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Abstract

Large-scale video-language pre-training has
made remarkable strides in advancing video-
language understanding tasks. However, the
heavy computational burden of video encod-
ing remains a formidable efficiency bottle-
neck, particularly for long-form videos. These
videos contain massive visual tokens due to
their inherent 3D properties and spatiotem-
poral redundancy, making it challenging to
capture complex temporal and spatial rela-
tionships. To tackle this issue, we propose
an efficient method called TEmporal-Spatial
Token Aggregation (TESTA). TESTA con-
denses video semantics by adaptively aggregat-
ing similar frames, as well as similar patches
within each frame. TESTA can reduce the num-
ber of visual tokens by 75% and thus acceler-
ate video encoding. Building upon TESTA,
we introduce a pre-trained video-language
model equipped with a divided space-time to-
ken aggregation module in each video encoder
block. We evaluate our model on five datasets
for paragraph-to-video retrieval and long-form
VideoQA tasks. Experimental results show that
TESTA improves computing efficiency by 1.7
times, and achieves significant performance
gains from its scalability in processing longer
input frames, e.g., +13.7 R@1 on QuerYD and
+6.5 R@1 on Condensed Movie.!

1 Introduction

Video-language modeling aims to learn seman-
tic alignment between video and language in a
joint representation space (Xu et al., 2021; Lei
et al., 2021) to facilitate downstream tasks includ-
ing text-video retrieval, video question answering
(VideoQA), and video captioning. Unlike text,
which can be represented concisely as a sequence
of words with dense semantics, video input consists
of much longer sequences due to its 3D properties
and the redundancy in space-time information (He

'Our code is available at https://github.com/

RenShuhuai-Andy/TESTA.

et al., 2021; Tong et al., 2022). In fact, the number
of visual tokens processed by Transformer-based
models (Fu et al., 2021; Cheng et al., 2022; Ye
et al., 2022; Li et al., 2021a; Wang et al., 2022b)
can be over 150x more than text tokens.” This
poses an efficiency bottleneck for video-language
understanding, especially for long-form videos last-
ing more than 30 seconds (Wu and Krihenbiihl,
2021; Sun et al., 2022).

To encode long videos within limited computing
budgets, previous approaches can be broadly cate-
gorized into two types: (1) Sparse Sampling (Lei
et al., 2021; Sun et al., 2022; Lei et al., 2022). This
method reduces the number of visual tokens by
sampling very few frames from the raw video.?
However, sparse sampling sacrifices rich temporal
dynamics and storyline information, which limits
model performance. (2) Offline Encoding (Luo
et al., 2021; Bain et al., 2022). It allows process-
ing more frames within the same computation bud-
gets by constraining the interaction between vi-
sual tokens. It first uses an off-the-shelf image
encoder (Dosovitskiy et al., 2020; Radford et al.,
2021) to encode each frame independently, then
uses a temporal module to aggregate all the frame
features. However, the frame features encoded
offline may not be well adapted to downstream
tasks in various domains. Additionally, the post-
aggregation mechanism also prohibits the full fu-
sion of frame features (Cheng et al., 2022). Con-
sidering that both sufficient input frames and
full temporal-spatial modeling in an end-to-end
manner are pivotal for optimal performance, a nat-
ural question arises: Are there better approaches to
achieve efficient video coding without compromis-
ing on either of these aspects?

For example, in the QuerYD dataset, a long-form video
with 96 sampled frames at a resolution of 224 x 224 pixels
generates around 19K visual tokens after patchification, while
the corresponding caption contains only 128 text tokens.

3For instance, sample 4 frames from more than 5.4K
frames for ActivityNet Captions dataset (Krishna et al., 2017).
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Figure 1: Two blocks on the left compare ToMe (Bolya et al., 2022) and our TESTA on three aspects: video token
definition, aggregation method, and computation complexity. The block on the right illustrates TESTA’s divided
temporal aggregation (left) and spatial aggregation (right). Patches sharing the same inner and border colors are
merged together. Our aggregation gradually reduces the number of frames and patches by averaging their features

during the forward process of video encoding.

In this paper, we propose an efficient
method named TEmporal-Spatial Token
Aggregation (TESTA) inspired by Token
Merging (ToMe) (Bolya et al., 2022). Specifically,
TESTA samples input frames densely, but pro-
gressively aggregates similar visual tokens during
video encoding to reduce the token number and
computational overhead. As shown in Fig. 1, our
aggregation operates separately in temporal and
spatial dimensions, allowing for the merging of
similar frames as well as similar patches within
each frame. This reduces ToMe’s complexity from
O((F AN 1o O(T? + (££1%)?), making it
more efficient for encoding longer videos. After
aggregation, around 75% visual tokens can be
reduced and thus the video encoding is accelerated.
To achieve this, we use the bipartite matching
algorithm. Specifically, we select a set of tokens
and then find their most similar counterparts
from the remaining set. Finally, we aggregate
the features of these pairs through mean pooling.
This aggregation-based mechanism has three
advantages: First, it does not incorporate addi-
tional parameters and is amenable to parallelism,
which significantly improves the training and
inference efficiency; Second, our method (1)
adaptively condenses video semantics rather than
directly discarding input information, (2) retains
full end-to-end spatiotemporal fusion, which
both ensure the performance. Third, compared
to convolution-based feature down-sampling
methods (Liu et al., 2021; Li et al., 2021c), our
aggregation trajectory can be easily tracked and

recovered. The aggregated tokens often correspond
to higher-level semantics (e.g., objects, scenes, and
events), making them more interpretable and even
grounded in language.

