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Abstract

An accurate estimation of the covariance matrix
is a critical component of many applications in
finance, including portfolio optimization. The
sample covariance suffers from the curse of di-
mensionality when the number of observations
is in the same order or lower than the number of
variables. This tends to be the case in portfolio
optimization, where a portfolio manager can
choose between thousands of stocks using his-
torical daily returns to guide their investment
decisions. To address this issue, past works
proposed linear covariance shrinkage to regu-
larize the estimated matrix. While effective,
the proposed methods relied solely on histori-
cal price data and thus ignored company fun-
damental data. In this work, we propose to
utilise semantic similarity derived from textual
descriptions or knowledge graphs to improve
the covariance estimation. Rather than using
the semantic similarity directly as a biased es-
timator to the covariance, we employ it as a
shrinkage target. The resulting covariance es-
timators leverage both semantic similarity and
recent price history, and can be readily adapted
to a broad range of financial securities. The ef-
fectiveness of the approach is demonstrated for
a period including diverse market conditions
and compared with the covariance shrinkage
prior art.

1 Introduction

A wide range of domains rely on the analysis of
high-dimensional time-series data. For example,
this includes medical systems with MRI denoising
(Honnorat and Habes, 2022), radar sensors (Kang
et al., 2019) post-processing, physics and chem-
istry, engineering, neuroscience, speech recogni-
tion, and quantitative finance (Ledoit and Wolf,
2020b). These applications often require a reliable
estimate of the covariance matrix. In the financial
domain, the price of a company’s stock is influ-
enced, among other factors, by the fundamental
characteristics of the company, news articles, and
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Figure 1: Instead of using the semantic similarity as a
direct approximation to the covariance matrix, we use it
to build a target for linear shrinkage. This estimator can
then be used for convex portfolio optimization.
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general stock market conditions. Building upon
advances in language modeling and graph embed-
dings, recent work has investigated how to leverage
semantic representations to guide investment deci-
sions by estimating expected returns.

The volatility and the expected return of an as-
set are both critical ingredients when forming an
investment strategy. Risk-return trade-off is a fun-
damental trading principle describing the typical
inverse relationship between a given investment
risk and investment return. In the common case
of a multi-asset portfolio, an investor with a given
risk tolerance seeks to maximise their return within
the allowed risk level. In this case, the degree of
covariance between asset returns can be utilised
to achieve an aggregate portfolio risk that is lower
than its components. Modern portfolio theory for-
malises this trade-off (Markowitz, 1952). The
Mean Variance Portfolio aims at maximizing ex-
pected returns while minimizing expected variance:

w* = argmaz (wp — Aw! Zw) (1)
w

where w denotes the weights of assets in a port-
folio, p the price returns of these assets, 3 the
covariance matrix of asset prices and A a param-
eter to denote the level of risk aversion of the in-
vestor. This optimization problem can be solved
effectively using convex solvers if the covariance
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matrix is positive definite (and therefore invertible).
Nevertheless, the covariance matrix of the assets
prices is unknown and must therefore be estimated.
Kan and Zhou (2007) show that the estimation er-
ror for the covariance matrix has a higher impact
than the mean estimation error when the number of
assets considered is large compared to the number
of observations.

Existing approaches leveraging semantic stock
representations have focused on improving the esti-
mate of the expected returns u, using a rough ap-
proximation of the covariance matrix 3 by directly
using the semantic similarity matrix as an estima-
tor for portfolio optimization (Du and Tanaka-Ishii,
2020; Li et al., 2022). However, these similarity
matrix estimators may not be morphologically sim-
ilar to a covariance matrix and are prone to bias.
Indeed, while semantic models are effective at rank-
ing similarities, their absolute similarity value is
typically uncalibrated and depend on the fraction of
the hypersphere occupied by the embeddings. Fur-
thermore, their expected cosine similarity value de-
pends on the dimension of the embeddings (Elekes
et al., 2017). Since the true covariance matrix is
obviously independent of the chosen embedding
dimension, this would imply that a single embed-
ding dimension is valid for building a semantic
estimator, which is unacceptable. Finally, they give
no guarantee of being positive semi-definite and
ignore recent stock price observations.

An alternative estimator for the covariance ma-
trix is the sample covariance matrix. While un-
biased, the sample covariance matrix is singular
when the number of observations N is lower than
the number of random variables p (preventing the
use of convex solvers for equation 1) or ill-defined
when N % p, making the portfolio optimization
task inaccurate (Ledoit and Wolf, 2004). Covari-
ance shrinkage refers to a family of regularization
methods aiming at combining the maximum likeli-
hood sample covariance matrix with a structured,
lower-dimensionality, regularizing model (shrink-
age target). The regularizing targets are built on
a set of assumptions (e.g., constant variance and
O-covariance between variables) whose degree of
validity varies between asset classes and market
regimes. Furthermore, the shrinkage estimators
can be interpreted as empirical Bayes estimators
where the prior is data-dependent, and computed
from the same data as the sample covariance matrix
(Ledoit and Wolf, 2020b).

