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Abstract

Synthesizing inductive loop invariants is fun-
damental to automating program verification.
In this work, we observe that Large Language
Models (such as gpt-3.5 or gpt-4) are capa-
ble of synthesizing loop invariants for a class of
programs in a 0-shot setting, yet require several
samples to generate the correct invariants. This
can lead to a large number of calls to a program
verifier to establish an invariant. To address this
issue, we propose a re-ranking approach for the
generated results of LLMs. We have designed
a ranker that can distinguish between correct in-
ductive invariants and incorrect attempts based
on the problem definition. The ranker is op-
timized as a contrastive ranker. Experimental
results demonstrate that this re-ranking mecha-
nism significantly improves the ranking of cor-
rect invariants among the generated candidates,
leading to a notable reduction in the number of
calls to a verifier.

1 Introduction

Program verification is a crucial step toward build-
ing trustworthy software. Unfortunately, the prob-
lem of verifying properties of programs contain-
ing loops is undecidable. Verifying properties of
programs containing loops boils down to inferring
loop invariants, which are facts that hold for any
iteration of the loop, and also ensure the desired
property. There is a rich body of prior work on syn-
thesizing loop invariants for program verification
through symbolic techniques (Cousot and Cousot,
1977; Colón et al., 2003; Graf and Saïdi, 1997;
McMillan, 2003), and their use in verifying safety
properties of real-world programs (Ball et al., 2001;
Blanchet et al., 2003; Lahiri et al., 2009). More re-
cently, there is a growing interest in the application
of machine learning towards invariant synthesis
(Garg et al., 2016; Padhi et al., 2016; Yao et al.,
2020; Si et al., 2018).

In recent years, Large Language Models
(LLMs) (Radford et al., 2018) have emerged as

foundational AI models that have revolutionized
Language Processing applications. Though LLMs
were originally proposed for natural languages,
they have exhibited great success in formal lan-
guages such as programming languages (Chen
et al., 2021). In fact, with the increased size, mod-
els have started to exhibit emergent properties. For
example, modern LLMs such as gpt-3.5 (Ouyang
et al., 2022), gpt-4 (OpenAI, 2023), PaLM (Chowd-
hery et al., 2022) are capable of reasoning about a
given task with few-shot (Brown et al., 2020), or
even zero-shot prompting (Kojima et al., 2022).
Such an impressive footprint of LLM naturally
raises the question: How well can LLMs automati-
cally synthesize inductive loop invariants?

To this end, we employ two different state-of-the-
art LLMs for synthesizing loop invariants. We ob-
serve that these models can generate well-formed
invariants, but finding the correct one often re-
quires a large number of samples. A solution
based on guess and check, with the aid of an au-
tomated program verifier based on Z3 (De Moura
and Bjørner, 2008), can be computationally very
expensive due to several invocations on incorrect
invariants. To minimize such costs, we propose
reranking the generated invariants based on their
likelihood of successful verification. Inspired by
the use of contrastive learning in information re-
trieval (Karpukhin et al., 2020), our approach,
called iRank, transforms the problem and invariants
to bring the correct solution closer in vector space
while pushing away incorrect ones. Empirical re-
sults show that such re-ranking moves the median
rank of the verified invariant to 4 in contrast to the
expected median rank of 31 for the generations
from gpt-3.5.

In summary, in this paper, we propose to rerank
the LLM-generated loop invariants to reduce the
cost of wasted verification effort. We have de-
signed a ranker to contrast correct and incorrect
invariants and show a significant reduction in the
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invariant checking effort compared to raw LLM
generations.

