71.4
HAKE 0.497 45.2 58.2 0.346 25 54.2 0.527 45.9 64.1 0.545 46.2 69.4

Path MINERVA 0.448 41.3 51.3 0.293 21.7 45.6 0.513 41.3 63.7 - - -
DRUM 0.486 42.5 58.6 0.343 25.5 51.6 0.365 30.0 48.8 - - -
CURL 0.462 42.9 52.7 0.2902 21.1 45.3 0.442 32.8 56.4 0.499 42.2 63.9

RNNLogic 0.483 44.6 55.8 0.344 25.2 53.0 0.479 43.1 57.1 0.536 47.1 64.2

Graph
CompGCN 0.479 44.3 54.6 0.355 26.4 53.5 0.518 44.6 63.4 0.354 25.7 54.4
RED-GNN 0.547 50.1 63.5 0.376 28.2 56.0 0.548 48.3 65.7 0.520 44.2 66.1

NBFNet 0.551 49.7 66.6 0.415 32.1 59.9 0.501 41.1 65.6 0.373 27.9 56.9
RUN-GNN (ours) 0.586 53.2 68.8 0.416 31.9 61.0 0.580 51.6 68.4 0.580 50.5 71.5

Table 1: Experimental results on WN18RR, FB15k-237, NELL-995, YAGO3-10 under transductive settings. Hit@N
values are in percentage. The best scores are in bold and the second-best scores are with underline. ‘-’ means
unavailable results.

4.1.2 Detailed Settings
To evaluate our proposed method’s performance,
we utilize the filtered Mean Reciprocal Rank
(MRR), Hit@1, and Hit@10 metrics. Our method
is implemented using PyTorch (Paszke et al., 2019)
and PyG (Fey and Lenssen, 2019).1 To train the
model, we utilize four NVIDIA RTX A4000 GPUs
for 80 epochs. The best performance of models is
selected based on the MRR metric on each valida-
tion set. Further details on the transductive experi-
mental setup, including experimental hyperparam-
eters, training time, number of model parameters,
and more, can be found in Appendix B.2.

4.1.3 Results and Discussion
Table 1 illustrates the experiment results of dif-
ferent methods. Our RUN-GNN model outper-
forms baselines based on triple and path informa-
tion on all datasets by a significant margin. RUN-
GNN also achieves significant performance im-
provements over other PRGNN-based methods.
For instance, RUN-GNN achieves an improvement
of 6.35% over NBFNet for the MRR metric on the
WN18RR dataset. The results show our method
currently has the most powerful reasoning ability.

Our proposed method, RUN-GNN , along with
other methods like NBFNet and REDGNN, utilize
PRGNN reasoning mode, which gives RUN-GNN
a significant advantage over traditional reasoning
methods. Compared to ConvE, RotatE, and MIN-
ERVA, RUN-GNN can utilize more graph struc-
tural information in KG. Also, RUN-GNN can flex-
ibly employ complex rules for link prediction im-
plicitly, unlike rule-based methods like DRUM and

1Code is available at https://github.com/
Ninggirsu/RUN-GNN.

WN18RR FB15k-237
Methods V1 V2 V3 V4 V1 V2 V3 V4

Neural LP 0.649 0.635 0.361 0.628 0.325 0.389 0.400 0.396
DRUM 0.666 0.646 0.380 0.627 0.333 0.395 0.402 0.410
GraIL 0.627 0.625 0.323 0.553 0.279 0.276 0.251 0.227

RED-GNN 0.693 0.687 0.422 0.642 0.341 0.411 0.411 0.421
NBFNet 0.686 0.662 0.410 0.601 0.270 0.321 0.335 0.288

RUN-GNN 0.699 0.697 0.445 0.654 0.397 0.473 0.468 0.463

Table 2: Experimental results under inductive settings
(evaluated with MRR). The best score is in bold and the
second-best scores are with underline.

RNNLogic. Compared to CompGCN, RUN-GNN
can represent every possible answer entity related
to the current query.