Building upon TESTA, we design a pre-trained
video-language model with a temporal and spa-
tial token aggregation module in each video en-
coder block. We evaluate our model on paragraph-
to-video retrieval and long-form VideoQA tasks.
When using an equal number of input frames, our
model improves computing efficiency by 1.7 times
while maintaining comparable performance. When
accessing more frames, our model exhibits strong
scalability and achieves significant performance
gains compared to previous state-of-the-art meth-
ods (e.g., +13.7R@1 on QuerYD and +6.5 R@1
on Condensed Movie).

2 Related Work

Video-Language Pre-trained Models. Benefit-
ting from large-scale video-text datasets (Bain et al.,
2021; Xue et al., 2021) and advances in Trans-
former model design (Gorti et al., 2022; Ren et al.,
2021; Fu et al., 2021; Zellers et al., 2021; Wang
et al., 2022a), pre-trained Video-Language Mod-
els (VidLMs) (Chen et al., 2022; Sun et al., 2022;
Cheng et al., 2022) have demonstrated impres-
sive performance in video-language understanding
tasks. VidLMs typically comprise a video encoder
and a text encoder, which encode video-text pairs
into a shared feature space to learn the semantic
alignment between video and language. Addition-
ally, a text decoder can be added after the video
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Figure 2: Architecture of our pre-trained model and token aggregation algorithm of TESTA. We record the size of
the input and output features in red. The circles in the left panel denote either patch tokens or frame tokens.

encoder for tasks such as video captioning and
VideoQA (Yan et al., 2022; Zhang et al., 2020).

Efficient Video Transformer. A Transformer-
based video encoder typically pachifies each video
into massive visual tokens, which will cause pro-
hibitive computation costs for full self-attention
with quadratic computational complexity. There-
fore, research on efficient video Transformers
has always been active. Representative work
like TimeSFormer (Bertasius et al., 2021) and
ViViT (Arnab et al., 2021) propose to factorize
the spatial and temporal dimensions of the input,
then separately apply spatial and temporal attention.
Video Swin Transformer (Liu et al., 2021) keeps
the joint temporal-spatial attention but restricts it
within a local 3D window. Orthogonal to the ad-
vances of efficient Transformer architectures, our
TESTA aggregates token features from the spatial
and temporal dimensions, which reduces the size
of input features for each Transformer block and
can further boost the efficiency of video encoding.

Feature Aggregation in Video Transformers.
Existing feature aggregation methods can be
broadly categorized into two branches. Temporally,
frame features can be encoded by a pre-trained im-
age encoder and aggregated using self-attention,
joint-attention, or mean pooling for post-temporal
modeling purposes (Bain et al., 2022; Luo et al.,
2021). Spatially, previous work explored merging
similar patches in the image or aggregating tokens
into additional proxy tokens (Bolya et al., 2022; Shi

et al., 2023; Cao et al., 2023; Xu et al., 2022; Ryoo
et al., 2021; Marin et al., 2021). In contrast, we
propose a unified mechanism to simultaneously ag-
gregate frames and patches. Our method gradually
aggregates features during video encoding, improv-
ing efficiency while ensuring sufficient interaction
between features in both space and time.

3 Method

In this section, we first introduce our video-
language pre-trained model and its architecture in
§ 3.1. To improve the efficiency of encoding long-
form videos, we propose a novel temporal-spatial
token aggregation mechanism (§ 3.2). Finally, we
present the pre-training objectives in § 3.3.

3.1 Model Architecture

Inspired by prevalent VidLMs (Li et al., 2022,
2021b), our model consists of three encoders and
one decoder for video-language representation
learning. Figure 2 shows the model architecture.

Text Encoder. The text encoder is a uni-modal
encoder similar to BERT (Devlin et al., 2019). A
[CLS] token is prepended at the beginning of the
input text to represent its global feature.

Video-grounded Text Encoder. This is a cross-
modal encoder. Compared to the uni-modal text
encoder, we add a cross-modal module to each en-
coder layer to enable information flow from video
to language. We insert an [ENC] token before the
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input text to condense the cross-modal information
from both video and language.

Video-grounded Text Decoder. This is a cross-
modal decoder with causal self-attention for auto-
regressive text generation.

Video Encoder. This is a uni-modal encoder.
Given a raw video, the visual input V €
RITXHXWX3 i a sequence of T RGB frames of
size H x W sampled from the video. Each frame
is split into L non-overlapping patches* following
ViT (Dosovitskiy et al., 2020). To represent the
global video feature, an additional [CLS] token is
also used. Our video encoder is similar to TimeS-
Former (Bertasius et al., 2021) with the Divided
Space-Time Attention. Specifically, each video en-
coder block captures the temporal relations across
frames using Temporal Attention and fuses the spa-
tial information of objects, scenes, etc., within each
frame using Spatial Attention. In contrast to TimeS-
Former, we improve the efficiency of video encod-
ing by equipping each video encoder block with a
Temporal Aggregation Module and a Spatial Aggre-
gation Module, which we will introduce in § 3.2.

3.2 Temporal-Spatial Token Aggregation

Videos have heavy spatiotemporal redundancy (He
et al., 2021; Tong et al., 2022). On one hand, some
activities (e.g., conversations) can persist across
multiple frames with little visual variations. On
the other hand, some scenes like background of-
ten contain numerous indistinguishable patches in
each frame. Aggregating these similar frames and
patches can simplify video feature representation
and accelerate video encoding.