2 Related Work

Prior works on loop invariant generation can be
broadly grouped into symbolic or machine learn-
ing based. Symbolic approaches either construct
invariants that are correct by construction (Cousot
and Cousot, 1977; Colón et al., 2003), or leverage
Satisfiability-Modulo-Theories (SMT) solvers such
as Z3 (De Moura and Bjørner, 2008) to enumer-
ate and check candidate invariants over a space
of pre-defined predicates (Flanagan and Leino,
2001; Flanagan and Qadeer, 2002; Lahiri and
Bryant, 2007; Gulwani et al., 2009; Fedyukovich
and Bodík, 2018) or predicates constructed through
variants of Craig’s interpolants (McMillan, 2003;
Henzinger et al., 2004; Dillig et al., 2013). On
the other hand, recent techniques leverage machine
learning to synthesize candidate invariants that are
checked for correctness using an SMT-based pro-
gram verifier. Techniques range from incorporating
the feedback from a verifier using active learning
over decision trees (Garg et al., 2016), learning
from counter examples (Sharma and Aiken, 2016;
Padhi et al., 2016), reinforcement learning over
graph neural networks (Si et al., 2018) and the
use of continuous logic networks (Yao et al., 2020;
Ryan et al., 2020). Unlike these techniques, our ap-
proach leverages an LLM for generation and ranks
using a purely neural model and does not require
a program verifier at the inference time. This is
important for scenarios where the verifier is semi-
automated, as is the case of most real-world pro-
gram verification tools such as Dafny (Leino, 2010)
and F* (Swamy et al., 2011). Finally, Pei et al.
(2023) predict program invariants using LLMs, but
they do not aim at generating inductive invariants
that are sufficient for formal program verification.

3 Background & Motivation

3.1 Background: Loop Invariant Inference

In this section, we recall the problem of loop in-
variant generation in program verification. First,
let us define a grammar for program statements S,
integral expressions a and Boolean expressions b,
operating on scalar variables. Most statements and
expressions are self-explanatory.

S ::= x := a | skip | S;S | if b then S else S
a ::= n | x | a+ a | a− a | a ∗ a | . . .
b ::= true | false | a = a | a < a | b ∧ b | b ∨ b | ¬b

In its simplest form, the goal of program verifica-
tion is to verify that a program fragment satisfies its
specifications denoted by the Hoare-triple (Hoare,
1969) - {pre} while b do S {post}. Given a pro-
gram p and a pair of Boolean expressions (denoted
by b in the grammar) ϕ and ψ denoting the precon-
dition and postcondition of a program p, the Hoare-
triple {ϕ} p {ψ} denotes that every terminating
execution of p that starts in an pre-state satisfying
the predicate ϕ ends up in a post-state that satisfies
the predicate ψ. Since loops can execute an un-
bounded number of iterations, verifying programs
with a loop requires a loop invariant i that satisfies
the following conditions:

{pre} skip {i}
{i ∧ b} S {i}

{i ∧ ¬b} skip {post}
(1)

The conditions respectively denote that the loop
invariant i holds on loop-entry, is preserved by an
arbitrary iteration of the loop and implies the post
condition on exit. The problem of loop invariant
inference is to infer an i that satisfies the three
checks above, and denoted as i ⊢ p.

Furthermore, for the loop-free statements S in
the grammar above, checking the Hoare-triple
{ψ} S {ϕ} can be reduced to (decidable) logi-
cal formulas in the Satisfiability-Modulo-Theories
(SMT) using standard techniques in program ver-
ification (Leino, 2010). One can use a predicate
transformer called weakest precondition WP to con-
vert the Hoare-triple to a decidable SMT formula
that can be checked by Z3.

ψ =⇒ WP(S, ϕ)
{ψ} S {ϕ}

The WP is defined inductively on the structure
of statements as follows:

WP(x := a, ϕ)
.
= ϕ[a/x]

WP(skip, ϕ) .
= ϕ

WP(S1;S2, ϕ)
.
= WP(S1,WP(S2, ϕ))

WP(if b then S1 else S2, ϕ)
.
=

∧ (b =⇒ WP(S1, ϕ))

(¬b =⇒ WP(S2, ϕ))

3.2 Motivation and Problem Formulations
Given a problem definition p that consists of pre-
conditions pre, a loop while b do S, and postcon-
ditions post, we can query LLMs to generate an
invariant i that satisfies the conditions specified
in Equation (1). Although we have observed that
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Figure 1: LLM for Loop Invariant synthesis.

