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Abstract

Recent developments in generative AI have
shone a spotlight on high-performance syn-
thetic text generation technologies. The now
wide availability and ease of use of such models
highlights the urgent need to provide equally
powerful technologies capable of identifying
synthetic text. With this in mind, we draw
inspiration from psychological studies which
suggest that people can be driven by emotion
and encode emotion in the text they compose.
We hypothesize that pretrained language mod-
els (PLMs) have an affective deficit because
they lack such an emotional driver when gen-
erating text and consequently may generate
synthetic text which has affective incoherence
i.e. lacking the kind of emotional coherence
present in human-authored text. We subse-
quently develop an emotionally aware detec-
tor by fine-tuning a PLM on emotion. Ex-
periment results indicate that our emotionally-
aware detector achieves improvements across
a range of synthetic text generators, various
sized models, datasets, and domains. Finally,
we compare our emotionally-aware synthetic
text detector to ChatGPT in the task of iden-
tification of its own output and show substan-
tial gains, reinforcing the potential of emotion
as a signal to identify synthetic text. Code,
models, and datasets are available at https:
//github.com/alanagiasi/emoPLMsynth

1 Introduction

Modern PLMs can surpass human-level baselines
across several tasks in general language understand-
ing (Wang et al., 2018, 2019) and can produce syn-
thetic text that can exceed human level quality, such
as synthetic propaganda thought to be more plausi-
ble than human written propaganda (Zellers et al.,
2019). PLMs have been used to generate disinfor-
mation (Zellers et al., 2019; Brown et al., 2020),
left- or right-biased news (Gupta et al., 2020), fake
comments (Weiss, 2019), fake reviews (Adelani
et al., 2019), and plagiarism (Gao et al., 2022) and

can generate synthetic text at scale, across domains,
and across languages.

The increasing high quality of synthetic text
from larger and larger PLMs brings with it an in-
creasing risk of negative impact due to potential
misuses. In this work, we focus on the task of
synthetic text detection. Due to the potentially
profound consequences of global synthetic disin-
formation we focus mainly, but not exclusively, on
the detection of synthetic text in the news domain.1

Synthetic news has already been published on one
highly reputable media website, only later to be
withdrawn and apologies issued for the “breach of
trust” (Crowley, 2023a,b).

Current approaches to synthetic text detection
tend to focus on learning artefacts from the out-
put distribution of PLMs (Gehrmann et al., 2019;
Pillutla et al., 2021; Mitchell et al., 2023), e.g.
increased perplexity caused by nucleus sampling
(Zellers et al., 2019). However, PLM distributions
are dependent on training data and numerous hy-
perparameter choices including model architecture
and sampling strategy. This gives rise to a combina-
torial explosion of possible distributions and makes
the task of synthetic text detection very difficult.
Furthermore, it is not unexpected that performance
decreases when classifying out-of-distribution in-
stances, and there is a growing field of work inves-
tigating this shortcoming (Yang et al., 2023).

In this work, we consider not only the PLM out-
put distribution, but also the other side of the syn-
thetic text detection coin – human factors. We
present a novel approach to the task of synthetic
text detection which aims to exploit any difference
between expression of emotion in human-authored
and synthetic text. Neural word representations can
have difficulty with emotion words, and PLM sam-
pling strategies are stochastic rather than driven by
emotion – we use the term affective deficit to refer

1The news domain is recognised as having high emotional
content (Strapparava and Mihalcea, 2007; Bostan et al., 2020).
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to these shortcomings. Thus, the resulting synthetic
text can express emotion in an incoherent way, and
we introduce the term affective incoherence to re-
fer to this type of limitation. To be clear, we do
not contend that synthetic text is devoid of emo-
tion, rather that the emotional content of synthetic
text may be affectively incoherent, and that this
affective incoherence stems from the underlying
affective deficit of the PLM.

For the purpose of demonstration of the affec-
tive deficit that we believe to be characteristic of
text produced by PLMs, we provide the follow-
ing simple example of human- versus machine-
authored text with positive emotion words high-
lighted in orange and negative emotion words in
pink. One shows coherent emotion expected of
human-authored text, while the other demonstrates
affective incoherence (see footnote2 to reveal which
was synthetic/human-authored text).

1. Roberts chuckled when asked if he was happy
to be on the other team now when Puig’s name
comes up. “Yeah, I am happy,” he said, smil-
ing.

2. I’m really happy for him. Over the course of
those three seasons, the 25-year-old has gone
from rolling to poor to worse and old.

In this simple example, we have demonstrated one
kind of affective incoherence present in synthetic
text but we suspect that fine-tuning an emotionally-
aware PLM could detect additional and more com-
plex emotional patterns that might go undetected by
humans. We hypothesise that the affective deficit
of PLMs could result in synthetic text which is
affectively incoherent, which could be useful in
distinguishing it from human text.

We use a transfer learning (Pan and Yang, 2010)
method to train an “emotionally-aware” detector
model. By fine-tuning a PLM first on emotion
classification and then on our target task of syn-
thetic text detection, we demonstrate improvements
across a range of synthetic text generators, vari-
ous sized models, datasets and domains. Further-
more, our emotionally-aware detector proves to be
more accurate at distinguishing between human
and ChatGPT text than (zero-shot) ChatGPT itself.

Finally, we create two new datasets: NEWSsynth,
a dataset of 20k human and synthetic news articles,
and ChatGPT100, a testset of 100 human and Chat-
GPT texts on a range of topics. We make all code,

2(1) is human-authored while (2) is synthetic text. Both
are from the NEWSsynth dataset (see §4.2).

models and datasets publicly available to aid future
research.3

2 Related Work

People are relatively poor at detecting synthetic
text, and have been shown to score just above ran-
dom chance (Gehrmann et al., 2019; Uchendu et al.,
2021). Hybrid systems, such as GLTR (Gehrmann
et al., 2019) for example, use automation to provide
information to aid human classification, highlight-
ing a text sequence using colours to represent like-
ness to the PLM output distribution such as GPT-2
(Radford et al., 2019). Gehrmann et al. (2019)
reported an increase in detection accuracy of ap-
proximately 18% (from 54% to 72%) using GLTR,
while Uchendu et al. (2021) report an F1 score
of 46% using GLTR with a heuristic based on an
analysis of human text.