Accordingly, we introduce a Temporal Aggre-
gation Module (TAM) and a Spatial Aggregation
Module (SAM), i.e., the yellow modules in Fig-
ure 2. After each aggregation, TAM reduces Rr
frames while SAM reduce Rg patches, where R
and Rg are hyper-parameters to control the trade-
offs between performance and efficiency. TAM and
SAM are incorporated into each block of the video
encoder, aggregating tokens progressively to re-
duce their number. For the i-th Transformer block,
let V € RTxLixD represents the input video fea-
ture, where T}, L;, D denote the number of frames,
the number of patches per frame, and the dimension
of the token feature, respectively. The output video

“The size of each patch is P x P, and the L patches span
the entire frame (L = HW/P?).

feature after temporal and spatial token aggrega-
tionis V' € RTi—Br)x(Li=Rs)xD requlting in a
smaller size and reducing the computing burden
for subsequent blocks. After the forward process
with M encoder blocks, the final number of visual
tokens is reduced to (T'— M Ry) x (L — M Rg).

3.2.1 Objects for Aggregation

Our video encoder based on TESTA involves two
types of tokens for aggregation: patch tokens and
frame tokens. Recall that each frame is divided into
a sequence of patches, which are treated as patch
tokens. To ensure a formally unified aggregation
algorithm, we define frame tokens as pseudo to-
kens to represent each frame by averaging all the
patch tokens within it. When merging two frame to-

kens, the corresponding L patches [p(ll), e p(Ll)]

in frame-1 and L patches [pf), e ,p(L2)] in

frame-2 are merged, resulting in L patches
(1&2) (1&2) .

Py~ 7,...,p; " ’]. As our aggregation strategy

is agnostic to the token type, we refer to both patch

tokens and frame tokens as “tokens” throughout

the rest of the paper, without loss of generality.

3.2.2 Aggregation Strategy

Recall that given a sequence of N tokens, our target
is to reduce R tokens after each aggregation opera-
tion.> To achieve this, we can greedily merge two
tokens with the highest similarity and then repeat
R times, or merge N tokens into N — R clusters us-
ing clustering algorithms such as k-means (Lloyd,
1982). However, these iteration-based methods are
not suited for parallelism and can slow down en-
coding speed (Bolya et al., 2022). Therefore, we
resort to the bipartite matching method. We first
partition the N tokens into two disjoint sets A and
B with R and N — R tokens, respectively. The R
tokens in the set A are selected elaborately as the
tokens to be reduced. For each token in the set A,
we find its most similar token from the set B, then
merge them by averaging their features. As a result,
the remaining N — R tokens in the set B form a
new sequence as the output.

For similarity calculation, we utilize the atten-
tion keys (K) of tokens as features and measure
their similarity using cosine similarity. The atten-
tion keys contain summarized information intended
for use in QKV self-attention, yielding accurate
similarity measures (Bolya et al., 2022).

>For temporal aggregation, N = T and R = Ry, for
spatial aggregation, N = L and R = Rs.
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In practice, we introduce two aggregation al-
gorithms, i.e., importance-based aggregation and
geometry-based aggregation.

Importance-based Aggregation. In this algo-
rithm, we pick out the least important R tokens
into the set A for aggregation, so as to minimize
the negative effects of token reduction. The impor-
tance of the token x; is measured by the following
score function S;, which is defined as the product
of the attention it receives from the other tokens

N .
Zj:l,j;éi Aji:

N N T

Z Aj; = Z softmax(%)ji, (L
j=1,j#i J=1,j#1i v

Si =
where A j; is the attention score from token z; to
xi, Q and K represent Queries and Keys in self-
attention, respectively.

Geometry-based Aggregation. In practice, we
notice that adjacent tokens have a larger similarity
and should be merged. However, these adjacent
tokens also have similar importance scores and
thus are prone to be grouped into the same set in
importance-based strategy, which hinders their ag-
gregation. To address this issue, we partition the N
tokens in an alternative way inspired by Bolya et al.
(2022), thus assigning adjacent tokens to different
sets A and B. As shown in the left panel in Figure 2,

for each token ng)

similar token ,IE»B)

in the set A, we find its most

from the set B to construct a pair

(xZ(A), mgB)) and record their similarity. After that,
we select R pairs with the greatest similarity and
merge the two tokens in the top-RR pairs. Finally,
we concatenate the tokens in the two sets back into
one sequence as the output.

The above aggregation algorithms are parameter-
free, and can be easily plugged into a Transformer-
based video encoder. We conduct our aggregation
during both training and testing. Although the to-
ken similarity calculation brings additional com-
puting overhead, it is negligible compared to the
efficiency gained by reducing token numbers.

3.2.3 Novelty over Token Merging

Our work is inspired by Token Merging
(ToMe) (Bolya et al., 2022), which also proposes
to reduce video tokens by merging similar ones.
However, we differentiate ourselves from ToMe in
two significant ways:

Video Token Definition. ToMe uses joint space-
time tokens (2 x 16 x 16 cubes), while our TESTA
defines frame tokens (representing entire frames)
and patch tokens (16 x 16 2D patches) for decou-
pled aggregation. This tailored token design is
more efficient for modeling long-form videos.