LLMs are capable of producing loop invariants
without syntax errors, they often require numerous
samples before generating a correct invariant (we
refer to Appendix B for a details). This results in in-
efficient resource utilization during the verification
process, particularly when dealing with complex
problem instances. More importantly, for a more
practical scenario where generated invariants are
used as part of an interactive verification system
such as Dafny/F*, an incorrect invariant would take
up valuable user time to perform a manual failed
verification effort. Consequently, we propose the
utilization of iRank to prioritize the generated in-
variants based on their likelihood of being correct.
Figure 1 provides a high-level overview of the en-
visioned invariant generation-ranking system.

4 iRank: Methodology

The main intuition behind iRank is learning to pull
the likely correct invariants to the front of a ranked
list. Figure 1 shows a high-level overview of the
ranker. We rely on a dataset, D = {(p, I+, I−)},
containing Loop Invariant generation problem, p, a
set of verified loop invariants, I+ = {i+ | i+ ⊢
p}, and a set of wrong loop invariant, I− =
{i− | i− ⊬ p} for each of the problems, to
build iRank. Our goal is to learn a function be-
tween a problem definition p and invariant i, i.e.,
σ(p, i), which should satisfy the following con-
straint ∀{i+,i−} (σ(p, i

+) > σ(p, i−)).
Contrastive Ranking. To learn σ, we first ex-

tract the embedding of problem definitions and the
invariants with an embedder, Φ, i.e., x = Φ(p),
and y = Φ(i), where x and y are the embeddings
of problem definition p, and invariant i, respec-
tively. We learn a transformation function, Ψ(x|θ),
which applies non-linear transformation on input
vector x with learnable parameter θ. We then trans-
form problem embedding x to x′ = Ψ(x|θ), and
transform invariant embedding y to y′ = Ψ(y|θ).
Now our target is to maximize the similarity be-
tween x′ and y′, when y′ corresponds to a cor-
rect invariant, minimize the similarity otherwise.
We use the absolute cosine similarity as the mea-
surement. Use of such allows us to set the max-
imum similarity to 1 (in the case of correct in-
variant) and the minimum to 0 (in the case of
wrong invariant). We optimize the mean squared
error loss to learn the parameters in Ψ. We ex-
perimented with two different embedding models
based on LLMs, i.e.,text-embedding-ada-002
and davinci-similarity. Appendix A presents
further details of iRank’s working procedure.

5 Experimental Design and Results

5.1 Experimental Setup

Benchmarks. We use Loop Invariant Synthesis
benchmarks assimilated by Padhi et al. (2016) 1

constituting a set 940 challenge problems in Sy-

1https://github.com/SaswatPadhi/LoopInvGen/
tree/master/benchmarks
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Gus (Alur et al., 2013) format, with a SMT for-
mula for the pre-condition, post-condition, and the
transfer-function for the loop. We chose a SMT
representation for our problem description p to be
agnostic to different encoding of C programs into
logic. Among these problems, 541 were in the
scope of LLM due to the context window size. We
set the maximum context size as 4096 (with 3584
for prompt, 512 for generation).
Gathering LLM-generated Invariants. We con-
ducted experiments involving two distinct language
models: gpt-3.5-turbo and gpt-4. Our objec-
tive was to assess the capabilities of these language
models out-of-the-box, and thus we employed a
zero-shot prompting approach. This involved pro-
viding a problem description and an appropriate
task explanation as a prompt (refer to Appendix C
for an example). For each problem, we allowed
both the models to generate invariants for a maxi-
mum duration of 10 minutes or until a verified in-
variant was found, whichever occurred first, result-
ing in solving 250 problems by gpt-3.5-turbo,
and 188 problems for gpt-42. It is important to
clarify that the purpose of this paper is not to con-
duct a comparative analysis of these language mod-
els in relation to this specific problem. Instead,
our objective is to propose a method to orthogo-
nally augment LLM capabilities by reranking LLM
generated invariants.
Training Data. We create the training dataset for
iRank (D = {(p, I+, I−)}) by combining invari-
ants generated from different sources, such as dif-
ferent generations from LLMs, and invariants gen-
erated by LoopInvGen (Padhi et al., 2017). We
divided the problems into five folds and trained 5
different rankers, one for each fold. During the
evaluation, we select and load the trained model
based on the problem under evaluation. Detailed
statistics of data is available in Appendix A.3.
Evaluation Metric. We then sequentially attempt
to check invariants from a ranked list. We evaluate
three metrics – (i) i+ ranks - rank of the correct
invariant in the list, (ii) V@K - the percentage of
problems where the verified invariant is found in
top K invariants from the re-ranked list, and (iii)
Number of Z3 calls - the total number of z3 calls
before finding and reporting a correct invariant, a
higher number of z3 calls indicate a high waste of
computational resources.