Both human and hybrid approaches involve hu-
man decisions, which can be slow, expensive, sus-
ceptible to bias, and inconsistent. Automatic de-
tection produces the best results for synthetic text
detection. This usually involves training PLMs to
detect other PLMs, but zero-shot detection meth-
ods also exist, e.g. DetectGPT (Mitchell et al.,
2023). Potentially the best supervised detector,
BERT, can detect synthetic text from 19 different
generators with a mean F1 of 87.99%, compared
to 56.81% for hybrid, and worst of all humans at
53.58% (Uchendu et al., 2021).

Performance of SOTA detectors can however
be inconsistent and unpredictable due to several
factors specific to both the detector and generator,
including: model size and architecture, training
data and domain thereof, sampling strategy, hy-
perparameter selection, and sentence length. As
mentioned above, Uchendu et al. (2021) showed
the best of these models (BERT) achieves a mean
F1 of 87.99% on 19 different synthetic text genera-
tors. However, the mean score hides the wide range
(≈53%) of F1’s, ranging from as low as 47.01%
to 99.97%, for distinct synthetic text generators.
This volatility may be due in part to the detector
simply learning artefacts of the generator distri-
bution. Consequently, the task of synthetic text
detection is somewhat of an arms race with detec-
tors playing catch-up, forced to learn ever-changing
distributions due to the numerous factors that can
potentially change those distributions.

Existing approaches to synthetic text detection
3https://github.com/alanagiasi/emoPLMsynth
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exploit properties of synthetic text. Synthetic text
can be incoherent and degrade as the length of
generated text increases (Holtzman et al., 2020),
perplexity increases with increasing length unlike
human text (Zellers et al., 2019), and PLMs are
susceptible to sampling bias, induction bias, and
exposure bias (Ranzato et al., 2016). For example,
exposure bias can contribute to brittle text which
is repetitive, incoherent, even containing hallucina-
tions (Arora et al., 2022). Synthetic text can have
an inconsistent factual structure, such as mention-
ing irrelevant entities (Zhong et al., 2020). Perhaps
unsurprisingly, synthetic text detection is less diffi-
cult with longer excerpts of generated text, for both
humans and machines (Ippolito et al., 2020).

One aspect of writing that has not, up to now,
been a focus of synthetic text detection efforts is
the expression of emotion. The problem of en-
coding emotion was first identified in neural NLP
with static embeddings such as word2vec (Mikolov
et al., 2013; Wang et al., 2020a). Static word em-
beddings have difficulty distinguishing antonymns
from synonyms (Santus et al., 2014). This deficit
is present in embeddings for words which repre-
sent opposing emotions (e.g. joy-sadness) (Seyed-
itabari and Zadrozny, 2017). Furthermore, words
representing opposing emotions can have closer
embeddings relative to words representing similar
emotions (Agrawal et al., 2018). There have been
various approaches to address this affective deficit
in embeddings, such as transfer learning from sen-
timent analysis (Kratzwald et al., 2018), an addi-
tional training phase using an emotional lexicon
and psychological model of emotions (Seyeditabari
et al., 2019), and combining separately-learned se-
mantic and sentiment embedding spaces (Wang
et al., 2020a).

Addressing potential affective deficits of PLMs
is also the goal of work aiming to make dialogue
systems more empathetic. For example Huang et al.
(2018) force dialogue generation to express emo-
tion based on the emotion detected in an utterance,
while Rashkin et al. (2019) follow a similar ap-
proach with a transformer architecture to make
the system more empathetic. In contrast, Wang
et al. (2020b) report that human text can display
consistency in emotional content whereby similar
emotions tend to occur adjacent to each other while
dissimilar emotions seldom do.4

4For a comprehensive survey of sentiment control in syn-
thetic text see (Lorandi and Belz, 2023) and for studies of
emotion in human writing, see (Brand, 1985, 1987, 1991;

Past work in synthetic text detection has focused
on the properties of synthetic text generators and is
yet to take advantage of the factors that potentially
influence human-authored text, such as the emo-
tions humans express in the text they write. Our
work exploits this PLM affective deficit to improve
synthetic text detection.

3 Equipping PLMs with Emotional
Intelligence

Our method is illustrated in Figure 1. The process
works as follows:

1. PLMSYNTH: In the leftmost column of
Figure 1, human articles and synthetic articles
are used to fine-tune a PLM to discriminate
between the two kinds of text. This is
indicated by the blue nodes in the PLM
illustration.

2. EMOPLM: In the middle column of Figure
1, a second dataset annotated for emotions
with Ekman’s 6 emotions (Ekman, 1992,
1999, 2016) is used to fine-tune a PLM
on the task of emotion classification. This
makes our model emotionally-aware, as indi-
cated by the red nodes in the PLM illustration.

3. EMOPLMSYNTH: The multi-class (6 head)
classification layer from emoPLM is removed
and replaced with a binary classification layer.
The emotionally-aware PLM is then fine-
tuned on the task of discriminating between
human and synthetic articles. The PLM is still
emotionally-aware while also being able to
detect synthetic text - as indicated by the red
and blue nodes respectively in the PLM.

We conduct experiments using various PLM
sizes, architectures, datasets, and domains for syn-
thetic text generation and detection.

4 News Domain Experiments

4.1 Generator and Detector Models
To generate synthetic text, we use the Grover causal
PLM (GPT-2 architecture) pretrained on 32M news
articles from the RealNews dataset (Zellers et al.,
2019). We choose BERT (Devlin et al., 2019) as
our main detector model since it is freely available
and performs well in several tasks including se-
quence classification. A baseline BERT model (we
call this BERTsynth) is fine-tuned on the task of

Bohn-Gettler and Rapp, 2014; Knaller, 2017).
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Figure 1: The emotionally-aware PLM (emoPLMsynth) takes advantage of its prior fine-tuning on emotion to
improve performance on the task of synthetic text detection. In contrast, the standard PLM fine-tuned only on
synthetic text detection (PLMsynth) has no training on emotion. Our experiments show the emotionally-aware PLM
(emoPLMLsynth) outperforms the standard PLM (PLMsynth) in multiple scenarios.

synthetic text detection, while our proposed model
is the same BERT model, firstly fine-tuned on emo-
tion classification (we call this intermediate model
emoBERT) before further fine-tuning for synthetic
text detection. This final proposed model is referred
to as emoBERTsynth.