Compared to NBFNet and REDGNN, our pro-
posed method, RUN-GNN , attributes PRGNN’s
reasoning capability to learning relational rules,
and employs two effective strategies to address crit-
ical properties affecting PRGNN’s reasoning capa-
bility: sequential relation composition and lagged
entity information propagation. These strategies
enhance RUN-GNN ’s ability to encode relational
rules and give it a clear advantage over similar
methods.

4.2 Inductive Experiments

We conduct inductive experiments to evaluate meth-
ods’ ability to reason about unseen entities.

4.2.1 Datasets and Baselines
We select eight widely used inductive datasets de-
rived from WN18RR and FB15k-237 following
the settings of previous research (Zhang and Yao,
2022; Teru et al., 2020).

In this work, we compare RUN-GNN with sev-
eral other methods that possess inductive link pre-
diction ability, including Neural LP (Yang et al.,
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2017), DRUM (Sadeghian et al., 2019), GraIL
(Teru et al., 2020), RED-GNN (Zhang and Yao,
2022), NBFNet (Zhu et al., 2021). Among them,
the experimental results of NeuralLP, DRUM, and
GraIL are from the paper (Zhang and Yao, 2022).
We re-evaluate the experimental results of RED-
GNN and NBFNet using the code and hyperpa-
rameters published in their papers (Zhang and Yao,
2022; Zhu et al., 2021) due to issues with the ex-
perimental settings.

We evaluate the performance of the methods
using the filtered MRR metric. We select the best
performance based on the MRR metric on each
relevant validation set. The detailed settings are
provided in Appendix B.5.

4.2.2 Results and Discussion
Based on the results presented in Table 2, our
model RUN-GNN performs well on both sub-
datasets of WN18RR and FB15k-237. NeuralLP
and DRUM use the mined chain-like rules to pre-
dict knowledge, so they are able to achieve good
results. GraIL samples subgraphs between head
and tail entities of triples and mines structural and
relational information for reasoning, but doesn’t ef-
fectively use intermediate relational rules. PRGNN-
based methods, like RED-GNN and NBFNet, are
able to encode complex relational rules into entity
representations and thus perform well. RUN-GNN
utilizes QRFGU to encode more complex rules
with greater accuracy, which enhances the model’s
ability to leverage relational rules and leads to bet-
ter performance.

4.3 Analysis

We conduct several experiments in this subsec-
tion to validate the effectiveness of our proposed
method. For subsequent experiments, we utilize
only the transductive setting since it is the most
commonly used experimental setting (Vashishth
et al., 2019; Yang et al., 2015; Bordes et al., 2013).
All methods are tested using the WN18RR dataset,
with n set to 5, m set to 3, and d set to 64.

4.3.1 Ablation Study
We design several variants of RUN-GNN to evalu-
ate the impact of each component. Table 3 presents
the results of the experiments. The table shows that
variant w/ multiplication and variant w/ addition,
which use multiplication or addition to fuse the en-
tity and relation representation, perform worse than
RUN-GNN, which indicates that QRFGU is an ef-

Methods MRR Hit@1 Hit@3 Hit@10
w/ multiplication 0.552 50.5 57.7 64.3

w/ addition 0.561 51.2 58.5 65.2
w/o buffer 0.563 51.4 58.8 65.5
RUN-GNN 0.571 52.5 59.2 66.1

Table 3: Experiment results of different variants.

n m 1-Hop 2-Hop 3-Hop 4-Hop 5-Hop 6-Hop ALL
2 0 0.994 0.449 0.001 0.000 0.001 0.000 0.391
2 2 0.995 0.496 0.001 0.001 0.001 0.000 0.394
3 0 0.995 0.533 0.383 0.000 0.001 0.000 0.480
3 2 0.995 0.544 0.452 0.000 0.001 0.000 0.496
4 0 0.996 0.602 0.516 0.103 0.000 0.000 0.524
4 2 0.996 0.604 0.544 0.155 0.000 0.000 0.533
5 0 0.996 0.644 0.612 0.212 0.101 0.000 0.565
5 2 0.996 0.626 0.621 0.244 0.125 0.000 0.570
6 0 0.996 0.628 0.614 0.282 0.143 0.029 0.574
6 2 0.996 0.617 0.621 0.298 0.168 0.039 0.579
Count 2192 582 1346 470 556 276 6268
Ratio 34.97 9.29 21.47 7.50 8.87 4.40 100.00