2Note that the rate limit for gpt-4 was an order lower than
gpt-3.5 in our usage resulting in an order less samples.

Experiment i+ ranks V@K (%)
Mean Median K=1 K=5 k=10

LLM-ranks 189.78 62.00 5.2 11.6 18.4

Expected ranks 95.35 31.02 8.0 19.2 25.2

TF-IDF 103.45 24.00 17.6 32.0 38.8

Emb. Ada 115.89 31.50 11.2 21.6 30.0
Davinci 120.02 32.00 10.4 20.8 33.6

iRank Ada 38.78 5.00 28.0 51.2 60.8
Davinci 34.48 4.00 29.2 52.8 62.8

(a) Invariants generated by gpt-3.5-turbo .

Experiment i+ ranks V@K (%)
Mean Median K=1 K=5 k=10

LLM-ranks 39.20 9.00 17.6 40.4 51.6

Expected ranks 20.23 4.96 31.9 52.1 65.4

TF-IDF 24.16 3.00 32.00 45.6 53.6

Emb. Ada 20.69 5.50 26.6 51.1 64.9
Davinci 23.56 5.00 27.7 52.1 63.3

iRank Ada 13.18 2.00 44.7 74.4 81.4
Davinci 11.96 2.00 44.7 71.8 81.9

(b) Invariants generated by gpt-4 .

Table 1: Comparison between different ranking strategies for
re-ranking the invariants generated by different LLMs.

Baselines. (a) LLM-ranks. We take the invariants,
in the order generated by the LLMs, as a ranklist.
(b) Expected-ranks. We estimate the expected val-
ues of the evaluated metrics in this paper by ran-
domly permuting the LLM-generated list of invari-
ants (see Appendix D for more details). (c) Em-
beddings. We use the raw embeddings from LLM-
based embedding models to calculate similarity
without training. (d) TF-IDF. We use the textual
similarity between the problem description and the
candidate invariants for ranking.
Research Questions. In this paper, we studied
two research questions. (i) How effective are LLM-
based embeddings for ranking invariants? and (ii)
Can a trained iRank help reduce the verification
cost?

5.2 Results

Table 1 shows the quantitative evaluation of iRank.
If we consider LLM-generated list of invariants as
is, we observe that LLMs are able to generate a ver-
ified invariant after a significant number of wasted
trials. For example, on average, gpt-3.5-turbo
found an invariant after ∼190 failed attempt at
generation. gpt-4 does much better, in compar-
ison, with the mean rank of verified invariants be-
ing 39.20. The expected rank of the verified in-
variant from LLM-generations is 95.35 and 20.23,
for gpt-3.5-turbo and gpt-4, respectively. The
use of LLM-based embeddings (without any train-
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Figure 2: Detailed results comparing ranks of the correct invariants and number of z3 calls.
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Figure 3: Percentage of problems solved w.r.t. number of
invariants from the (re-)ranked list.

ing) such as from text-embedding-ada-002 or
davinci-similarity results is the mean rank of
the verified invariant to be 115.89 and 120.02,
respectively for gpt-3.5-turbo, and 20.69 and
23.56, respectively for gpt-4. While such a result
looks like a significant improvement over LLM-
ranks, it is slightly worse than expected ranks.