4.2 Datasets

We create and release NEWSsynth, a dataset con-
taining 10k human and 10k synthetic news articles.
10k human-authored news articles were taken from
the RealNews-Test dataset (Zellers et al., 2019) and
used as a prompt to Groverbase to generate a cor-
responding 10k synthetic articles. The prompt in-
cludes the news article, headline, date, author, web
domain etc. as described by Zellers et al. (2019).
The dataset was split 10k-2k-8k for train, valida-
tion, and test respectively, the same ratio used by
Zellers et al. (2019) with 50:50 human:synthetic
text in each split, see Appendix B.3 for details. An
investigation of length of human vs synthetic text
is provided in Appendix E.

In a second experiment, we also use the
full RealNews-Test dataset itself, which com-
prises the same 10k human news articles used in
NEWSsynth and 10k synthetic articles generated
by Grovermega. The use of synthetic text generated
by Grovermega instead of Groverbase allows com-
parison of BERTsynth and emoBERTsynth on text

generated by a larger generator model, and against
results reported for other models on this dataset.

We use the GoodNewsEveryone dataset (Bostan
et al., 2020) to train emoBERT. This dataset con-
tains 5k news headlines, and was chosen since it is
within the target domain (news) and language (En-
glish) and is annotated with categorical emotions.
The 15 emotion labels from GoodNewsEveryone
were reduced to 11 emotions using the mapping
schema of (Bostan and Klinger, 2018), and fur-
ther reduced to 6 emotions based on the Plutchik
Wheel of Emotion (Plutchik, 1980, 2001) – see
Table 1 and Figure 3 in Appendix A – resulting
in 5k news headlines labelled with Ekman’s 6 ba-
sic emotions, the most frequently used categorical
emotion model in psychology literature (Ekman,
1992, 1999, 2016).

4.3 Training BERTsynth

We train BERTsynth, a BERTbase-cased model
fine-tuned for synthetic text detection (using the
NEWSsynth or RealNews-Test dataset). Input se-
quence length was maintained at the BERT max-
imum of 512 tokens (≈ 384 words). Five train-
ing runs were conducted. Each training run was 4
epochs – the most possible within GPU time con-
straints and similar to those of Zellers et al. (2019)
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GoodNewsEveryone Ekman

disgust → disgust (8%)

fear → fear (8%)

sadness, guilt, shame → sadness (14%)

joy, trust, pride, love/like, posi-
tive anticipation/optimism

→ happiness
(17%)

anger, annoyance, negative an-
ticipation/pessimism

→ anger (24%)

negative surprise, positive sur-
prise

→ surprise (30%)

Table 1: Emotion Mapping Schema: GoodNewsEvery-
one (15 emotions) to Ekman 6 basic emotions. % shows
the emotion label distribution in the dataset.

who used 5 epochs.5 For each training run, a unique
seed was used for model initialization, and a unique
set of three seeds were used for the dataset shuffle -
one seed each for train, validation, and test splits.
Furthermore, the HuggingFace library shuffles the
training data between epochs. The reproducibility
of the training and validation results using seeds
was verified by conducting multiple runs of training
and validation. Hyperparameter values are listed in
Appendix C.

4.4 Training emoBERT

We train emoBERT, a BERTbase-cased model fine-
tuned on the single label multiclass task of emo-
tion classification using the GoodNewsEveryone
dataset. Fine-tuning emoBERT followed a similar
process to fine-tuning BERTsynth described in §4.3.
This time, there were 5k examples and fine-tuning
was for 10 epochs.

Classification accuracy is not the end goal for
emoBERT. Its purpose is to reduce the affective
deficit of the PLM by modifying the representa-
tions of words conveying emotions and to improve
performance in the task of synthetic text detection
by transfer learning. The mean F1µ for emoBERT
is 39.4% on the Validation set - more than double
mean chance (16.7%) and within the range 31% to
98% reported for within-corpus emotion classifica-
tion in UnifiedEmotion (Bostan and Klinger, 2018).
See Appendix D for more details.

5After each epoch the model (checkpoint) was run against
the validation set for Accuracy, and the checkpoint and Ac-
curacy results were saved (in addition to F1, Precision and
Recall). The checkpoint with the highest Accuracy score was
then run on the Test set.

4.5 Training emoBERTsynth

We train emoBERTsynth, an emoBERT model fine-
tuned for synthetic text detection (using the
NEWSsynth or RealNews-Test dataset). The best
emoBERT model (checkpoint) from each of the 5
training runs had its emotion classification head
(6 outputs) replaced with a binary classification
head (2 outputs) for human vs synthetic text clas-
sification, see Figure 1. Each model was then fine-
tuned on the synthetic text detection task using the
exact same process and set of random seeds (for
dataset shuffling) as the 5 best models described
in §4.3. This allowed a direct comparison between
the 5 BERTsynth models (trained on synthetic text
detection only) and the 5 emoBERTsynth models
(fine-tuned on emotion classification followed by
synthetic text detection).

4.6 Results
The results in Figure 2 and Table 2 show the per-
formance of BERTsynth and emoBERTsynth when
fine-tuned on the NEWSsynth dataset. The results
support the hypothesis that emotion can help de-
tect synthetic text. emoBERTsynth outperforms
BERTsynth in head-to-head for accuracy and F1
in all 5 runs.

Looking at precision and recall, emoBERTsynth
outperforms BERTsynth in precision in all 5 runs,
while the opposite is the case for recall. It is worth

Figure 2: Test results for BERTsynth and
emoBERTsynth on the NEWSsynth dataset.
emoBERTsynth is higher for Accuracy, Precision
and F1, while BERTsynth is higher for Recall.

comparing the relative difference in recall and
precision between emoBERTsynth and BERTsynth
models in Table 2. emoBERTsynth has a difference
between the mean recall and mean precision of 4.76
(89.04 - 84.28) while the difference for BERTsynth
is more than double that at 10.81 (91.63 - 80.82).
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Precision Recall F1 Accuracy
Run Bs emoBs Bs emoBs Bs emoBs Bs emoBs

1 80.30 81.25 92.40 92.20 85.92 86.38 84.86 85.46
2 82.26 84.30 90.90 89.83 86.37 89.77 85.65 86.55
3 78.01 82.88 92.40 88.20 84.60 85.45 83.18 84.99
4 77.44 85.84 94.85 88.20 85.27 87.00 83.61 86.83
5 86.09 87.14 87.58 86.75 86.83 86.95 86.71 86.98

Mean 80.82 84.28 91.63 89.04 85.80 87.11 84.80 86.16
Var. (9.89) (4.35) (5.70) (3.45) (0.62) (2.08) (1.68) (0.63)

∆ +3.46 -2.59 +1.31 +1.36

Table 2: Comparison of BERTsynth (Bs) and emoBERTsynth (emoBs) against the NEWSsynth test set. (Variance
is shown in brackets under the mean). emoBs outperforms Bs in head-to-head for all 5 runs in Accuracy, F1, and
Precision; while Bs outperforms emoBs in head-to-head for all 5 runs in Recall.