In this work, we highlight the limitations of us-
ing semantic similarity as a direct estimation of the
covariance matrix. We address these limitations
by extending the established framework of linear
shrinkage to semantic similarity matrices as seen in
Figure 1. The semantic representations can be de-
rived from both structured data stored in a curated
knowledge base or unstructured data in the form
of natural language text. We share a Python imple-
mentation' of our method, allowing its integration
as a simple post-processing step when building co-
variance matrix estimators from semantic similarity
matrices. We aim at validating the following:

* Hypothesis 1: Semantic similarity depends
on the embedding dimension and therefore
cannot be used directly as a covariance matrix
estimator.

* Hypothesis 2: Semantic similarity can be
used as an effective regularization target for
covariance matrix estimation.

» Hypothesis 3: The proposed shrinkage target
includes fundamental information about the
random variables and is therefore less sensi-
tive to sudden changes in volatility regime.

2 Related Work

Portfolio optimization using semantic represen-
tations: Du and Tanaka-Ishii (2020) investigate the
potential of using news data to train a classifier to
make buy and sell decisions over time. They take
the cosine similarity matrix of intermediate stock
representations as a direct estimator for the co-
variance matrix to perform portfolio optimization.
Similarly, Li et al. (2022) use normalized stock em-
beddings trained on fundamental and price data to
build a similarity matrix and use it as an estimate of
the covariance matrix for mean-variance portfolio
optimization. Both approaches suffer from the as-
sumption that the similarity matrix is an unbiased
estimator of the covariance. Our work instead uses
semantic similarity as a shrinkage target to the sam-
ple covariance matrix resulting in estimators that
are asymptotically unbiased. Sawhney et al. (2021)
leverage a knowledge graph (KG) to model the
correlation between stocks through temporal hy-
perbolic graph learning on Riemannian manifolds.
They train a model to directly output a ranked list

"https://github.com/bloomberg/
semantic-similarity-covariance-shrinkage
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of trade candidates, and therefore do not rely on the
Modern Portfolio Theory mean-variance optimiza-
tion problem. Our approach instead leverages es-
tablished portfolio optimization routines allowing
better interpretability and modularity (decoupling
the semantic representations generation from the
investment strategy).

Covariance shrinkage: Linear shrinkage meth-
ods, taking a convex linear combination between
the sample covariance matrix and a regularization
target were originally proposed by Stein (1956)
for the estimation of high dimensional multivariate
mean, choosing the O-vector as a shrinkage target.
Efron and Morris (1973) built upon this approach
by choosing a 1-parameter structured target built as
the identity vector multiplied by the sample mean.
This work was extended to a robust estimation of
the covariance matrix in a high dimensional space
by Ledoit and Wolf (2004), proposing a single-
parameter shrinkage target built as the scalar prod-
uct of the identity matrix and the average sample
variance. Their choice of shrinkage target made
the strong assumption that the stock price returns
had a constant, common variance and no covari-
ance. Ledoit and Wolf (2003a) instead assumed
a constant and positive correlation between stock
price returns, resulting in a 2-parameters shrink-
age target. The single-factor model (Ledoit and
Wolf, 2003b) assumes the asset prices can be ap-
proximated using the capital asset pricing model
(CAPM) and linearly depend on the average market
returns with sensitivity (3; and an offset «; captur-
ing the stock idiosyncratic returns. The resulting
shrinkage target contains p parameters to estimate,
higher than the previous two models, but typically
significantly lower than the p(p — 1)/2 parameters
of the full (symmetric) covariance matrix. These
regularization targets are estimated using the same
data used to compute the sample covariance matrix
and are therefore prone to estimation error if the
number of samples is low relative to their num-
ber of parameters. Our approach instead utilises
similarity-based targets that are not derived from
recent observations but rather trained on large scale
semantic datasets. These therefore do not suffer
from this parametrization trade-off and are less sen-
sitive to market regime changes.

3 Preliminaries

In this section, we formally describe the framework
of linear shrinkage and derive the optimum shrink-

age (regularization) factor coefficient. Let Xy be a
de-meaned price returns matrix of N observations
for p assets (we omit the p for notation simplicity).
The sample covariance matrix is a maximum like-
lihood estimator (MLE) of the covariance and is
defined as:

1

SN N

XXy 2)

The sample covariance matrix is symmetric and has
p(pigl) parameters to estimate. When the number
of observations NV is lower than the number of fea-
tures p, this matrix is non-invertible. Furthermore,
unless p < N, it is numerically ill-conditioned and
the instabilities in the estimate lead to the underes-
timation of the smallest eigenvalues and overesti-
mation of the largest ones (Ledoit and Wolf, 2004).
An alternative is to replace this MLE by a lower
capacity model making a series of assumptions on
the random variables observed (for example con-
stant variance, no correlation or a factor model as
introduced previously). This option is also unsatis-
factory as it would suffer from a high bias because
of the strong modeling assumptions implied. The
approach of linear shrinkage is to build a new esti-
mator from a convex linear combination of (1) the
high variance, low bias of the sample covariance
matrix; and (2) the low variance, high bias of the
shrinkage target (lower capacity model) 7"