✓ LLM-based embeddings standalone may not
serve well for reranking verified invariants.

The training procedure in iRank significantly
contributes to improving the ranking of verified
invariants by transforming the embeddings. The
median rank of the verified invariant is 32 when
using the embedding from davinci-similarity
embeddings. With the contrastive training in
iRank, the median rank is brought down to 4,
showing a significant improvement. Such a trend
persists across different embedding models and
generations from different LLMs. Figure 2a,
and Figure 2b shows the detailed results invari-
ants generated by gpt-3.5-turbo and gpt-4.
In both trained and raw embeddings, the dif-

ference between text-embedding-ada-002 and
davinci-similarity models, the performance
differences are not different with statistical sig-
nificance (with p-value > 0.1). In both models’
cases, there is no statistically significant difference
between the expected rank and raw embedding-
based ranking. Note that, similar to the existing
works (Ryan et al., 2020), we use z3 call to mea-
sure resource wastage. However, depending on the
system the experiments are carried on, the time
saved from reranking with iRank could be different.
We report our experimental results of wall clock
time in Appendix B (Table 2).

Figure 3 shows the percentage of problems veri-
fied after trying k invariants (V@K). We observe
that the iRank curves are very steep at the begin-
ning of the curves compared to the baseline, sig-
nifying that it could rank the verified invariants in
significantly higher positions than baselines.

✓ Contrastive training in iRank brings the veri-
fied invariant closer to the problem while pushing
the wrong ones resulting in a significant reduc-
tion in the verification cost.

6 Conclusion

We presented a novel approach, iRank, to rank the
loop invariants generated by LLMs based on their
likelihood of being correct. Our ranker leverages
a contrastive learning technique to discriminate
between correct and incorrect invariants. Our eval-
uation demonstrates that our approach significantly
reduces the invariant checking effort compared to
the original LLM outputs.
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Limitations

Assumptions of LLM inference cost. In this
paper, we assumed the cost of calling LLMs is neg-
ligible compared to the cost of calling the verifier
for checking an invariant. Current access to LLMs
(at least the one we studied in the paper) is avail-
able through the rest API, which can be scaled up
by the API vendor with distributed processing of
LLM. However, with the increase in the problem
complexity, i.e., non-linear invariants, high number
of variables, the check for correctness of an invari-
ant become exponentially more expensive. In the
case where call to LLM is much more expensive
than LLM, iRank will reduce the number of Z3
calls, but may not contribute to actual cost savings.

Comparison with state-of-the-art (SOTA) invari-
ant synthesis. The goal of this paper is not to
establish SOTA for loop invariant synthesis. In con-
trast, we investigate LLMs’ capacity to generate
Loop invariant relying on their emergent behav-
ior. iRank is proposed as an orthogonal tool and
evaluated to rank LLM generations in this paper.
However, in theory, iRank should be able to rerank
invariants generated by any generator. Neverthe-
less, the design of the SOTA technique of Loop
Invariant Synthesis with LLM (perhaps with other
tools) remain an open problem, which we leave for
future research.

Stability of LLM predictions. Due to the
stochastic (and nondeterministic 3) nature of the
LLM, especially in higher temp, we observe un-
stable generation from the LLM. Nevertheless, we
evaluated the results from one sample run from
gpt-3.5-turbo and one from gpt-4 as case stud-
ies. While we acknowledge the possibility of un-
stable behavior, similarity in the performance trend
(i.e., iRank’s performance improvement over LLM
and expected ranks, also over raw embeddings)
give us confidence about the impact of iRank.
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Experiment i+ ranks V@K (%) Time(s) (Mean/Median)
Mean Median K=1 K=5 k=10 Embed Ranking Verification Total