Thus, we suggest our emotionally-aware PLM,
emoBERTsynth, is a better performing model than
the standard PLM, BERTsynth, because it has a
better balance between precision and recall.

In Table 3 we compare BERTsynth and
emoBERTsynth on the RealNews-Test dataset.
Recall that this dataset contains synthetic ar-
ticles generated by Grovermega instead of the
smaller Groverbase. We also compare against
the FastText, GPT-2 and BERT detector models
reported by Zellers et al. (2019) on this dataset.
emoBERTsynth has the highest accuracy, outper-
forming BERTsynth by 1.4%, BERTbase by 9.03%,
GPT-2base by 10.03%, and FastText by 12.43%.
These results support the hypothesis that emotion
can improve synthetic text detection.

There is a 7.63 point difference between our
BERTsynth model and the BERT model reported
by Zellers et al. (2019), despite both models be-
ing BERTbase and fine-tuned on the same dataset
and splits. However, there are differences in how
the models were treated before this fine-tuning,
and there may be some hyperparameter differences
for fine-tuning. We described in §4.3 how we
fine-tune a randomly initialised BERT model to
create BERTsynth. Zellers et al. (2019) reported
their BERT models were domain adapted to News
(by training on RealNews) at a length of 1024
WordPiece tokens. It is possible that this addi-
tional domain-adaptation and extended input se-
quence length actually harmed the performance of
the BERTbase model on the synthetic detection task.
The performance of synthetic text detectors can
improve with length (Ippolito et al., 2020) and the
longer input sequence length could help in this re-
gard. However, the vast majority of human and syn-

thetic news articles in RealNews-Test are shorter
than 1024 tokens. Thus, they may not benefit from
that extended input length and the model may in
fact be somewhat reliant on those later input tokens
for prediction.

Size Model Acc.

11M FastText 63.80
124M GPT-2base 66.20

BERTbase 67.20
BERTsynth 74.83

emoBERTsynth 76.23

Table 3: emoBERTsynth outperforms other model ar-
chitectures and sizes detecting human and Grovermega
(1.5B) synthetic text from the RealNews-Test dataset.
Detector model sizes include 11M and 124M parame-
ters and architectures include FastText, GPT-2base, and
BERTbase. The FastText, GPT-2base and BERTbase re-
sults are reported by Zellers et al. (2019).

4.7 Analysis

In this section, we perform a further set of experi-
ments to aid in interpreting our main results.

4.7.1 Length of Human vs Synthetic articles
We investigate whether PLMs simply learn some-
thing about the length of articles as a proxy for
discrimination between human and synthetic text.
An analysis of NEWSsynth articles (train and valida-
tion splits) reveals no obvious correlation (Pearson
r = 0.20) between the number of words in a human
article and the resulting synthetic article. 64% of
human articles are longer than their corresponding
synthetic article, while 34% of synthetic articles
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are longer. Human articles are longer overall, but
have slightly shorter sentences than synthetic text;
and human articles have more sentences per article
- which accounts for their longer mean length. Sim-
ilar observations were made for RealNews-Test by
Bhat and Parthasarathy (2020). See Table 10 and
Figs. 5 to 8 in Appendix E. Overall, these results
point neither to article length nor sentence length as
a reliable discriminator for synthetic text suggest-
ing that detector models are not simply learning
length as a proxy for human vs synthetic text.

4.7.2 Size of fine-tuning splits

Split Prec. Recall F1 Acc.

5-1-4k 78.39 79.85 78.89 78.58
Var. (24.10) (17.33) (3.17) (6.51)

10-2-8k 80.82 91.63 85.80 84.80
Var. (9.89) (5.70) (0.62) (1.68)

∆ +2.43 +11.78 +6.91 +6.22

Table 4: BERTsynth metrics for different split sizes,
using the NEWSsynth dataset averaged over 5 runs (with
variance shown in brackets).

The BERTsynth fine-tuning regime (§4.3) was re-
peated using all (20k) and half (10k) of NEWSsynth.
In all 5 runs, the BERTsynth model trained on the
larger 20k dataset performed better than the equiv-
alent model trained on the smaller 10k dataset –
see Table 4. There was a modest improvement in
precision (+2.43%) with a much larger increase in
recall (+11.78%). The results suggest that recall is
most sensitive to the size of the training set. This
is perhaps because the PLM is already trained on
human text during pretraining but not synthetic text
(exposure bias), so more exposure to synthetic text
increases the model’s ability to detect synthetic text
correctly with fewer false negatives.

4.7.3 Alternative forms of emoBERT
What is the effect of using different emotion
datasets to fine-tune our emotionally aware PLMs
on the downstream task of synthetic text detection?
We conduct experiments on emoBERTsynth by fine-
tuning eight alternative emoBERT models:

• GNE involves fine-tuning using the Good-
NewsEveryone dataset (§4.2) as in the main
experiments;

• GNEr involves fine-tuning with a version of
GNE with randomised labels. We do this to
examine the extent to which the difference

between BERTsynth and emoBERTsynth can
be attributed to emotion or to the process of
fine-tuning on an arbitrary classification task
with the GNE data;

• AT involves fine-tuning with the Affec-
tiveText dataset comprising 1.5k news head-
lines in English annotated with respect to Ek-
man’s 6 emotions (Strapparava and Mihalcea,
2008);

• GA is GNE and AT combined;
• SST-2 involves fine-tuning on the task of sen-

timent polarity classification using the SST-2
dataset of 68,221 movie reviews in English
(Socher et al., 2013);

• GAS is GNE, AT, and SST-2 combined; with
SST-2 positive sentiment mapped to joy and
negative sentiment mapped to sadness;

• S-GA involves first fine-tuning on sentiment
using SST-2 and then fine-tuning on emo-
tion using GA. This experiment is inspired by
Kratzwald et al. (2018) who report that emo-
tion classification can be improved by transfer
learning from sentiment analysis;

• GAS+- is GAS but mapped to positive and
negative sentiment.6

The results (Table 5) reveal that the best-
performing emoBERTsynth models are those fine-
tuned using GNE or using GNE and AffectiveText
combined (GA). The latter achieves the highest ac-
curacy and the former the highest F1. We attribute
the relatively poor performance of AffectiveText on
its own to its small size, comprising only 1.5k head-
lines (split 625 + 125 for training and dev splits
respectively) compared to 5k for GNE and 68k for
SST-2.