Table 4: The performance comparison of the MRR be-
tween RUN-GNN models with different hyperparame-
ters on the WN18RR dataset.

fective component for encoding relational rules.
Additionally, variant w/o buffer, which does not
use the buffering update mechanism, also performs
worse than RUN-GNN, demonstrating how the
buffer module can improve entity representation
and link prediction.

4.3.2 Does Buffer Update Mechanism Solve
Lagged Entity Propagation?

To evaluate the effectiveness of the proposed Buffer
Update Mechanism in mitigating the negative ef-
fects of Lagged Entity Propagation, we classify
the test set based on the shortest path length from
the head to tail entity of the query triple, varying
hyperparameters m and n to assess RUN-GNN ’s
link prediction performance. Results presented in
Table 4 show that increasing the value of m consis-
tently improves the model’s inference performance,
particularly for triples with longer inference paths.
This demonstrates the effectiveness of our proposed
method in mitigating the negative effects of lagged
entity information propagation. Additionally, re-
sults also reveal that the number of G-GAT layers
in the model’s exploration module significantly af-
fects performance.

4.3.3 Does Query Related Fusion Gate Unit
Deal Well with Sequentiality of Relation
Composition?

We designed an experiment to validate the effec-
tiveness of QRFGU in encoding the sequentiality

10089



40 20 0 20

30

20

10

0

10

20

w/o QRFGU Normal
w/o QRFGU Inverse
w/o QRFGU Match
w/ QRFGU Noraml
w/ QRFGU Inverse
w/ QRFGU Match

Figure 4: Similarity image representing relational paths
encoded in different ways.

of relation composition.
Firstly, We selected lots of common relational

paths from the WN18RR dataset and reversed the
order of relations in these paths to obtain a set of re-
versed relational paths. Then these relational paths
were separately encoded using the original RUN-
GNN (represented as w/ QRFGU) and a variant that
uses element-wise addition as the MESSAGE func-
tion (represented as w/o QRFGU). This resulted in
four sets of representations. We mapped these rep-
resentations to a 2-dimensional space and plotted
the representations using different colored dots in
Figure 4. We also connected the representations of
the reversed relational paths and their correspond-
ing original relational paths using colored lines.

In Figure 4, there are no distinct orange lines,
indicating that the representations of different or-
der combinations of the same relation generated
by the variant w/o QRFGU are very close. The
model fails to capture the sequentiality of compo-
sitional relations and cannot distinguish between
these representations. On the other hand, there
are clear green lines in Figure 4, indicating that
the representations generated by RUN-GNN (w/
QRFGU) have significant differences. The model
successfully captures the sequentiality of composi-
tional relations and can distinguish between these
representations.

4.4 The Time Complexity Analysis

The overall time complexity of RUN-GNN, which
consists of l GNN layers in the exploration module
and n GNN layers in the buffer module, can be
expressed as O((min(nDl, (l + n)|F|) + |V|)d2),
where d is the dimension of relation representations
in the model, D = |F|

|V| is the average degree of the
knowledge graph , |V| is the number of entities,

and |F| is the number of fact triples. More details
can be found in the Appendix D.