YN =AT+(1-\)Sy 3
A€ [0,1]

The objective is to minimize the mean square error
between this estimator and the population covari-
ance X*. The loss function is therefore given by

Ly =N — =%

)
= [IAT + (1 = X)Sy - ¥*|I%
The expected risk is
R(A) = E(Ly)
®)

=E(|AT + (1 = \)Sy — E*[|)

The population covariance is unknown and not
observable but Ledoit and Wolf (2003b) show that
the optimum \* coefficient is asymptotically con-
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stant over N and has the following form:
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where AsyVar and AsyCov respectively refer to
the asymptotic variance and covariance when the
number of observations N grows larger.

Intuitively, 7 measures the degree of variance
in the sample covariance matrix, with high values
indicating high variance for the sample covariance
estimator. A high 7 would therefore result in a
higher amount of required shrinkage. py measures
the level of covariance between the sample covari-
ance matrix and the shrinkage target: a high covari-
ance indicates the chosen target provides limited
additional information and therefore the optimum
shrinkage amount should be reduced (Ledoit and
Wolf, 2020b). Finally, vx measures the distance
between the unbiased sample covariance matrix
and the target. A higher value indicates a biased
shrinkage target, and therefore leads to a lower
optimum shrinkage factor.

4 Semantic Similarity Shrinkage

Our proposed approach is based on the availabil-
ity of embeddings (vector representation) for the
random variables considered. In the context of
financial markets, this translates into the availabil-
ity of a (p, k) embeddings matrix E built from
k-dimensional semantic vectors for the p financial
assets considered for the portfolio optimization.
These embeddings may be generated using text
description of the assets (e.g., description of the
company that issued a stock) and a sentence em-
beddings model such as (Reimers and Gurevych,
2019), KG embeddings, or intermediate represen-
tation generated from a downstream task such as a
buy/sell classifier (Du and Tanaka-Ishii, 2020). We
first propose a semantic shrinkage target built us-
ing these embeddings and then derive the optimum
shrinkage factor.

4.1 Semantic shrinkage target

Our approach for building a shrinkage target from
embeddings matrices is as follows. We first normal-
ize the embeddings matrix E along the semantic
dimension, bounding the dot product between two
asset representations in [—1; 1]. We then build a
(p, p) similarity matrix Sim by taking the product
of the embeddings matrix with itself.
Sim = EE” (10)
This results in a matrix where the diagonal en-
tries are 1 while each off-diagonal entry (3, j) repre-
sents the degree of semantic match between assets
¢ and j. Rather than directly considering Sim an
approximation of the covariance matrix as in (Li
et al., 2022), we instead consider Sim to be an
approximation of a correlation matrix (based on its
constant 1—valued diagonal and entries bounded
n [—1;1]. We map this semantic correlation to a
covariance matrix using the covariance definition
and the asset variance estimated from the sample
covariance matrix. The correlation between two
random variables x and y is defined as:

cov(z, )

(11)

corr(z,y) =

var(z)var(y)

By analogy, we define the similarity-based co-
variance as:

SimCov

12
V/diag(Sn)Tdiag(Sn) 1

Sim =

SimCov = Sim © \/diag(Sy) diag(Sy)

(13)
where © is the Hadamard product and diag(Sx)
is a (1, p) vector made of the diagonal entries of
the sample covariance matrix Spy. This approach
ensures that the scale of the semantic-based shrink-
age target is on the same scale of the sample co-
variance matrix, regardless of the original stock
embeddings space. This estimator therefore has p
price-dependent parameters to estimate (the vari-
ances), similar to the CAPM-based single factor
model (Ledoit and Wolf, 2003b).

Finally, we ensure that the shrinkage target is
positive definite, a desirable property that allows
the use of the shrunk covariance matrix with convex
optimizers. While the covariance matrix SimCov
is by construction symmetric, it is not necessarily
positive definite. We introduce small perturbations
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on the eigenvalues following spectral decomposi-
tion of SimCov based on (Gill et al., 2019). Let
U and A be the eigenvectors and eigenvalues from
the the spectral decomposition of SimCov:

SimCov = UAUT (14)

If min(A) < 0, we shift the eigenvalues so that
they are all strictly positive with a margin e:

At = A+ min(abs(A)) + € (15)

We then recover the semi-definite similarity-
based covariance shrinkage target:

SimCov, = UA, U” (16)

We do not use this value directly to approximate
the covariance matrix; instead we build a linear
shrinkage estimator from the convex linear combi-
nation of the target and sample covariance matrix
as per equation 3:

Soim = ASimCov, 4+ (1 —\)Sy  (17)

4.2 Semantic shrinkage factor

As mentioned in Section 3, the optimum shrinkage
factor for the similarity-based covariance estimator
can be derived analytically using equations 7 to
9. The following provides consistent estimators
when assuming a semantic similarity target. Index
t refers to time, while ¢ and j refer to the position of
the random variables in the covariance matrix. The
derivation is similar to constant correlation shrink-
age (using similarity values instead of a constant
value) and is provided in Appendix A.