Table 5 also shows that fine-tuning on GNE
outperforms fine-tuning with randomised labels
(GNEr). The 1.1 point drop in accuracy of GNEr
compared to GNE suggests that the emotion clas-
sification task does play a role in the improved
performance of emoBERTsynth versus BERTsynth.

The results in Table 5 suggest that fine-tuning
on sentiment is not particularly helpful. The poor
performance of GAS could be due to the crude
mapping of negative sentiment to sadness (because

6Happiness was mapped to positive sentiment; sadness,
fear, anger and disgust were mapped to negative sentiment;
surprise was mapped to sentiment using a DistilBERT (base-
uncased) (Sanh et al., 2020) sentiment classifier fine-tuned
on the SST-2 dataset and available on HuggingFace. https:
//huggingface.co/distilbert-base-uncased 14.05% of
’surprise’ mapped to positive, while the remaining 85.95%
mapped to negative sentiment.
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Prec. Rec. F1 Acc.

GAS 81.95 85.58 83.72 83.36
S-GA 82.60 87.80 85.12 84.65
GAS+- 82.41 88.30 85.25 84.73
AT 85.52 83.88 84.69 84.84
SST-2 82.85 88.38 85.52 85.04
GNEr 82.44 89.93 86.02 85.39

GNE 83.84 90.40 87.00 86.49
GA 85.34 88.18 86.73 86.51

Table 5: Ablation experiments, using different emo-
tion datasets for fine-tuning emoBERT, comparing
emoBERTsynth (eBs) detectors on the task of synthetic
text detection on the NEWSsynth dataset. GNE is the
GoodNewsEveryone dataset which is used in the main
experiments. GNEr is GNE with randomised labels. AT
is AffectiveText. GA is GNE and AT combined. SST-2
is the SST-2 sentiment dataset. GAS is the combined
GNE, AT, and SST-2 datasets. S-GA is first fine-tuned
on sentiment using the SST-2 dataset, and then fine-
tuned on emotion using the GNE and AT datasets, and
finally fine-tuned on synthetic text detection. GAS+- is
GAS but mapped to positive and negative sentiment.

it could be any 1 of 5 Ekman emotions), which
results in a large dataset imbalance across emo-
tion labels. When we go in the opposite direction
and mapped the emotion labels to sentiment labels
(GAS+-), the results improved. Overall, however,
the results suggest that mixing emotion and sen-
timent datasets is not a good idea (particularly if
they are disproportionate in size and imbalanced),
and that sentiment alone is not sufficient.

4.7.4 A larger detector model
We next investigate what happens when we use
a PLM larger than BERT to detect synthetic text.
Using the same experimental setup described in
§4, we substituted BLOOM (Scao et al., 2023)
in place of BERT for the synthetic text detector.
BLOOM is an open-science causal PLM alterna-
tive to GPT-3 (Brown et al., 2020). We use the
BLOOM 560M size model. The results in Ta-
ble 6 show that the emotionally-aware BLOOM
PLM (emoBLOOMsynth) outperforms the standard
BLOOM (BLOOMsynth) in all metrics.

5 ChatGPT Experiments

All experiments so far have involved PLMs pre-
trained with the self-supervised objective of predict-
ing the next token or a masked token. We conduct
a final experiment with ChatGPT, a more human-

Prec. Rec. F1 Acc.

BLOOMsynth 81.90 85.95 83.79 83.40
Var. (4.76) (12.22) (1.23) (0.93)

emoBLOOMsynth 85.98 88.02 86.90 86.75
Var. (5.72) (9.96) (0.27) (0.15)

∆ +4.08 +2.07 +3.11 +3.35

Table 6: Comparison of BLOOMsynth and
emoBLOOMsynth against the NEWSsynth test set
averaged over 5 runs (with variance in brackets).
emoBLOOMsynth outperforms BLOOMsynth in Accuracy,
F1, Recall, and Precision.

aligned Large Language Model (LLM) which has
undergone a second training or “alignment” phase
using Reinforcement Learning from Human Feed-
back on top of an underlying LLM (GPT 3.5 in our
case) (OpenAI, 2022; Ouyang et al., 2022). We cre-
ate a custom dataset comprising human articles and
ChatGPT synthetic text from multiple non-news
domains, and use it to compare our BERTsynth and
emoBERTsynth models against ChatGPT (in a zero-
shot setting) on the task of detecting ChatGPT’s
own synthetic text.7

ChatGPT100 We create and release Chat-
GPT100 - a dataset comprising human articles and
synthetic articles generated by ChatGPT. Following
Clark et al. (2021) who collected 50 human articles
and generated 50 articles using GPT2 and GPT3,
we also collect 50 human articles, and we then use
ChatGPT to generate 50 synthetic ones. The hu-
man written articles are from 5 different domains:
Science, Entertainment, Sport, Business, and Phi-
losophy. We used reputable websites for the human
text which was gathered manually, see Table 8 in
Appendix B.3. The synthetic text was generated
by providing ChatGPT with a prompt such as “In
less than 400 words, tell me about moral philoso-
phy.” where human text on the same topic, moral
philosophy in this case, had already been found
online. The data generated by ChatGPT is seman-
tically correct and was checked manually. Subject
areas in which the authors are knowledgeable were
chosen so that the correctness of the synthetic text
could be checked. To be comparable with the de-
tectors presented in our earlier experiments, the
articles were limited to a maximum of 384 words
(≈ 512 tokens) and truncated at a natural sentence
boundary. The two articles were then made to be
approximately the same length.

7We use ChatGPT-3.5 (Mar-14-2023 version) between
dates 16-Mar-2023 and 24-Mar-2023.
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Model Prec. Rec. F1 Acc.

ChatGPT 75.00 30.00 42.86 60.00
BERTsynth 60.24 100.00 75.19 67.00
emoBERTsynth 67.57 100.00 80.65 76.00

Table 7: Our emotionally aware PLM (emoBERTsynth)
outperforms ChatGPT and BERTsynth at detecting syn-
thetic text in the ChatGPT100 dataset. Note that Chat-
GPT is performing the task zero-shot.