Aggregation Method. ToMe performs global ag-
gregation over all tokens, resulting in a complexity
of O((%%%)Q). This becomes impractical for
long-form video and causes out-of-memory issues
beyond 16 frames. In contrast, TESTA uses divided
aggregation in time and space, reducing complexity
to O(T? + (%%)2). This allows efficient encod-
ing of much longer videos (more than 128 frames
under the same computation quota). The divided
scheme also better captures spatial and temporal
semantics, resulting in improved performance on
long-form video understanding tasks (to be shown

in § 4.7).

3.3 Pre-training Objectives

We use the following three classic pre-training ob-
jectives, i.e., video-text contrastive loss, video-text
matching loss, and captioning loss. Please refer to
Appendix A for more details.

4 Experiments

4.1 Implementation Details

To pre-train our TESTA model, we start by
initializing it with the BLIP (12-layer ViT-B/16)
checkpoint (Li et al., 2022), with the exception
of the temporal attention, which is copied from
the spatial attention weights. We use around 5SM
image-text and video-text pairs from two datasets
for pre-training. See Appendix A for more details.

For downstream fine-tuning, we uniformly sam-
ple either 32 or 96 frames, each with a resolution
of 224 x 224 pixels (196 patches per frame with a
patch size of 16). To achieve approximately a 50%
reduction in computation cost, we employ differ-
ent hyper-parameters for aggregation. Specifically,
for 96-frame inputs, we set Ry to 4 and Rg to
8, while for 32-frame inputs, Ry is 1 and Rg is
12. We use geometry-based aggregation by default
since it achieves better performance. Please refer
to Appendix B for more fine-tuning details.

4.2 Downstream Task Setups

We finetune and evaluate TESTA on two down-
stream tasks of paragraph-to-video retrieval and
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QuerYD Condensed Movie
Method #PTData  #F GFLOP:
etho s whrame S} R@if R@5T R@I0T | R@IT R@5T R@I0T

MOoEE (Miech et al., 2018) ) ) S o116 30.2 432 1.9 7.8 13.4
TeachText (Croitoru et al., 2021) ; ; S| 144 37.7 50.9 12.1 27.4 37.5
Frozen (Bain et al., 2021) 5M 32 1424 | 538 75.7 82.7 ; . ;
LE-VILA (Sun et al., 2022) 8M 32 298 | 697 85.7 90.3 13.6 325 418
VINDLU 1 (Cheng et al., 2022) 25M 32 745 | 678 86.3 81.8 18.4 36.4 443
TESTA (Ours) 5M 32 420 | 770 913 94.6 215 424 50.7
TESTA (Ours) 5M 96 1381 | 834 93.8 95.3 24.9 46.5 55.1

Table 1: Paragraph-to-video retrieval performance (Recall@k) on QuerYD and Condensed Movie. #PT Data refers
to the number of video-text pairs used for pre-training. t indicates the results of our re-implementation. TESTA
w/o agg. denotes fine-tuning our pre-trained model without activating the token aggregation modules, resulting in
no reduction in token number. This serves as an upper bound for TESTA’s performance.

DiDeMo ActivityNet Caption

Method #PT Data  #Frame  GFLOPs | R@IT R@5T R@I0T | R@IT R@5T R@I0OT
TeachText (Croitoru et al., 2021) - - - 21.6 48.6 62.9 23.5 57.2 -
ClipBERT (Lei et al., 2021) 0.2M 2 13 20.4 48.0 60.8 21.3 49.0 63.5
Frozen (Bain et al., 2021) M 4 178 31.0 59.8 72.4 - - -
LF-VILA (Sun et al., 2022) 8M 32 298 35.0 64.5 75.8 35.3 65.4 -
ALPRO (Li et al., 2021a) M 8 197 359 67.5 78.8 - - -
BridgeFormer (Ge et al., 2022) M 4 71 37.0 62.2 73.9 - - -
Singularity (Lei et al., 2022) M 32 589 47.4 75.2 84.0 43.0 70.6 81.3
HiTeA (Ye et al., 2022) M 12 98 51.8 79.1 85.3 45.1 73.5 84.2
VINDLU (Cheng et al., 2022) M 4 93 54.6 81.3 89.0 51.1 79.2 88.4

Wang et al.., 2022a

Luo et al., 2021

Ma et al., 2022

Xue et al., 2022
TESTA (Ours) M 32 420 57.7 83.3 89.4 51.7 79.1 87.6
TESTA (Ours) M 96 1381 59.2 83.5 89.8 53.7 79.9 88.9

Table 2: Paragraph-to-video retrieval performance on DiDeMo and ActivityNet Caption. We gray out methods that
use significantly more pre-training data for a fair comparison. The other notations are the same as those on Table 1.

Method #PT Data  Accuracy (%)
LF-VILA (Sun et al., 2022) 8M 39.9
Singularity (Lei et al., 2022) M 41.8
Fu et al., 2021
Yang et al., 2020
Zellers et al., 2021
TESTA (Ours) M 45.0

Table 3: Accuracy (%) on ActivityNet-QA.

long-form VideoQA. For paragraph-to-video re-
trieval, we use four datasets: DiDeMo (Hendricks
etal., 2017), QuerYD (Oncescu et al., 2020), Ac-
tivityNet Captions (Krishna et al., 2017), and Con-
densed Movie (Bain et al., 2020). For long-form
VideoQA, we use ActivityNet-QA (Yu et al., 2019).
The details of these datasets are shown in Ap-
pendix C.