LLM-ranks 189.78 62.00 5.2 11.6 18.4 0 / 0 0 / 0 7.33 / 2.23 7.33 / 2.23

Expected ranks 95.35 31.02 8.0 19.2 25.2 0 / 0 0 / 0 3.67 / 1.12 3.67 / 1.12

TF-IDF 103.45 24.00 17.6 32.0 38.8 0 / 0 0.05 / 0.02 3.83 / 0.94 3.88 / 1.00

Emb. Ada 115.89 31.50 11.2 21.6 30.0 1.29 / 0.42 0.05 / 0.01 4.43 / 1.23 5.78 / 1.82
Davinci 120.02 32.00 10.4 20.8 33.6 9.17 / 3.02 0.45 / 0.15 4.79 / 1.20 14.41 / 4.48

iRank Ada 38.78 5.00 28.0 51.2 60.8 1.29 / 0.42 0.06 / 0.02 1.64 / 0.19 2.98 / 0.97
Davinci 34.48 4.00 29.2 52.8 62.8 9.17 / 3.02 0.48 / 0.15 1.28 / 0.16 10.93 / 3.68

(a) Invariants generated by gpt-3.5-turbo .

Experiment i+ ranks V@K (%) Time(s) (Mean/Median)
Mean Median K=1 K=5 k=10 Embed Ranking Verification Total

LLM-ranks 39.20 9.00 17.6 40.4 51.6 0 / 0 0 / 0 1.61 / 0.24 1.61 / 0.24

Expected ranks 20.23 4.96 31.9 52.1 65.4 0 / 0 0 / 0 0.83 / 0.19 0.83 / 0.19

TF-IDF 24.16 3.00 32.00 45.6 53.6 0 / 0 0.01 / 0.006 0.80 / 0.11 0.81 / 0.12

Emb. Ada 20.69 5.50 26.6 51.1 64.9 0.23 / 0.06 0.01 / 0.004 0.67 / 0.19 0.94 / 0.26
Davinci 23.56 5.00 27.7 52.1 63.3 1.93 / 0.48 0.12 / 0.03 0.75 / 0.16 2.80 / 0.77

iRank Ada 13.18 2.00 44.7 74.4 81.4 0.25 / 0.06 0.02 / 0.004 0.44 / 0.06 0.71 / 0.16
Davinci 11.96 2.00 44.7 71.8 81.9 1.93 / 0.48 0.13 / 0.03 0.74 / 0.06 2.80 / 0.72

(b) Invariants generated by gpt-4 .

Table 2: Comparison between different ranking strategies for re-ranking the invariants generated by different LLMs.
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A Further Details of iRank

In this section, we present a comprehensive
overview of the operational workflow of iRank,
as visualized in Figure 1.

A.1 Training iRank

As elucidated in Section 4, the training of iRank
necessitates a dataset containing invariant synthesis
problems, akin to those illustrated in Figure 4. Each
problem in the training dataset requires at least one
correct invariant and a set of incorrect invariants,
all expressed in the SyGus format (refer to Figure 5
for an example). We employ the specified embed-
ding model, namely text-embedding-ada-002 or

Experiment i+ ranks V@K (%)
Mean Median K=1 K=5 k=10

Expected ranks
Original 95.35 31.02 8.0 19.2 25.2

Deduplicated 65.24 24.07 8.4 22.8 31.2

iRank-ada
Original 38.78 5.00 28.0 51.2 60.8
Deduplicated 18.79 4.00 28.4 56.0 65.6

(a) Invariants generated by gpt-3.5-turbo .

Experiment i+ ranks V@K (%)
Mean Median K=1 K=5 k=10

Expected ranks
Original 20.23 4.96 31.9 52.1 65.4

Deduplicated 13.99 4.89 31.4 53.7 72.8

iRank-ada
Original 13.18 2.00 44.7 74.4 81.4
Deduplicated 8.73 2.00 46.8 77.1 86.7

(b) Invariants generated by gpt-4-turbo .