5 Conclusion

This paper attributes PRGNN’s reasoning capabil-
ity to learning relational rules and identifies two
issues with existing methods. Firstly, we identify
the issue of ignoring the sequentiality of relation
composition, which causes the model to become
confused with different relational rules. To address
this issue, we propose QRFGU. Additionally, we
identify the issue of lagged entity information prop-
agation, which can lead to erroneous rule learn-
ing. A buffering update mechanism is introduced
to mitigate this problem. We then combine these
two relation rule enhancement strategies to pro-
pose RUN-GNN , which achieves state-of-the-art
performance on knowledge graph link prediction
tasks. In the future, we plan to investigate more
efficient link prediction methods based on PRGNN
to improve their practicality.

Limitations

There may be some possible limitations in this
study.

(1) According to the work of Zhang and Yao
(2022), the time complexity of the PRGNN in-
ference mode followed by RUN-GNN is higher
than conventional methods. As a result, the com-
putational resource consumption of RUN-GNN is
also higher compared to these conventional meth-
ods. Especially, Using QRFGU and buffering up-
date mechanism may increase the computational
cost during model inference. Since QRFGU is
essentially a small neural network, rather than a
parameter-free addition or multiplication operation,
using this method may increase the computational
cost. Additionally, the buffering update mechanism
results in additional calculations through the use of
GNN, which may also contribute to a rise in compu-
tational cost. More details about time complexity
can be found in the Appendix D.

Despite these limitations, RUN-GNN is an in-
ductive reasoning method that does not require sig-
nificant resources to retrain the model when new
entities are added or when facts in the knowledge
graph change, unlike traditional methods. Addi-
tionally, we believe that pruning the model after
training to reduce the number of candidate entities
is a potential future research direction to improve
efficiency and reduce resource consumption during
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model inference.
(2) Our method may have difficulty in reasoning

about query triples where the head and tail entities
are far apart. Since RUN-GNN can only consider
the n-hop neighbors of the query head entity as
candidate answer entities and other entities will be
considered unlikely to be correct answer entities.
Increasing the number of G-GAT layers in the ex-
ploration module by n can improve this, but this
will come with a sharp increase in computational re-
source requirements, and Section 4.3.2 also shows
that the effect of doing so may be poor. Therefore,
it is difficult to provide correct reasoning for triples
where the answer entity is far from the query head
entity.

We believe that this issue can be addressed by
allowing the model to conditionally select candi-
date answer entities, which can reduce the answer
search space and improve the model’s ability to
learn longer relational rules.

Ethics Statement

This study is conducted with full compliance with
the ethical code set out in the ACL Code of Ethics.

The datasets used in our research are publicly
available datasets previously constructed by other
researchers. The content of these datasets is
sourced from publicly available online knowledge
bases (Bollacker et al., 2008), publicly available
cognitive linguistics-based English dictionaries
(Dettmers et al., 2018; Miller, 1995), and publicly
available semantic machine learning systems (Carl-
son et al., 2010; Xiong et al., 2017). Other than
that, all entities involved in the experiments were
anonymized. Other than that, all entities involved
in the experiments were anonymized.

RUN-GNN’s utility extends to the completion
and verification of existing knowledge graphs, such
as Wikidata. However, like other knowledge graph
link prediction methods, the information predicted
by our method may be poisonous, biased, or wrong,
so an additional safety review of the prediction
results may be required. Furthermore, the potential
misuse of this tool to predict private information
from public sources necessitates caution.
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Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhon-
neux, and Jian Tang. 2021. Neural bellman-ford net-
works: A general graph neural network framework
for link prediction. Advances in Neural Information
Processing Systems, 34:29476–29490.

WN18RR FB15k237 NELL995 YAGO3-10
Relation 11 237 200 37
Entity 40943 14541 74,536 123182
Train 86835 272115 149678 1079040
Valid 3034 17535 543 5000
Test 3134 20466 2818 5000

Table 5: Datasets statistics in transductive link predic-
tion experiments.

A Complete Algorithm for the Encoder of
RUN-GNN

The complete algorithm for the encoder of RUN-
GNN is described in Algorithm 1.

Algorithm 1 The encoder of RUN-GNN
Input query head entity sq, query relation q, the

number n of exploration modules and the num-
ber m of the auxiliary modules.