A consistent estimator of 7 is given by (Ledoit
and Wolf, 2020b):

p p
AN =) TN (18)
i=1 j=1
1 N
ﬁN,zg N Z(l‘tl$t] SN,z])Q
t=1
1
= —X2vX23 — S¥4 (19)

with X2 = (X — X )©? the matrix of element-
wise squared de-meaned returns.

We obtain a consistent estimator py based on
the constant variance target proposed in (Ledoit
and Wolf, 2003a), where the constant correlation
value is replaced by entries in the similarity matrix.
We use the fact that the similarity matrix is constant

with respect to the observations and symmetric, a
full derivation is available in Appendix A.

p
PN = E N i+
i1

p
SR O VI T B S
Vi ij —Vjjij
— 2 Sii Sjj
1#£]

Where the 191“] are consistent estimators of
AsyCov(v/N Sy i1, VN Sn,ij) given by:

(20)

N

A 1

Viiij = N g (23— Snii) (wtime; — Snij) (21)
=1

Finally, a consistent estimator of -y is given by:

— Siil#

This fully specifies the optimal shrinkage factor
based on 6.

5 Experiments

5.1 Datasets

We evaluate the performance of the proposed
similarity-based covariance matrix shrinkage on
the task of portfolio selection. In particular, we
consider the universe of historical members for 3
major stock indices: the Standard & Poor’s 500
(S&P 500), the NASDAQ-100 and the Nikkei 225
(Nikkei). We choose this data based on the avail-
ability of price data and high quality company fun-
damental data that can be used to generate stock
embeddings. We report results for the S&P 500 for
conciseness; the full set of results for all 3 indices
is available in Appendices C and D.

5.1.1 Stock price return data

We gather price data over a period of 16 years from
2007 to 2023. This extended period includes a
variety of market regimes including high volatility
events, such as the global financial crisis in 2007-
2008, the sovereign debt crisis in 2011, and the
coronavirus pandemic in 2020. It also includes
periods of low volatility such as 2017, when the
volatility index (VIX) was at historic lows. We
build the dataset as follows:

1. We split the data in rolling windows of 3
months for estimator fitting and 1 month for
evaluation.
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2. The stock indices composition evolved over
the period considered. Within each window,
we keep only index members with price data
throughout the entire period.

3. We convert the end-of-day price into daily
price returns, removing the effect of the abso-
lute stock price.

This results in 190 slices, each covering a 4
month span (the first 3 months are used for fitting
and the last for evaluation).

5.1.2 Semantic representations

We compare the effectiveness of the proposed ap-
proach using three methods for computing stock
semantic representations. The set of hyperparame-
ters used for the training of the semantic models is
available in Appendix E.

The first method leverages the text description
for the companies that issued stock. We build se-
mantic representation for the companies using a
768 dimensions sentence embeddings transformer
model (Reimers and Gurevych, 2019). The experi-
ments were conducted using a DistilBERT model
(Sanh et al., 2019) finetuned on the Natural Ques-
tions dataset (Kwiatkowski et al., 2019). The sec-
ond method leverages relational facts from knowl-
edge graphs. We use publicly available 512 dimen-
sions RotatE pre-trained embeddings on the Wiki-
dataSm dataset generated using GraphVite (Zhu
et al., 2019), referred to as W5m KG. For both
methods we match the stock price data to a Wiki-
data entry using the WikidataSm dataset (Wang
et al., 2021) containing entity names and aliases.
We successfully match 98.3%, 97.9% and 99.3%
of index members for the S&P 500, NASDAQ-100
and Nikkei 225, respectively. The unmatched en-
tries are excluded from both training and evaluation
rolling windows.

We then consider a third model using a subgraph
from a large scale, financial knowledge graph in
Bloomberg herein referred to as Fin. KG. This
includes triples involving the domicile country, in-
dustry, sector, board members, supply chain, sub-
sidiaries, fund and index inclusion. We train KG
embeddings using RotatE (Sun et al., 2019) with a
128 dimensions embeddings size.

We observe that the representations produced
by these methods capture the overall semantics of
the company as illustrated in Figure 2. We build
the semantic similarity matrices for all semantic
models following the method described in 4.1.
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Figure 2: 2-D projection of the KG embeddings using
t-SNE. Each point corresponds to a historical S&P 500
component colored by BICS industry sectors.

5.2 Performance of semantic-based shrinkage
targets

We build the covariance matrix for each evaluation
period in 5.1.1 and annualize the results by multi-
plying the entries by the number of trading days per
year (252). For each of the 3-month training peri-
ods (first 3 months), we fit the following covariance
estimators:

e Sample covariance matrix Ssgmpie-

» Constant-variance shrunk covariance matrix
Scvar using a 1-parameter shrinkage target
assuming a constant variance and no covari-
ance (Ledoit and Wolf, 2004).