Table 3: Ranking result of correct invariant by de-duplicating
semantic equivalent candidates

davinci-similarity, to acquire initial embed-
dings for both the problems and candidate solutions.
These initial embeddings undergo transformation
via a three-layered fully connected feedforward
network to yield transformed embeddings. The
training objective is twofold: minimize the dis-
tance between the transformed embedding of the
problem and the corresponding correct solutions,
while maximizing the distance from incorrect ones.
Once this model is trained, it is employed to rank
the candidate invariants generated by the LLM or
any other generator.

A.2 Ranking with iRank

Upon successful training of the transformation
network within iRank, it is used for ranking pur-
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Problem Statistics

Total Problems 541

Problem Types Statistics

Linear Integer (LIA) 496 (91.68%)
Non-Linear Integer (NIA) 27 (4.99%)
Array Linear Integer (ALIA) 18 (3.33%)

Problem Semantics Statistics

Number of functions Min = 3, Max = 9

Number of Variables Min = 2, Max = 90

Variable types

Integer = 80.31%
Boolean = 19.31%
Array[Integer] = 0.36%
Array[Boolean] = 0.03%

Operator Statistics (of the correct invariants)

Conjuctions 43% (of all operators)
1.12 (avg. per example)

Disjunctions 20% (of all operators)
0.53 (avg. per example)

Negations 37% (of all operators)
0.96 (avg. per example)

Addition/Subraction 43% (of all operators)
0.5 (avg. per example)

Multiplication/Division 3.1% (of all operators)
0.18 (avg. per example)

Logical Comparison 88.5% (of all operators)
5.25 (avg. per example)

Length Statistics

Problem Length
Min = 92 (N), 88 (T)
Max = 2732 (N), 3146 (T)
Mean = 740 (N), 922 (T)

Invariant Length (gpt-3.5-turbo)
Min = 18 (N), 15 (T)
Max = 605 (N), 506 (T)
Mean = 110 (N), 125 (T)

Invariant Length (gpt-4)
Min = 18 (N), 15 (T)
Max = 513 (N), 488 (T)
Mean = 90 (N), 102 (T)

N = Tokenized with NLTK
T = Tokenized with TikToken

Table 4: Stattistics of the experimental data

poses. To rank the candidate invariants, iRank
initially extracts the initial embedding of the
problem and a list of solutions, using the same
embedding model (text-embedding-ada-002 or
davinci-similarity) as employed during train-
ing. The trained transformation network is then
used to transform these embeddings. These trans-
formed embeddings serve as vectors for the re-
ranking process, where iRank calculates the cosine
similarity between the transformed embedding of
the problem and each of the candidate solutions.
The candidate solutions are then sorted and re-
turned based on their similarity with the problem.

A.3 Data Details and Training
Hyperparameters

Table 4 shows the statistics of the data we used to
experimentally evaluate iRank. Table 5 shows the
hyperparameters for the models and training we

Number of Layers 3

Hidden Size 1536 (text-embedding-ada-002)
12288 (davinci-similarity)

Optimizer Adam

# Training Epochs 20

Weight Decay 0.001

Max Gradient Norm 1.0

Learning Rate 5 ∗ 105

LR Scheduler Type Linear

Warmup Steps 500

Table 5: Hyperparameter for Model and Training

used in this study.

B Detailed Results

In addition to comparing the number of Z3 calls,
we compared the wall clock time. Table 2 shows
a comparison of time (as an extension of Table 1).
We conducted all the experiments in 24 cores
AMD Epyc 7V13 Linux server running on Linux
Ubuntu 20.04 LTS with 220 GB RAM, and a sin-
gle NVIDIA A100-PCIE-80GB GPU. For LLM-
Ranks, Expected ranks there is no embedding and
ranking, thus the verification time is the bottleneck.
For TF-IDF, while there is no embedding time, the
is a little bit of ranking time.