Detection task Each article was appended to the
following prompt to ChatGPT: “Was the follow-
ing written by a human or a computer, choose hu-
man or computer only?” Having tested ChatGPT,
we then tested our BERTsynth and emoBERTsynth
models (the models fine-tuned on RealNews-Test
from Table 3).

Results The results are shown in Table 7. The
first thing to note is that no model performs par-
ticularly well. ChatGPT tends to misclassify its
own synthetic text as human (hence the low recall
score of 30%).8 BERTsynth and emoBERTsynth,
on the other hand, tend to classify text as machine-
written and they both obtain 100% recall. We pre-
viously saw (§4.7.2) that recall is most sensitive
to fine-tuning set size. The emoBERTsynth and
emoBERTsynth models have been exposed to syn-
thetic text during fine-tuning, whereas ChatGPT
is performing the task zero-shot. This could ex-
plain some of the difference in recall between the
ChatGPT and the two fine-tuned models.

Finally, as with our experiments with Grover-
generated text, emoBERTsynth outperforms
BERTsynth on all metrics. The dataset is small
so we must be careful not to conclude too much
from this result, but it does suggest that fine-tuning
on emotion could be beneficial when detecting
synthetic text from LLMs and more sophisticated
generators, in non-news domains. This is in line
with the results of our earlier experiments using
variously size PLMs (such as Grover, BERT,
BLOOM), used as generators and detectors in
the news domain, and shows the potential for our
approach with different generator models and in
different domains.

6 Conclusion

We conducted experiments investigating the role
that emotion recognition can play in the detection

8ChatGPTs responses suggest it may use fact-checking as
a proxy during synthetic text detection.

of synthetic text. An emotionally-aware PLM fine-
tuned on emotion classification and subsequently
trained on synthetic text detection (emoPLMsynth)
outperformed a model with identical fine-tuning on
synthetic text detection, but without emotion train-
ing, (PLMsynth). The results hold across differ-
ent synthetic text generators, model sizes, datasets
and domains. This work specifically demonstrates
the benefits of considering emotion in the task of
detecting synthetic text, it contributes two new
datasets (NEWSsynth and ChatGPT100) and, more
generally, it hints at the potential benefits of consid-
ering human factors in NLP and Machine Learning.

Is it possible that some other proxy for synthetic
text is at play? We ruled out some potential prox-
ies related to article length in §4.7.1. In ablation
studies in §4.7.3, we showed that the emotion la-
bels result in an improvement in performance com-
pared to randomized labels for the same emotion
dataset. Other potential proxies are nonsensical sen-
tences, repetitive text, etc. However, we account for
these by comparing our emotionally-aware PLMs
(emoPLMsynth) against standard PLMs fine-tuned
on synthetic text detection only (PLMsynth). Thus,
any advantage or disadvantage of sentences with-
out meaning (or any other factor) is also available
to the non-emotionally-aware model against which
we compare our emotionally-aware model.

Future work will investigate further the affective
profile (i.e. emotional content and characteristics)
of human and synthetic text; and attempt to deter-
mine if there are measurable differences which may
prove useful in the task of synthetic text detection.

Limitations

The datasets used in this work (synthetic text
datasets, emotion datasets, and sentiment dataset)
are English language and model performance in
other languages may vary. We primarily focus on
the news domain and, while performance in other
domains may vary (Merchant et al., 2020), we in-
clude experiments in several non-news domains
(§5).

The emotion datasets are imbalanced across emo-
tion labels which can impact overall performance,
and we conducted ablation experiments to find
the best combination of emotion and sentiment
datasets (§4.7.3). GoodNewsEveryone’s 15 emo-
tions were mapped to Ekman’s 6 emotions (Ekman,
1992, 1999, 2016), factoring in Plutchik’s wheel
of emotion (Plutchik, 1980, 2001), but there is no
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firm agreement in the literature as to which is the
’correct’ or ’best’ emotion model (Ekman, 2016).
The emotion models used in this work are the two
most popular in the literature.

The maximum input sequence length of BERT
is 512 tokens and articles longer than this are trun-
cated, which may negatively affect performance
on the synthetic text detection task (Ippolito et al.,
2020). However, we also saw that increasing the
input sequence length may actually contribute to
poorer performance (§4.6).

Ethical Considerations

We release multiple PLMs (emoBERTsynth,
BERTsynth, emoBLOOMsynth and BLOOMsynth)
which we refer to generically as emoPLMsynth and
PLMsynth. emoPLMsynth and PLMsynth are BERT
or BLOOM models with versions fine-tuned on
NEWSsynth or the RealNews-Test (Zellers et al.,
2019) datasets; emoPLMsynth is also fine-tuned on
combinations of the GoodNewsEveryone (Bostan
et al., 2020), AffectiveText (Strapparava and Mi-
halcea, 2008), and SST-2 (Socher et al., 2013)
datasets.

We release ChatGPT100, a dataset comprising
100 English language articles in various non-news
domains. 50 articles are human written, and 50
articles are generated by ChatGPT. The 100 articles
have all been manually curated and do not contain
toxic content. Furthermore, ChatGPT has a content
filter which flags potentially harmful content.

We release, NEWSsynth, a dataset comprising
40k English language articles in the news domain. 9

20k news articles are human (from RealNews-Test)
and 20k generated by Grover. Publishing synthetic
text is a risk, but NEWSsynth is clearly labelled
as containing synthetic text. This is a similar pre-
caution to synthetic text from Grover which has
already been published and is publicly available
(Zellers et al., 2019).