4.3 Paragraph-to-Video Retrieval

Table 1 demonstrates the performance of TESTA
on two challenging and under-explored paragraph-
to-video retrieval datasets, QuerYD and Condensed
Movie, which involve videos with lengthy dura-
tions (over 200 seconds on average). For 32-frame
video inputs, TESTA achieves Recall@1 of 77.0
on QuerYD and 21.5 on Condensed Movie, sur-
passing previous SOTA methods by 7.3 and 3.1,
respectively. In terms of computational complex-
ity, TESTA exhibits a significantly lower GFLOPs
of 420 compared to Frozen (Bain et al., 2021)
and VINDLU (Cheng et al., 2022). While LF-
VILA (Sun et al., 2022) operates with even fewer
GFLOPs (298), it necessitates feature aggregation
within a fixed local window, which can potentially
undermine semantic integrity after concentration.
In contrast, our model enables the adaptive merg-
ing of features with high similarity in the global
scope, resulting in improved performance (47.6
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QuerYD

DiDeMo

ActivityNet Caption

Method #PTData GFLOPs | | G5 R@57 R@I0T |R@IT R@51 R@I0T|R@IT R@5T R@IOT
Luo et al., 2021

BLIP (Li et al., 2022) 129M 707 | 507 676 735 | 609 849 910 | 342 600 707

TESTA (Ours) 5M 786 | 644 829 869 | 649 887 918 | 371 637 754

Table 4: Zero-shot evaluation (32 frames) on paragraph-to-video retrieval performance.

TESTA R@l11 R@51 R@I10T Avg. T GFLOPs| Memory (GB)|
No Aggregation 84.2 93.8 95.1 91.0 2382.5 19.2
(1) Token Aggregation v.s. Token Pruning (w/o training for both)
Token Pruning (R = 4, Rg = 8) 71.0 86.1 90.6 82.6 1380.9 12.6
Token Aggregation (R = 4, Rg = 8) 79.2 91.8 95.3 88.8 1381.4 12.6
(2) Aggregation Strategy
Importance-based Aggregation 80.2 91.7 94.6 88.9 1380.9 13.7
Geometry-based Aggregation 83.4 93.8 95.3 90.8 1381.4 12.6
(3) Aggregation dimension
Only temporal (R = 7) 79.5 92.9 95.4 89.3 1303.9 11.5
Only spatial (Rg = 14) 81.4 93.3 95.1 89.9 1364.0 11.9
Both temporal and spatial (R = 4, Rg = 8) 83.4 93.8 95.3 90.8 1381.4 12.6

Table 5: Ablation study on (1) token reduction method, (2) aggregation strategy, and (3) aggregation dimension.
The results are reported on QuerYD with 96 frames. Avg. represents average recall across R@1, R@5, and R@10.

R@1 on average compared to LF-VILA).

Given the importance of incorporating more in-
put frames for long video understanding tasks, we
finetune TESTA using 96-frame inputs and further
promote R@1 to 83.4 on QuerYD and 24.9 on Con-
densed Movie. This exhibits strong scalability of
our model (see Appendix D for a detailed analy-
sis). Additionally, we report the results of TESTA
without token aggregation, which serves as an up-
per bound for TESTA’s performance. Although
preserving full visual tokens yields higher recall,
it requires 1.8 times more GLFOPs compared to
TESTA. As the number of input frames increases
from 32 to 96, the GFLOPs of TESTA w/o agg.
exceed 2300, but the performance gain diminishes
(only +0.8 R@1 on QuerYD). This indicates the
superiority of our method in aggregating redundant
tokens in long sequence inputs.

Table 2 demonstrates model performance on
DiDeMo and ActivityNet Caption, which consist
of shorter videos (~100 seconds on average) and
are considered less challenging. For 32-frame
inputs, TESTA with 5SM pre-training data achieves
57.7 R@1 on DiDeMo, which even surpasses
the models pre-trained with over 100M data. By
increasing the number of frames to 96, TESTA
achieves R@1 of 59.2 on DiDeMo and 53.7
on ActivityNet, outperforming previous SOTA
methods by 2.7 and 2.6, respectively.

4.4 Long-Form Video Question-Answering

Table 3 showcases the performance of TESTA on
ActivityNet-QA (using 96-frame). The accuracy
of TESTA is 45.0%, which is 3.2% higher than the
previous SOTA, Singularity (Lei et al., 2022). This
demonstrates that our method eliminates redundant
information while integrating crucial visual cues to
accurately answer the posed questions.

4.5 Zero-shot Generalizability

In Table 4, we show the zero-shot performance
of pre-trained CLIP4clip, BLIP, and TESTA on
three datasets (32 frames). Although our TESTA is
initialized by the BLIP checkpoint, it consistently
outperforms BLIP (as well as CLIP4clip) after our
pre-training, achieving average improvements of
+14.1, +2.9, and +3.8 on QuerYD, DiDeMo, and
ActivityNet respectively. This indicates our sub-
stantial gains on long-form video datasets are not
solely due to the strong BLIP checkpoint, but also
owing to our temporal modeling and pre-training
on video data.

4.6 Ablation Study

We perform an extensive ablation study and analy-
sis on various crucial components in our aggrega-
tion algorithm to examine their impacts.