* Constant-correlation shrunk covariance ma-
trix Socor using a 2-parameters shrinkage
target assuming a constant correlation (Ledoit
and Wolf, 2003a).

* Single-factor shrunk covariance matrix )y SF
assuming a single factor CAPM model for the
stock price returns (Ledoit and Wolf, 2003b).

 Scaled Text similarities f)Text,scaled using the
Wikipedia text embeddings similarity matrix
transformed using 13.

* Scaled KG similarities f]wg)m KG,scaled and
Y Fin. KG,scaled Using the KG similarity ma-
trices transformed using 13.

e Shrunk covariance matrix fJTemt, using the
Wikipedia text embeddings similarity matrix.

e Shrunk covariance matrices Xy s, k¢ and
Y rin. K¢ using the KG similarity matrices.
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Figure 3: Off-diagonal entries of shrinkage targets rela-
tive to the sample covariance.

Estimator Mean ||.|| ¢
Sample covariance 0.128
Text Sim. 0.066
W5m KG Sim. 0.101
Fin. KG Sim. 0.114

Table 1: Average off-diagonal Frobenius norm

We begin by observing the impact of the shrink-
age model assumptions on the resulting target bias.
We sample 500 (time, stock pair) observations
for all estimators for the S&P 500 and compare
their value to the corresponding entry in the sample
covariance matrix for the same (time, stock pair)
(see Figure 3). Values along the diagonal indicate
a shrinkage target with no bias. By construction
the constant variance model has a 0 value on the
off-diagonal and is therefore the most biased esti-
mator considered. The semantic estimators show
a variable level of bias. The average Frobenius
norm of the similarity estimators (excluding the di-
agonal variances) is given in table 1. The norm of
the unbiased sample covariance matrix is given for
reference. It shows that different semantic models
may result in significant differences in similarity
values and therefore are prone to bias when esti-
mating the covariance, validating hypothesis 1.

In order to evaluate the performance of the
shrinkage targets, we compute the optimum shrink-
age factor based on 4.2 and shrink the sample co-
variance matrix for each 3-month fitting period to
build an estimator. We evaluate these against the

10

9.75
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6
4.47
4 3.68 3.64
259 )
2 I I 1.43
0 ]

PRIAL

Figure 4: PRIAL for the S&P 500 for 2007-2023

following 1-month sample test covariance matrix as
an approximation of the population covariance. We
evaluate a given estimator )y using the Percentage
Relative Improvement in Average Loss (PRIAL)
defined as (Ledoit and Wolf, 2020a):

E(L(Ssampie)) — E(ﬁ(i))
E(ﬁ(SSample))

PRIAL(Y) := 100

(24)
L refers to the MSE loss introduced in equation 4.
Figure 4 shows the PRIAL for all estimators
over the entire period (190 data points) for S&P
500. The constant variance model is the best per-
forming price-based shrinkage target. Using the
scaled similarity matrix shows a high level of per-
formance variability and shows the impact of the
bias for the text-based embeddings (resulting in a
worse estimator than the sample covariance matrix).
The higher performance of the scaled KG similarity
is highly snapshot-dependent and driven by high
volatility events during the period considered (see
Appendix B). Our shrunk similarity-based models
are outperforming price-based shrinkage methods
and their scaled variant. Figure 5 shows the out-
performance of shrunk similarity-based methods is
consistent across time windows and not driven by
isolated high volatility outliers. We perform a sta-
tistical test of the null hypothesis (the performance
of similarity-based models and constant variance
shrinkage method is equal) that is rejected with
p-values of 1.3 x 107!2 and 2.5 x 10710 for the
KG-based and text-based similarity targets respec-
tively, validating hypothesis 2.
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Figure 5: Percentage of rolling windows when a method (left) MSE is lower than a reference method (bottom). The
semantic shrinkage methods error is consistently lower than their scaled variant and estimators using price data only.

5.3 Impact of volatility regimes on shrinkage
target performance

We further investigate the impact of market regime
change. In order to identify the contribution of
specific samples to the, we define the Percentage
Relative Improvement in Loss (PRIL) based on 24:

»C(SSample) B 'C(i)

PRIL(Y) := 100
( ) E(SSample)

Figure 6 focuses on years 2017 to 2023 for the
S&P 500 during which several market regimes
were observed, including: low volatility (2017
to the end of 2018); two high volatility periods
(end of 2018, 2022); and a very high volatility
event (first half of 2020). We show PRIL val-
ues for both the KG-based similarity and con-
stant variance shrunk covariance models together
with the realized annualized log market volatility
(log( ||SSample ||F * #trading days)) on the I'ight axis.
The outperformance of the similarity-based estima-
tor is higher during periods (or transitions between
periods) of high market volatility.