Output H = {he|e ∈ En}.
1: initial h0e = 0 where e ∈ V , entity set E0 =
{sq}, triple set T 0 = ∅, i = 1, j = 1.

2: for i <= n do
3: T i = {(s, r, o)|s ∈ E i−1 ∧ (s, r, o) ∈ F},
E i = {o|s ∈ E i−1 ∧ (s, r, o) ∈ F} ∪ E i−1.

4: for all e ∈ E i do
5: update he by Equation (6) - (10)
6: end for
7: i+ = 1.
8: end for
9: for j <= m do

10: for all e ∈ En do
11: update he by Equation (6) - (10).
12: end for
13: j+ = 1.
14: end for
15: return H = {he|e ∈ En}.

B Experiment Details

B.1 Transductive Datasets Statistics
In the transductive experiments, we mainly used
four publicly available datasets: FB15k-237
(Toutanova and Chen, 2015), NELL-995 (Xiong
et al., 2017), YAGO3-10 (Chami et al., 2020) and
WN18RR (Dettmers et al., 2018). The statistical
information of these datasets is shown in Table 5.

B.2 Transductive Experiment Detailed
Settings

For the WN18RR, FB15k37, YAGO3-10, and
NELL-995 datasets, we empirically select the num-
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Datasets WN18RR FB15k-237
Entity Relation Fact Prediction Entity Relation Fact Prediction

v1
train 2746 9 5410 1268 1594 180 4245 981
test 922 9 1618 373 1093 180 1993 411

v2
train 6954 10 15262 3706 1608 200 9739 2346
test 5084 10 4011 852 1660 200 4145 947

v3
train 12078 11 25901 6249 3668 215 17986 4408
test 5084 11 6327 1140 2501 215 7406 1731

v4
train 3861 9 7940 1902 4707 219 27203 6713
test 7084 9 12334 2823 3051 219 11714 2840

Table 6: Datasets statistics in inductive link prediction experiments.

Methods Family UMLS
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

MINERVA 0.885 82.5 96.1 0.825 72.8 96.8
DRUM 0.934 88.1 99.6 0.813 67.4 97.6

CompGCN 0.933 88.3 99.1 0.927 86.7 99.4
REDGNN 0.992 98.8 99.7 0.964 94.6 99.0
RUN-GNN 0.989 98.8 99.1 0.986 98.0 99.5

Table 7: Experimental results on Family and UMLS
under transductive settings. Hit@N values are in per-
centage. The best scores are in bold and the second-best
scores are with underline.

ber n of G-GAT layers in the exploration module
to be 8, 6, 4, and 6, respectively, with a dimen-
sion size d set to 64, 48, 32, and 48, respectively.
Additionally, we set the G-GAT layer number m
in the buffer module to 2 for YAGO3-10 and 3 for
RUN-GNN on other datasets. We use four NVIDIA
RTX A4000 GPUs for training for up to 80 epochs,
with early stopping based on MRR on the valid
dataset. The training time for one epoch using
these hyperparameters is 42, 117, and 370 minutes
for WN18RR, NELL-995, and FB15k-237, respec-
tively. The best performance of models is selected
based on the MRR metric on each valid dataset.
Additionally, the RUN-GNN model employed in
link prediction across the WN18RR, FB15k-237,
and NELL-995 datasets utilizes 231k, 196k, and
223k parameters, respectively.

B.3 Extra Transductive Experiment results

In addition to classic datasets like WN18RR, we
also conducted experiments on other datasets. Ta-
ble 7 presents the performance of our method on
the Family dataset (Kok and Domingos, 2007) and
UMLS dataset(Kok and Domingos, 2007). On the
Family dataset, our method performs similarly to
the state-of-the-art RED-GNN. However, on the
UMLS dataset, our method clearly outperforms

other approaches.