Token Aggregation v.s. Token Pruning. We
first compare the performance and efficiency of
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Figure 3: Visualization of our temporal and spatial aggregation. Frames that are enclosed within the same red
rectangle, as well as patches that share the same inner and border color, are merged together.

token aggregation and token pruning (Rao et al.,
2021). Regarding pruning, we calculate the im-
portance score (Eq. (1)) for each token and prune
the least important 12 tokens following previous
methods (Goyal et al., 2020). We finetune our
pre-trained model on QuerYD without token aggre-
gation, then apply token aggregation and pruning
in an off-the-shelf manner for test evaluation. The
results are presented in the first block of Table 5. In
comparison to the vanilla model (no aggregation),
both pruning and aggregation decrease computa-
tion costs, with only 58% GFLOPs and 66% GPU
memory. However, the performance degradation
of our token aggregation is much smaller than that
of pruning (—2.2 v.s. —8.4 in terms of average re-
call), suggesting that aggregation better preserves
the valuable visual semantics within videos.

Ablation on the Aggregation Strategy. To in-
vestigate the effectiveness of different aggregation
strategies, we report the performance of TESTA
using importance-based and geometry-based aggre-
gation methods. The results in the middle block
of Table 5 show that the simplest geometry-based
aggregation method achieves the best Recall@1 of
83.4, outperforming the other method by 3.2. This
confirms our hypothesis that adjacent tokens ex-
hibit greater similarity and should be assigned to
separate sets for aggregation.

Ablation on the Aggregation Dimension. We
compare the performance of three aggregation
methods: (1) temporal only, (2) spatial only, and
(3) both temporal and spatial. To ensure a roughly
equal computational overhead, we adjust Rg and
Rz accordingly. The results in the bottom block of
Table 5 show that performing token aggregation on

a single dimension leads to excessive dilution of
information, while the information in other dimen-
sions becomes overly redundant. This imbalance
hurts the performance of the model. Therefore,
our approach, with incorporates both temporal and
spatial aggregation, achieves the best outcomes.

Additionally, Appendix E discusses the impact
of the number of reduced tokens R and Rg. Ap-
pendix F analyzes the properties of aggregated to-
kens by probing their similarity.

S2: walks up to a little girl then walks away.

Figure 4: Text grounding visualization. Fi denotes the
i" frame in the video and Si denotes the 7*" sentence
in the caption. We calculate the similarity between the
phrase query (in orange) and each region formed by our
aggregation, then record the value in the region. The
phrase queries can be grounded to their corresponding
aggregated regions, achieving the highest similarity.
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Method GFLOPs | R@l1{1 R@571 R@I107
ToMe 252 59.9 82.2 88.6
TESTA 228 62.4 85.6 91.1
ToMe w/o agg. 450 66.1 86.4 90.4
TESTA w/o agg. 392 75.0 91.1 93.8

Table 6: Paragraph-to-video retrieval performance
(Recall@k) on QuerYD (16 frames). w/o agg. de-
notes fine-tuning without token aggregation; the only
distinction lies in the attention mechanism, where ToMe
employs global attention, while TESTA utilizes separate
spatial-temporal attention.

4.7 Comparison to Token Merging

We directly compare the performance of
ToMe (Bolya et al., 2022) and TESTA by ini-
tializing both models from the BLIP pre-trained
checkpoint and fine-tuning them on QuerYD.
As we noted in § 3.2.3, due to the extremely
high computational complexity of ToMe’s global
attention, increasing the number of input frames
can lead to out-of-memory issues without token
aggregation (w/o agg.). Therefore, we limit the
number of input frames to 16. Besides, We set
the hyperparameter R (number of reduced tokens)
to ensure matched GFLOPs. Specifically, for
ToMe, R = 197, while for TESTA, R = 1 and
Rg = 2. The results in Table 6 illustrate TESTA’s
efficiency and effectiveness for long-form video
understanding, which can be attributed to our tai-
lored design for divided spatial-temporal modeling.
In comparison to ToMe, our approach achieves
higher recall with fewer GFLOPs, regardless of
whether token aggregation is applied.

4.8 Visualization

Figure 3 provides a visualization of temporal and
spatial aggregation on the DiDeMo dataset. TESTA
effectively aggregates tokens with highly-similar
semantics, demonstrating its strong interpretability.
From a temporal perspective, TESTA aggregates
a sequence of frames captured during continuous
lens movement (first 3 frames). It also condenses
similar frames of athletes waiting for the game (last
3 frames). From a spatial perspective, TESTA
merges the patches belonging to the same scenes
(e.g., sky, baseball park) and the same objects (e.g.,
billboard, back of the audience’s head). More ex-
amples can be found in Appendix G.

In Figure 4, we further show that TESTA enables
grounding of language to the aggregated visual to-

kens (Ren et al., 2023b,a). Given the phrase query
in the caption, it achieves the highest similarity of
its oracle region formed by our aggregation, facili-
tating fine-grained alignment between phrases and
regions.

5 Conclusion

In this paper, we present TESTA, an efficient
method for long-form video-language understand-
ing. By aggregating similar frames and patches,
TESTA effectively condenses video semantics and
accelerates video encoding. Experimental results
on paragraph-to-video retrieval and VideoQA tasks
demonstrate that TESTA outperforms previous
SOTA methods by a considerable margin.