We compute the PRIL difference between the
KG-based similarity and constant variance shrunk
covariance models (shaded area in Figure 6) for all
test periods between 2007 and 2023 to validate this
effect, and present the results in Figure 7. We note
that the degree of outperformance of the similarity-
based approach correlates with the level of market
volatility. The effect is particularly pronounced
for the very high volatility levels, indicating the
potential of the approach to mitigate market "fat

50-

—_— PRIL(iHn KG, shrunk)
JPA R — |- PRIL(Zcvar)
30- n

20-

PRIL

10-

Realized annualized log vol

—-10- H (¥ d % L4

—— Market volatility

_20,
2018

2019

2020 2021 2022 2023

Figure 6: S&P 500 PRIL for the KG-based similarity
and constant variance shrinkage targets. The shaded
area shows the difference between the PRIL values. An
indicator of market volatility is shown on the right axis.

tail risk" (short-term move of more than 3 stan-
dard deviations). This validates the Hypothesis 3
and shows that the proposed covariance matrix esti-
mators are more robust during transitions between
market volatility regimes.

6 Discussion

In this work, we present a family of covariance
shrinkage estimators leveraging semantic similar-
ity between the random variables. We show that
semantic similarity cannot be used as a direct
estimator of the covariance, but instead as regu-
larization for the sample covariance using linear
shrinkage. The shrunk estimators include price-
independent semantics and are superior in periods
of high volatility, where an accurate estimation
of the covariance is typically more critical. This
demonstrates the potential of semantic models for
covariance matrix estimation and extends beyond

9984



—— 0.09x+0.26

PRIL(Sin. k6) = PRIL(Ecvar)
S L Ll oo o o
s w N = o - N w

|
e
o]

O S e s e S 9 09
oy ooy oy Yy

Realized annualized log vol.

Figure 7: PRIL difference between KG and constant
variance shrunk estimators: performance benefits in-
crease with the overall market volatility

traditional applications to predicting returns.

The proposed method is agnostic to the embed-
dings generation process and can be applied to
most existing semantic representation algorithms.
This includes semantic representations that capture
static (company description) and dynamic (com-
pany news, recent price data) components from
text, knowledge graphs or multi-modal datasets.
By decoupling the semantic model from the port-
folio optimization, the proposed method provides
a robust and modular mechanism for integrating
semantic representations into established portfolio
management and investment decision systems.

7 Limitations

While showing encouraging results, the proposed
similarity-based targets are built from static se-
mantic information. A potential future work di-
rection could be the extension of these static em-
beddings with dynamic components, including for
example news data or dynamic knowledge graphs.
Text embeddings from news data (capturing com-
pany recent events) can be combined with the static
embeddings (capturing company fundamentals) to
compute either a single similarity matrix target for
shrinkage, or use techniques such as multiple tar-
gets shrinkage. Building semantic representations
from news data will involve challenges related to
sampling for companies with high news coverage,
the lack of news for some companies and the choice
of importance given to the static versus dynamic
components.

The input to the semantic models (text and KG
triples) was gathered as of 2021 and 2022, poten-
tially leading to data leakage for the 2007-2023

period backtest. Future work may use historical
Wikipedia snapshots to measure the impact of this
assumption. However, we estimate this risk to be
low given the focus on company fundamentals. The
price data frequency is typically much higher than
frequency of change of the fundamental data (de-
scription or KG triples): the company characteris-
tics (e.g., industry sector) of the large capitalization
investigated did not change significantly over the
period considered. Furthermore, the analysis does
not show a drop in performance before and after
the datasets snapshot date. Future work including
dynamic semantic components (e.g., news) should
however ensure that only news released prior to
an experiment time window are used, since news
do have a significant impact on short term price
data (and correlation) as illustrated by recent work
referenced in our work. Similarly, the rolling win-
dow evaluation excludes companies that stopped
trading during the period considered: this inclu-
sion/exclusion process is a-priori unknown.

The approach requires both rich semantic repre-
sentations and an effective way to match the stock
price returns to their embeddings. The matching
process may be more challenging for international
companies or smaller capitalization stocks than
for the S&P 500, NASDAQ-100 or Nikkei 225
components. Finally, while the approach could
be extended to any financial asset class including
commodities or derivatives, obtaining a valid text
description may prove more challenging. Note
that the knowledge-graph embeddings do not suf-
fer from this limitation and can generalize to any
asset class where structured data is available, and
future work may investigate this method potential
for multi-asset portfolio (i.e., equities, fixed income
and commodities) covariance estimation.
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A Semantic Target Shrinkage Factor
Estimation

For notation simplicity we omit in the following
the N index from the sample covariance matrix.