B.4 Inductive Datasets Statistics

In our inductive experiments, we follow the experi-
mental settings of the previous researchers’ work
(Teru et al., 2020; Zhu et al., 2021) paper and se-
lect eight inductive datasets from the WN18RR
(Dettmers et al., 2018) and FB15k-237 (Toutanova
and Chen, 2015) datasets. However, there are some
differences in the experimental settings of induc-
tive tasks using inductive datasets across different
works. To accurately assess our model’s perfor-
mance, we employ these datasets for link predic-
tion tasks in line with the experimental settings
of the RED-GNN (Zhang and Yao, 2022) paper.
Each inductive dataset comprises distinct training
and testing subsets, each consisting of "fact triples"
and "predict triples." The inductive methods infer
missing entities in the "prediction triples" based on
"fact triples" in the set. Notably, the training and
testing subsets are entirely separate and utilize the
same set of relations but feature different entities.
To provide a comprehensive overview, we present
the statistical information of the inductive datasets
in Table 6.

B.5 Inductive Experiment Detailed Settings

We evaluate the performance of the methods us-
ing the filtered MRR metric. For RUN-GNN, we
perform hyperparameter tuning of the number n
of G-GAT in the exploration module, choosing
from {4, 5, 6, 7}, the number m , choosing from
{0, 1, 2, 3, 4}, and d, selecting from {32, 48, 64}.
Hyperparameter tuning is conducted for 24 hours
using the Evolution Algorithm (Real et al., 2017).
The model is trained on a single NVIDIA RTX
A4000 GPU for 50 epochs. We select the best
performance based on the MRR metric on each
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Figure 5: Comparison of inference capabilities of dif-
ferent PRGNN-based methods for message propagation
on subgraphs of different sizes.

relevant validation set.

C The Influence of Information
Propagation Range in PRGNN

The performance of PRGNN-based methods is
highly dependent on the maximum size of sub-
graphs that GNN layers can propagate information
through. This size is determined by the number
n of G-GAT Layers in the exploration module of
RUN-GNN. In this section, we conduct an evalua-
tion of the performance of PRGNN-based methods
by varying the maximum subgraph size.

Figure 5 illustrates that our proposed RUN-
GNN model achieves the best performance when
the maximum subgraph size used for inference is
greater than 4 hops. This result suggests that our
method is particularly efficient at encoding and
exploiting long relational paths. Furthermore, the
advantage achieved by RUN-GNN over RED-GNN
does not decrease significantly as the subgraph size
grows. This finding indicates that our proposed
strategy of utilizing buffering update mechanism
to enhance relational rules cannot be replaced by
simply increasing the number n of G-GAT Layers
in the exploration module.

D The Detailed Time Complexity
Analysis

The overall time complexity of RUN-GNN, which
consists of l GNN layers in the exploration module
and n GNN layers in the buffer module, can be
expressed as O((min(nDl, (l + n)|F|) + |V|)d2),
where d is the dimension of relation representations
in the model, D = |F|

|V| is the average degree of the
knowledge graph , |V| is the number of entities,
and |F| is the number of fact triples.

The time complexity comparison of these mod-
els is shown in the table 8. Below is a detailed
analysis of the time complexity of RUN-GNN and
other PRGNN methods.

D.1 Theoretical Analysis

Let |V| be the number of entities and |F| be the
number of fact triples. Similar to the NBF-Net(Zhu
et al., 2021), we decompose the time complexity of
the model into the MESSAGE and AGGREGATE
parts.

D.1.1 Time Complexity of NBF-Net

The time complexity of the MESSAGE function
in NBF-Net is O(d), and the time complexity of
the AGGREGATE function is O(d2). Since each
information propagation is performed on the entire
knowledge graph, the overall time complexity is
O(l(|F|d+ |V|d2)).

D.1.2 Time Complexity of REDGNN

The time complexity of the MESSAGE function in
REDGNN(Zhang and Yao, 2022) is O(d), and the
time complexity of the AGGREGATE function is
O(d2). Therefore, the overall time complexity of
REDGNN is O(min(Dl, l|F|)d+ |V|d2).