The potential harms, such as toxic synthetic text
(Gehman et al., 2020), of PLMs pretrained on web-
crawled data has been the subject of much discus-
sion (Bender et al., 2021). Since emoPLMsynth and
PLMsynth (and Grover) were pretrained and/or fine-
tuned on web-crawled data there is a possibility
they could produce inappropriate synthetic text and
this includes the NEWSsynth dataset. We recog-
nise these potential harms and to mitigate them

9We include 20k articles in addition to the 20k used in this
work

include the caveat below with the released datasets
(NEWSsynth and ChatGPT100) and the released
language models (emoPLMsynth, PLMsynth):

Care must be taken when using these
language models (emoPLMsynth and
PLMsynth), and datasets (NEWSsynth
and ChatGPT100) as they may produce
or contain ethically problematic content.
Data scraped from the web may con-
tain content which is ethically problem-
atic such as adult content, bias, toxic-
ity etc. and web-scraped data is used in
the pre-trained language models such as
BERT, BLOOM and Grover. PLMsynth
and emoPLMsynth are based on BERT
or BLOOM PLMs, while NEWSsynth
was generated by Grover. Consequently,
emoPLMsynth and PLMsynth could pro-
duce text which is ethically problematic,
while NEWSsynth may contain ethically
problematic content. As a result, any use
of the language models (emoPLMsynth,
PLMsynth) or the datasets (NEWSsynth
or ChatGPT100) should employ appro-
priate checks and test regimes to handle
potential harmful content.

The intended use of the emoPLMsynth and
PLMsynth models, and the NEWSsynth and Chat-
GPT100 datasets, is for research purposes and ben-
eficial downstream tasks such as identifying syn-
thetic text perhaps in online news, reviews, com-
ments, plagiarism etc. Online platforms could use
this identification to decide whether or not to pub-
lish such content, or where to surface it via rec-
ommender algorithms etc. This could help protect
public confidence in online discourse.

Energy usage was reduced by training on smaller
models and for a relatively small number of epochs
where possible, by using random search rather than
an exhaustive grid search, and by using freely avail-
able managed compute resources where possible.
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A Plutchik Wheel of Emotion

The Plutchik Wheel of Emotion (Plutchik, 1980,
2001) is shown in Figure 3 and is the most com-
monly used dimensional model in psychology liter-
ature.

Figure 3: Plutchik Wheel of Emotion. The middle
ring includes Ekman’s 6 emotions plus ’trust’ & ’antic-
ipation’. Similar emotions lie on adjacent spokes e.g.
anger-disgust, while opposing emotions are placed on
opposing spokes e.g. joy-sadness.

B Reproducibility

All code, models, and datasets (including
NEWSsynth and ChatGPT100) are avail-
able at https://github.com/alanagiasi/
emoPLMsynth.

B.1 Parameters used for generating synthetic
text with Grover

GroverBASE was used for generating synthetic text
news articles in NEWSsynth. Full contextual meta-
data was used, in addition to a top-p value of 0.95
because both can make discrimination more dif-
ficult. According to Zellers et al. (2019) contex-
tual data decreased perplexity by 0.9 points for
GroverBASE, and a top-p value in the range 0.92 to
0.98 is a Goldilocks zone where discrimination is

hardest (so we chose top-p=0.95 as it is in the mid-
dle of this difficult detection zone). Source code,
installation, and generation instructions for Grover
can be found on the Grover github. 10

• Model: GROVERBASE

• Model parameters: 124M
• Top-p = 0.95
• Metadata: Full contextual metadata (from

RealNews-Test dataset)
• Time to generate 20k synthetic articles is ap-

proximately 90 hours on a single GPU (Tesla
K40, or RTX2080ti) with 30GB RAM.

B.2 Metrics

Accuracy, Precision, Recall, F1, (and F1µ for emo-
tion classification) were calculated using scikit-
learn. 11

B.3 Datasets

NEWSsynth We release NEWSsynth - a dataset
comprising 40k English language human and syn-
thetic news articles. The experiments in this paper
use the first 20k of these articles, an additional 20k
articles are provided in the dataset. The human
articles are taken from the RealNews-Test dataset
(Zellers et al., 2019) so they have not been seen
by Grover - which generated the synthetic news
articles as described in §4.3 and earlier in this Ap-
pendix.

Regarding the emotional content and journalis-
tic content of news articles in NEWSsynth: Previ-
ous authors have specifically chosen the news do-
main because of its high emotional content (Strap-
parava and Mihalcea, 2007; Bostan et al., 2020).
It is long established that different emotions lead
to different actions (Spielberger, 1972) including
what we write (Brand, 1985). Emotion can be ex-
ploited, for example “engagement based ranking”
tends to favour content that evokes anger (Hau-
gen, 2021). While some journalistic reporting is
objective, opinion editorials (op-ed) are opinions
pushing an agenda and, for example, tabloids tend

10https://github.com/rowanz/grover
11scikit-learn describes the metrics: https:

//scikit-learn.org/stable/modules/model_
evaluation.html#common-cases-predefined-values.
As noted in §4.4 when fine-tuning emoBERT on emo-
tions: micro averaging over a single-label multi-class
evaluation means that Accuracy, Precision, Recall and
F1 all have the same value. https://scikit-learn.
org/stable/modules/model_evaluation.html#
multiclass-and-multilabel-classification
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to specifically exploit emotion. The 10k news ar-
ticles in the NEWSsynth training split, for exam-
ple, come from 150 online sources which also in-
clude: movie reviews and entertainment such as
rollingstone.com, hollywoodlife.com, bollywood-
hungama.com and mashable.com; and tabloids
such as thedailymail.co.uk, dailystar.co.uk, thedai-
lystar.net etc. which cover many types of news
including journalism, op-eds, reviews, opinions
etc. In short, NEWSsynth is not limited to non-
emotional objective fact reporting, it contains a
broad spectrum of journalistic styles and content.

ChatGPT100 We release ChatGPT100, a dataset
comprising 100 English language articles in var-
ious non-news domains (Science, Entertainment
(Music, Movies), Sport, Business, and Philosophy).
50 articles are human written, and 50 articles are
generated by ChatGPT. The 100 articles have all
been manually curated and do not contain toxic
content. Furthermore, ChatGPT has a content filter
which flags potentially harmful content.

The 50 human articles contained in ChatGPT100
were gathered between 16-24 March 2023 from
the domains shown in Table 8. The 50 synthetic
articles contained in ChatGPT100 were generated
using ChatGPT 3.5 (March 14 2023 version) on
dates between 16-24 March 2023.

RealNews and RealNews-Test These datasets
were released with Grover and are described there
in detail (Zellers et al., 2019).

Emotion and Sentiment Datasets GoodNew-
sEveryone is described in detail (Bostan et al.,
2020) with modifications made to the dataset for
this work described in §4.2. The distribution of
emotion intensity is shown in Table 9 showing al-
most all are ’medium’ while 2 examples have no
emotion. AffectiveText was released as part of Se-
mEval 2008 and is described in detail (Strapparava
and Mihalcea, 2008), while the SST-2 sentiment
dataset is described in detail (Socher et al., 2013).