A.1 Derivation of the 7 estimator

A consistent estimator of 7 is given by (Ledoit
and Wolf, 2003b):

p p
ﬁ'N:E § TN,ij

(26)
=1 =1
N
. 1
NG = Z(wtil’t]’ — 8ij)? (27)
=1

7N,ij can be rewritten to allow for factorized
computation, using the fact that Sy ;; is constant
with respect to the sum over the samples:

N
. 1
NG = ;(wtiﬂ?tj — Sij)?
1 Y 2 2 Y LtiLtj 2
o S RETA) S )
t=1 t=1
| N
= Nfoix?j 25 8i; — S}
t=1
| N
- N inw?y - SZQ]
t=1
1
= —X2yX24 — S5 (28)

with X2y = (X — X )®? the matrix of element-
wise squared de-meaned returns.

A.2 Derivation of the py estimator

We follow the derivation an estimator for 8 as-
suming a shrinkage target built on a constant corre-
lation matrix provided in (Ledoit and Wolf, 2003a),
replacing the constant correlation value 7 by indi-
vidual semantic similarities matrix entries e;;. By
definition (see 8):

:ZZAsyCov (VNTij,VNSi;) (29)

=1 j=1

p
= Z AsyVar(VNSy)
i=1

p
+ Z AsyCov(\/Neij \/ SiiSjj, \/NSW)
i#j
(30)

The first term is equal to the diagonal of the 7y ;;
estimator calculated previously. As per (Ledoit
and Wolf, 2003a), using the delta-method an es-
timator for AS@/CO’U(\/N@Z']' \/ SiiSjj, \/NSZ]) is
given by:

ECQ

Asycov(f NeijSi, VNS;;)

—
n
s

—AsyC’ov(xﬁeﬂSﬂ, \FSZ])

(31)

Since the e;; are constant with respect to the

observations and symmetric (e;; = ej;), this can
be re-written:

Sj]AsyCov(\/»S“,\/»Sz])

» Sii
& s, (32)
“ AsyCOU(fsllu\/»SZ])
Sjj
A consistent estimator for

AsyCov(V/NS;;, V' NS;;) is given by (Ledoit and
Wolf, 2003a):

N
A 1
Viiij = ;(x?i — Sii) (wriwe; — Sig)  (33)
And by symmetry:
L&
Vijii = 3 tzl(x?j — Sjj)(xijze — Sij) (34)

The resulting consistent estimator for ppy is
given by:

pn = diag(# )

p
€ Sisoa Sii o~
.5 <\/5]<]< Visis + 1/ 5 ﬁjj,ij>
i " 7

(35)
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B Comparison of Scaled and Shrunk
Estimators for 2018-2023 period

This appendix provides additional experimental
results for the similarity-based estimators for the
2018 to 2023 period. Figure 9 shows that while
the Percentage Relative Improvement in Average
Loss is higher for a naive estimator built using
the scaled similarity as a covariance estimator, the
outperformance is concentrated in a single period
of very high volatility. Since the loss is a mean
squared error, the large covariance values (and their
error) seen during this period dominate the general
evaluation period.
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Figure 8: Relative performance of the Fin. KG similar-
ity shrunk estimator to the constant variance estimator
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Figure 9: Relative performance of the Fin. KG similar-
ity scaled estimator to the constant variance estimator
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Figure 10: Relative performance of the Fin. KG similar-
ity shrunk estimator to the KG similarity scaled estima-
tor

It can be seen that the estimator under performs
both the constant variance shrunk estimator (Figure
9) and the shrunk covariance using a KG similar-
ity matrix target (Figure 10). A similar effect for
the text encoder semantic similarity can be seen in
Figure 11 to Figure 13, showing the systematic un-
derperformance of uncalibrated semantic similarity
matrices for covariance estimation.
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Figure 11: Relative performance of the Text similarity
shrunk estimator to the constant variance estimator
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Figure 12: Relative performance of the Text similarity
scaled estimator to the constant variance estimator
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Figure 13: Relative performance of the Text similarity
shrunk estimator to the Text similarity scaled estimator
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C Experimental results for NASDAQ-100

This appendix provides provides the experimental
results for the NASDAQ-100 components. Figure
14 shows the PRIAL (defined in equation 24) over
the entire experimental period. The results align
with the S&P 500, showing a strong variance in the
average performance of scaled semantic estimators
(with the text semantic similarity under-performing
the sample covariance estimator). This variance is
significantly lower for the shrunk estimators (our

method).
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Figure 14: PRIAL for the NASDAQ-100 for 2007-2023

The improved consistency of the proposed esti-
mators is highlighted in Figure 15. This shows that
even scaled estimators showing a high PRIAL score
(such as the scaled KG similarities) do not consis-
tently perform better than other estimators. The
PRIAL metric is an average metric and therefore
sensitive to outliers. The scaled similarity methods
are biased towards lower covariance values (see Ta-
ble 1) leading to a very significant error reduction
during volatility regime transition periods when
the sample covariance is a poor estimator of future
covariance (such as the low to high volatility tran-
sition during the coronavirus pandemic), but worse
performance than other estimators overall.