D.1.3 Time Complexity of RUN-GNN

RUN-GNN also performs progressive information
propagation by sampling a series of subgraphs
centered around the query entity, from small to
large, and performing message passing on these
subgraphs sequentially. The buffer update mech-
anism in RUN-GNN does not involve additional
subgraph sampling after message passing in the
GNNs of all exploration module. Instead, it con-
tinues to perform message passing on the largest
subgraph used in the current reasoning process.
Therefore, this step does not incur additional time
cost for subgraph sampling.

Its MESSAGE function is QRFGU, which is
essentially a variant of GRU function with addi-
tional attention, with a time complexity of O(d2).
The AGGREGATE function is a simple linear
transformation with a time complexity of O(d2).
Therefore, the overall time complexity of RUN-
GNN with l GNN layers in the exploration mod-
ule and n GNN layers in the buffer module is
O((min(nDl, (l + n)|F|) + |V|)d2).

10096



Methods NBF-Net REDGNN RUN-GNN
Subgraph sample no yes yes

MESSAGE O(d) O(d) O(d2)
AGGREGRATE O(d2) O(d2) O(d2)

Basic layer O(l(∥F∥d+ ∥V∥d2)) O(min(Dl, l∥F∥)d+ ∥V∥d2) O(min(Dl, l∥F∥)d2 + ∥V∥d2)
Buffer update no no min(Dl, ∥F∥)nd2

Total O(l(∥F∥d+ ∥V∥d2)) O(min(Dl, l∥F∥)d+ ∥V∥d2) O((min(nDl, (l + n)∥F∥) + ∥V∥)d2)

Table 8: Time complexity comparison table for different PRGNN methods.

Methods l n Time cost per epoch MRR
NBF-Net 5 0 3840 0.5439
REDGNN 5 0 218 0.5447
REDGNN 8 0 4457 0.5646
RUN-GNN 5 0 460 0.5636
RUN-GNN 5 3 508 0.5703

Table 9: Time comparison table for different PRGNN
methods trained on the WN18RR dataset. Here, l rep-
resents the number of GNN layers in the Exploration
Module, and n represents the number of GNN layers in
the Buffer Module.

D.2 Time Measurement and Empirical
Analysis

As shown in the table 9, NBF-Net has a much
higher training time for 1 epoch when the number
of GNN layers in the exploration module is 5, as
it performs message passing directly on the entire
KG.

When the number of GNN layers in the buffer
module is 0, i.e., without using the buffer update
mechanism, the model's performance already sur-
passes that of REDGNN and NBF-Net with 5 GNN
layers in the exploration module. The performance
of RUN-GNN even approaches that of REDGNN
with 8 GNN layers, which takes 8 times longer to
train.

When the number of GNN layers in the buffer
module is 3, i.e., using the buffer update mecha-
nism, the model's reasoning ability is further im-
proved with only a 1

9 increase in time cost. It clearly
outperforms REDGNN with 8 GNN layers, which
requires more computational resources.

E Case Study

In addition to its improved performance, our
method RUN-GNN offers excellent interpretabil-
ity. To illustrate this, we visualize the r-digraph
utilized in the inference process for three queries
from the family dataset, following the approach
outlined in paper(Zhang and Yao, 2022). Figure 6
showcases the evidence discovered by our method
during the inference process, which appears to be

(1)Examlple query 1: ('1952', father, '1955')

(2)Example query 2: ('2104', husband, '2336')

'2104' wife_reverse
'2336''2104'

'1952'
'1953'

'1954'

father

wife_reverse

'1955'

'1954'
identity

mother

brother_reverse

'1955'

(3)Example query 3: ('1986', nephew_reverse, '1984')

'1986'
aunt

sister '1982'

'1984'

son_reverse

'1986'

Figure 6: Examples of relational paths that are important
when RUN-GNN performs inference.

logical and supports the notion that our approach
can successfully learn crucial relational rules. This
visualization further reinforces the interpretability
and reliability of our method.
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