C Hyperparameters used for Fine-tuning

The hyperparameters used for PLM fine-tuning are
listed below. If not specifically listed, the hyper-
parameter value used was the default using Hug-
gingFace Transformer libraries. 12 The BERTBASE-
cased and BERTLARGE-cased models were down-

12https://huggingface.co/transformers/

Domain Count

britannica.com 9
investopedia.com 6
plato.stanford.edu 6
fandom.com 2
forbes.com 2
olympics.com 2
allmusic.com 1
arpansa.gov.au 1
arsenal.com 1
atptour.com 1
bbc.com 1
bhf.org.uk 1
bleacherreport.com 1
cambridge.org 1
canarahsbclife.com 1
empireonline.com 1
gaa.ie 1
hotpress.com 1
kaspersky.com 1
laureus.com 1
mayfieldclinic.com 1
oah.org 1
oceanservice.noaa.gov 1
open.lib.umn.edu 1
phys.org 1
science.nasa.gov 1
sixnationsrugby.com 1
slf.rocks 1
u2.com 1

Total: 50

Table 8: Domains used for human text in ChatGPT100
dataset released with this paper. Articles were gathered
between 16-24 March 2023.

loaded from HuggingFace. 13

emoBERT, BERTsynth, and emoBERTsynth were
all trained using freely available Google Colab with
a single GPU (Tesla K80 or Tesla T4) with no guar-
antee on available RAM 14 or an NVIDIA GeForce
RTX3090 GPU with 24GB RAM.

All models were trained and evaluated for 5 runs
using different seeds for each of the 5 runs. The
seeds used are listed below.

13https://huggingface.co/bert-base-cased,
https://huggingface.co/bert-large-cased

14GPU time was typically limited to 6 hours or less which
limited the number of epochs the PLMs could be trained to 4.
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Emotion Intensity Count

None 2
low 3
medium 4991
high 4

Total: 5000

Table 9: Distribution of emotion intensity in GoodNew-
sEveryone.

C.1 BERTsynth, emoBERTsynth

• Model: BERTBASE-cased | BERTLARGE-cased
• Model parameters: 110M | 355M
• Input sequence length: 512 tokens padded
• Train-Val-Test split size: 10k, 2k, 8k
• Epochs: 4 | 5
• Batch Size: 7. 15

• Batch Gradient Accumulation: 8
• Warmup steps: 500
• Weight decay: 0.01
• Seeds = [179, 50, 124, 253, 86]. 5 seeds = 1

seed per training run.
• Data seeds = [17, 38, 5, 91, 59] #n, n-6, n+6

for train-val-test seeds respectively
• Metric for best model: Accuracy
• Training + Validation time: 150mins (for 4

epochs)
• Inference time: 10mins (for 8k examples)

C.2 emoBERT

• Model: BERTBASE-cased | BERTLARGE-cased
• Model parameters: 110M | 355M
• Input sequence length: 512 tokens padded
• Train-Val-Test split size: 2.5k, 0.5k, 2k for

GNE
• Epochs: 10
• Batch Size: 7
• Batch Gradient Accumulation: 8
• Warmup steps: 500
• Weight decay: 0.01
• Seeds = [179, 50, 124, 253, 86]. 5 seeds = 1

seed per training run.
15Experiments showed 7 was the largest batch size possible

given a 512 input sequence length with the RAM available,
and is similar to that reported by Google on BERT github:
https://github.com/google-research/bert

• Data seeds = [17, 38, 5, 91, 59] #n, n-6, n+6
for train-val-test seeds respectively

• Metric for best model: F1µ
• Training + Validation time: 11mins (for 10

epochs)

• Inference time: 22s (for 2k examples)

D emoBERT Emotion Classification
Results

The mean F1µ for emoBERT is 39.4% on the Valida-
tion set - more than double mean chance (16.7%)
and within the range 31% to 98% (mean = 62.6%)
reported for within-corpus emotion classification in
UnifiedEmotion (Bostan and Klinger, 2018). Good-
NewsEveryone does not report news headline emo-
tion classification (Bostan et al., 2020).

Figure 4: Combined Confusion Matrix for Emotion
Classification on GoodNewsEveryone Validation set.

Figure 4 depicts the combined results of the
best performing model (in Validation) from the
10 epochs, in each of the 5 training runs. The im-
balance across emotion labels (shown in the first
column of Table 1) is reflected in performance in
Figure 4. Anger and Surprise are the two emotions
best classified and best represented in the dataset at
24% and 30% respectively; while Fear and Disgust
are the two emotions most poorly classified and
least represented in the dataset at 8% each. The 4
emotions Happiness, Sadness, Anger, and Surprise
are classified correctly more often than as any of
the other 5 emotions. Fear and Disgust are most
likely to be misclassified as Anger.

We see a correlation between class size and per-
formance on that class - those classes with more
examples performed better than those with fewer
examples. Outright performance is not the end
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goal for emoBERT. The purpose of emoBERT is to
reduce the affective deficit of the PLM by modify-
ing the word representations of words representing
emotions and to improve performance in the task
of synthetic text detection by transfer learning.

E Length of human vs synthetic articles
in NEWSsynth

Figures 5 - 8 illustrate the relative lengths of human
and synthetic articles and sentences in NEWSsynth
(train and validation splits) as described in §4.7.1
and shown in Table 10.

Figure 5: Scatter plot of number of words per article
pair of synthetic text vs. human text in NEWSsynth
(Pearson r = 0.20).

Figure 6: Number of words per article for human (green)
and synthetic (orange) text in NEWSsynth.

Figure 7: Number of sentences per article for human
(green) and synthetic (orange) text in NEWSsynth.

Figure 8: Number of words per sentence for human
(green) and synthetic (orange) text in NEWSsynth.
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Source Words Per Article Sentences Per Article Words Per Sentence
x σ x σ x σ

Human 594.56 503.07 27.05 25.23 21.98 15.98
Synthetic 417.98 162.09 18.34 8.64 22.79 16.60

Figure 6 Figure 7 Figure 8

Table 10: Comparison of Human and synthetic text in the NEWSsynth dataset showing the mean (x) and standard deviation (σ)
for Word Per Article, Sentences Per Article, and Words Per Sentence. Human articles are longer overall, but have slightly shorter
sentences than synthetic text; and Human articles have more Sentences Per Article - which accounts for their longer mean length.
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