The PRIL (defined in equation 25) allows visual-
ization the contribution of each time window to the
PRIAL. Figure 17 confirms the previous observa-
tion: the semantic shrinkage estimator outperforms
its scaled similarity variant over the entire period,
except for the transition into the high volatility
events in 2020.
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Scaled W5m KG Sim.

Method

Scaled Text Sim.
Shrunk Fin. KG Sim.
Shrunk W5m KG Sim.

Shrunk Text Sim.

Reference method

Figure 15: Percentage of rolling windows when a
method (left) MSE is lower than a reference method
(bottom) for the NASDAQ-100 index.

40-
30-
20-

10-

PRIL

—~10-

-20- - o
—— Market volatility --4.0

2018 2019 2020 2021 2022 2023

Figure 16: Relative performance of the Fin. KG similar-
ity shrunk estimator to the constant variance estimator
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Figure 17: Relative performance of the Fin. KG similar-
ity shrunk estimator to the KG similarity scaled estima-
tor

A similar effect can be seen for the text-based
estimators in Figures 18 to 19.

Similarly to results presented for the S&P 500 in
7, the degree of improvement from semantic shrink-
age estimators for the covariance prediction shows
a positive correlation with a measure of overall
market volatility, as illustrated in Figure 20.
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Figure 18: Relative performance of the Text similarity
shrunk estimator to the constant variance estimator
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Figure 19: Relative performance of the Text similarity
shrunk estimator to the Text similarity scaled estimator
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Figure 20: PRIL difference between KG and constant
variance shrunk estimators for the NASDAQ-100
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D Experimental results for Nikkei 225

This appendix provides experimental results for
the Nikkei 225 components. Figure 21 shows the
PRIAL (defined in equation 24) over the entire
experimental period. The PRIAL value for the
scaled estimators is, unlike for the other two in-
dices, higher than for their shrunk variant, with all
semantic estimators significantly outperforming the
estimators based on price only (constant variance,
constant correlation and single factor shrinkage).
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Figure 21: PRIAL for the NASDAQ-100 for 2007-2023

This result can be explained by the sensitivity of
the PRIAL metric to outliers. Figure 22 shows that
the improved PRIAL of the scaled estimators over
their shrunk variant is not consistent: it can be seen
that the scaled similarity estimators only outper-
form the price-based and the semantic shrinkage
estimators 20 to 40% of the time (middle 3 rows).
The semantic shrinkage estimators, on the other
hand, tend to be consistently better than the other
estimators (bottom 3 rows). This is also illustrated
by the PRIL in Figures 24 and 24: the scaled sim-
ilarity outperforms its shrunk variant only in the
2020 volatility transition period. The errors made
by all estimators during this period are significantly
higher than average, biasing the average PRIAL
metrics.

Providing a reliable estimate of future covari-
ance is a desirable feature and the proposed shrunk
semantic similarity estimators show a consistent
improvement over their scaled variants.

Sample 27 20 17

Constant Variance 51
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Shrunk W5m KG Sim.

Shrunk Text Sim.

Reference method

Figure 22: Percentage of rolling windows when a
method (left) MSE is lower than a reference method
(bottom) for the Nikkei 225 index.
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Figure 23: Relative performance of the Fin. KG similar-
ity shrunk estimator to the constant variance estimator

50-

|
g
=}

25-

|
-
v

|
g
<)

—25-
—50-

PRIL

—75-

|
w
o

—100-

h 4
5 w
Realized annualized log vol

-125- :
~150- —— Market volatility L_40

2018 2019 2020 2021 2022 2023

Figure 24: Relative performance of the Fin. KG similar-
ity shrunk estimator to the KG similarity scaled estima-
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E Semantic Models Hyperparameters

E.1 WikidataSm Knowledge Graph

Embeddings
Parameter Value
Architecture RotatE
(Sun et al., 2019)
Dataset WikidataSm
(Wang et al., 2021)
Dimension 512
Optimizer SGD
Learning rate le-2
Weight decay 0
Margin 6
Batch size 100k
Epochs 1000
Sample batch size 2000
# Negative/positive 64
Adversarial temp. 0.2

E.3 Financial Knowledge Graph Embeddings

Table 2: WikidataSm KG Embeddings hyperparameters

E.2 Text Embeddings

Parameter Value
Architecture DistilBERT

(Sanh et al., 2019)
Dataset Natural Questions

(Kwiatkowski et al., 2019)

Dimension 768
Hidden dim. 3072
# layers 6
# heads 12
Activation GeLU
Loss Multiple Negatives Ranking
Dropout 0.1
Cls. dropout 0.2
QA dropout 0.1

Table 3: Text Embeddings hyperparameters
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Parameter Value
Architecture RotatE
(Sun et al., 2019)
Dataset Proprietary
Dimension 128
Optimizer Adagrad
(Duchi et al., 2011)
Learning rate le-1
Weight decay le-7
Margin 19.9
Batch size 1024
Epochs 20
Sample batch size 512
# Negative/positive 2
Adversarial temp. 1.0

Table 4: Financial KG Embeddings hyperparameters