Limitations

To facilitate future research, we analyze the lim-
itations and possible solutions in our work. (1)
Due to limited computing resources, we do not use
long-form video pre-training datasets such as HD-
VILA (Xue et al., 2021) or incorporate TESTA in
pre-training. We believe long video pre-training
with TESTA could greatly improve pre-training ef-
ficiency and obtain a video-language model with
better performance. (2) For aggregation efficiency,
we only use video-side features to merge visual
tokens. We believe that leveraging text signals for
aggregation could make the final encoded features
more suitable for downstream tasks. (3) Our model
training only uses coarse objectives such as VTC,
VTM, and CAP (Eq. (2)-(4)) on video-text pairs.
Considering TESTA can aggregate tokens into ob-
jects, scenes, events, etc., training with fine-grained
alignment functions (Ren et al., 2021; Wang et al.,
2022c) could help some tasks like action local-
ization and video object detection (Zhukov et al.,
2019; Real et al., 2017), on which we will perform
more explorations in future work.
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A Pre-training Details

A.1 Pre-training Datasets.

We perform pre-training on two datasets: WebVid-
2M (Bain et al., 2021) containing 2.5M video-text
pairs and Conceptual Captions (CC3M) (Chang-
pinyo et al., 2021) consisting of 3M image-text
pairs. We include CC3M to improve spatial rep-
resentations of videos as suggested by Li et al.
(2021a). We duplicate images from CC3M for 8
times to make static videos. For WebVid-2M, we
randomly sample 8 frames for each video instance.
Because a small fraction of video and image URLs
from the original datasets are no longer available,
the total number of pre-training samples is around
5SM. In the pre-training phase, we do not perform
token aggregation since the number of frames in
the pre-training video data is relatively small.

A.2 Detailed Pre-training Objectives.

We use the following three classic pre-training ob-
jectives.

Video-Text Contrastive Loss. Given a batch of
B video-text pairs, the contrastive objective aims
to pull together the paired videos and texts while
pushing apart the others with dissimilar semantics
in the feature space. Let v; and t; represent the
[CLS] feature of the video and text, respectively.
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Dataset Domain  #Video-Text Pairs  Avg. Len (sec) TextLen Duration (h)
WebVid-2.5M (Bain et al., 2021) open 2.5M 18.0 12.0 13K
QuerYD (Oncescu et al., 2020) open 2K 278.0 243.8 200
Condensed Movie (Bain et al., 2020) movie 34K 132.0 18.0 1.3K
DiDeMo (Hendricks et al., 2017) Flickr 10K 28.0 29.2 87
ActivityNet Captions (Krishna et al., 2017)  action 20K 180.0 48.3 849
ActivityNet QA (Yu et al., 2019) action 5K 117.0 8.9 976

Table 7: Statistics of video-language datasets.

The video-to-text contrastive loss Lyor is:

B
Lyor = — Z

where 7 is a learnable temperature parameter. Sim-
ilarly, the text-to-video contrastive loss Loy is:
exp(t] vi/T)

fT g Z B, exp(t; v, /7)

The video-text contrastive loss is defined as:

eXp (v ti/7)
>ojexp(vit;/7)’

Lyrc = %(£V2T + Lrav). (2)
In the implementation Ly ¢, the negative sample
features are extracted from a queue of recent sam-
ples encoded by a momentum encoder (He et al.,
2020). Moreover, a momentum distillation regular-
ization loss (Li et al., 2021b) is added to Ly ¢ for
the sake of the potential positives in the negative
pairs.

Video-Text Matching Loss. Video-text matching
aims to predict whether a pair of video and text
is matched or not. For the i-th video-text pair,
we first obtain their joint video-text embedding
of the [ENC] token from the video-grounded text
encoder. We then use this embedding to generate
a two-class probability p;, and calculate the video-
text matching loss Ly as:

Lytm =

1 B
52 CEip). O
=1

Here y; is a one-hot vector representing the ground-
truth label, and CE(-, -) is the cross-entropy loss. In
the implementation of Ly, we apply online con-
trastive hard negative mining (Li et al., 2021b). We
refer readers to the ALBEF paper (Li et al., 2021b)
for a comprehensive introduction to momentum
distillation and online contrastive hard negative
mining.

Captioning Loss. This objective activates the
video-grounded text decoder to predict the precise
tokenized caption c in an autoregressive way:

M
Loap ==Y logP(ci|cai, V), (4
=1

where M is the text length. Combining Eq. (2)-(4),
the overall objective can be formulated as:

L = Lytc + Lyvt™m + Lcap. )

A.3 Hyperparameters.

The model is pre-trained for 5 epochs with the
Adam (Kingma and Ba, 2015) with a weight decay
of 5e-2. The batch size is 384 and the momentum
queue size is 57600. The pre-training is conducted
on four nodes with 32 NVIDIA V100 GPUs (32
GB memory per GPU) in total and each epoch
lasts around 6 hours. The learning rate is linearly
warmed up from 1e-6 to Se-6 in the first 5000 steps
and then gradually cosine decayed to 5e-7 in the
remaining steps. Temporally consistent random
spatial augmentation (Qian et al., 2021) is applied
and mixed precision is used for efficient training.

B Fine-tuning Details

The downstream fine-tuning is conducted on 8
NVIDIA V100 GPUs. The learning rate is le-5
with a warmup ratio of 0.1. The batch size is 16 and
the momentum queue size is 32. We fine-tune our
model for 10 epochs with the Adam optimizer and
a weight decay of 0.05. For paragraph-to-video re-
trieval, we use Lyrc and Ly as training objec-
tives. For evaluating paragraph-to-video retrieval
models, we select the top 128 candidates based on
the video-text feature similarity and then rerank the
selected candidates by their pairwise VITM scores.
For video-QA, we use the cross-entropy loss for
maximizing the generation probability of the cor-
rect answer and rank the candidates by their gener-
ation probabilities for evaluation.
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C Downstream Datasets

We finetune and evaluate TESTA on two down-
stream tasks of paragraph-to-video retrieval and
long-form VideoQA. The details of these datasets
are shown in Table 7.

For paragraph-to-video retrieval, we use 4
datasets of DiDeMo (Hendricks et al., 2017),
QuerYD (Oncescu et al., 2020), ActivityNet Cap-
tions (Krishna et al., 2017), and Condensed
Movie (Bain et al., 2020). We evaluate text-to-
video retrieval, where the text acts as the query, in
terms of R@FK, which means the recall (%) of the
target video through K retrieval efforts.

For long-form VideoQA, we use ActivityNet-
QA (Yuet al., 2019). The metric is accuracy (%).
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Figure 5: Comparison of GFLOPs and Recall@1 on the
QuerYD dataset. nF denotes using n input frames for
fine-tuning and evaluation. The curve of our TESTA is
located in the upper left corner, indicating that our model
achieves a better performance-cost tradeoff compared
to other pre-trained models.

D Recall-GFLOPs Tradeoff of Various
Pre-trained Models

In Figure 7, we analyze the tradeoff between re-
call and GFLOPs for various pre-trained models.
The curve of our TESTA is located in the upper
left corner, indicating that our model achieves a su-
perior Recall-GFLOPs tradeoff compared to other
pre-trained models.

Furthermore, Figure 7 presents the model per-
formance with different input frames. Surprisingly,
increasing the number of input frames from 32 to
96 has minimal impact on the performance of Sin-
gularity (Lei et al., 2022) and Frozen (Bain et al.,
2021), and even slightly reduced the recall of AL-
PRO (Li et al., 2021a) and VINDLU (Cheng et al.,
2022). In contrast, our TESTA exhibits linear im-
provement in performance with the number of input
frames, demonstrating superior scalability.

E Ablation on the Number of Reduced
Tokens

In our TESTA (§ 3.2), R and Rg specify the num-
ber of tokens to be reduced for the temporal and
spatial aggregation module, separately. To investi-
gate the influence of these two hyper-parameters,
we vary the number of R and Rg, then report the
average GFLOPs (blue bars) and recall (red star)
on the QuerYD dataset. Figure 6 illustrates the
results. On one hand, GFLOPs decrease linearly as
R® increases, indicating that increasing the reduced
token number can improve the efficiency of video
encoding. On the other hand, merging too many
tokens with large R (e.g., R = 10) will lose se-
mantic information in the final encoded video repre-
sentation, thus leading to a declined average recall.

We evaluate more cases with various Ry and Rg
configurations, and plot the GFLOPs-Recall trade-
off in Figure 7. Based on these results and analysis,
we determined the default configuration for our
TESTA, i.e., Rt = 4 & Rg = 8 and for 96-frame
inputs, and R = 1 & Rg = 12 for 32-frame
inputs. This configuration helps our model achieve
approximately a 50% reduction in computation
cost without significant performance decline.

F Token Similarity Analysis

We probe the properties of the aggregated tokens
by analyzing their similarity. In Figure 8, we count
the average similarity between tokens from differ-
ent blocks, different dimensions (frame tokens or
patch tokens), and different aggregation results (ag-
gregated or disaggregated).

For patch tokens (in orange), the overall similar-
ity between them is large (higher than 0.5), indicat-
ing considerable spatial redundancy. Meanwhile,
the aggregated patch tokens (in dark orange) have
a very high similarity of 0.96, which ensures the
semantic purity of the aggregated patch tokens.

Here we use R to refer to Ry or Rs for brevity.

945



2400 2400 1

22004 [7] L 2200

°
8

2t ]

©

8

&

2000 2000

®
&

1800

GFlops
GFlops

[
o ®
o o
s o
@
©
i

1600 1

1400 1 1400 r89.0
1200 4 H 1200 [ 88.5
T T T T T T T T 1000 T T T T T T 88.0

1000
1 2 3 4 5 6 71 8 2 4 6 8 10 12
Rt Rs

&
Avg. Recall

Avg. Recall

@
®

®
N}
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Figure 7: GFLOPs-Recall tradeoff on
QuerYD. We record the performance
(dots) of TESTA with various Rp-
Rg configurations, and plot the trends
(curve) by fitting the dots.
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indicates frame tokens while the color indicates patch tokens. For those tokens finally being aggregated, we

plot their similarity in a dark color.

While for frame tokens (in blue), their simi-
larity decreases as the number of blocks increases,
which may yield aggregated frames with mixed
and diverse semantics. Nevertheless, recall that our
frame token is a pseudo token (§ 3.2.1) obtained
by averaging patch features, which does not elab-
orately model frame semantics. Therefore, com-
pared to patch tokens, the representation of frame
token and their similarity measure needs improve-
ment, which we regard as future work.

G More Visualization of Aggregation

In this section, we provide more qualitative results
of our TESTA for video-language understanding.
Figure 9 shows another 4 case on the DiDeMo
dataset. TESTA effectively aggregates tokens with
highly-similar semantics, demonstrating its strong
interpretability.
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Figure 9: More visualizations of our aggregation on DiDeMo. Frames that are enclosed within the same rectangle,
as well as patches that share the same inner and border color, are merged together.
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