The Ada embedding time in iRank was very
small compared to the Davinci embedding, thus,
in the case of iRank-ada, embedding and ranking
time was offset by the time iRank reduced in the
verification effort. In contrast, the Davinci embed-
ding in iRank is more expensive than the reduc-
tion in the verification time, resulting in a worse
wall clock time performance than the LLM ranks.
We conjecture that the text-embedding-ada-002
(embedding dim = 1536) is a smaller model com-
pared to davinci-similarity (embedding dim =
12188), thus requiring significantly longer time to
embed an input sequence (problem description or
invariant).

It is important to note here that, this experiment
is only meant for an illustration of potential threats
to iRank, and is dependent on a lot of variables,
including, but not limited to OpenAI subscription
maximum rate limit, network latency for initial
embeddings, etc.

In addition, we analyzed the generated invariant
candidates from LLMs, and removed any semantic
duplicates. Given two invariant candidates ia and
ib parameterized by set of variables {v1, . . . vn},
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we define semantic equivalence as,

∀v1, . . . , vn : ia(v1, . . . , vn) ⇔ ib(v1, . . . , vn)

For comparing equivalence of two candidate invari-
ants, we make one call to the z3. Such a seman-
tic deduplication requires comparison of a newly
generated candidate invariant with all previous can-
didates, necessitating Θ(n2) z3 calls, just to dedu-
plicate. Table 3 shows the results on deduplicated
candidates in comparison with the original list of
invariants. As expected, after deduplicating, the
expected ranks improves. Interestingly, even in
the list of candidates where all candidates are se-
mantically unique, iRank improves the rank of the
correct invariant, resulting in higher V@K.

C Illustrative example

As an illustration of our proposed approach, we
present an example from FiB (Lin et al., 2017)
benchmark 4. The problem is represented in SyGus
format as shown in Figure 4.

(set-logic LIA)

(synth-inv inv_fun ((i Int) (n Int) (a Int) (b Int)))

(define-fun pre_fun ((i Int) (n Int) (a Int) (b Int)) Bool
    (and
        (= i 0) (= a 0) (= b 0) (>= n 0)
    )
)
(define-fun trans_fun ((i Int) (n Int) (a Int) (b Int)
        (i! Int) (n! Int) (a! Int) (b! Int)) Bool
    (or
        (and
            (< i n) (= i! (+ i 1)) (= a! (+ a 1))
            (= b! (+ b 2)) (= n! n)
        )
        (and
            (< i n) (= i! (+ i 1)) (= a! (+ a 2))
            (= b! (+ b 1)) (= n! n)
        )
        (and
            (>= i n) (= i! i) (= a! a) (= b! b) (= n! n)
        )
    )
)
(define-fun post_fun ((i Int) (n Int) (a Int) (b Int)) Bool
    (=> (not (< i n)) (= (+ a b) (+ (+ n n) n))))

(inv-constraint inv_fun pre_fun trans_fun post_fun)

(check-synth)

Figure 4: Invariant synthesis problem in FiB-8.sl

We create the following prompt to call LLMs.
Here is a loop invariant synthesis problem
in SyGus format.

<<<<The problem definition from above >>>>>

4https://github.com/spencerxiao/
ase2017-results-and-tools/tree/master/FiB_Tool/
benchmarks

Synthesize a necessary and sufficient invariant.

Start the invariant with
"(define -fun inv_fun ((i Int) (n Int) (a Int)
(b Int)) Bool (" and end with ")".

Surround only the invariant with <code > and
</code >. You don't need to explain the invariant ,
just synthesize it.

The gpt-3.5-turbo model generated invariant
shown in Figure 5 after 144 unsuccessful attempts.

(define-fun inv_fun ((i Int) (n Int) (a Int) (b Int))
Bool
    (or
        (and (<= i n) (= (+ a b) (* 3 i)))
        (and (> i n) (= (+ a b) (* 3 n)))
    )
)

Figure 5: Correct invariant generated by gpt-3.5-turbo.

The gpt-4 model generated the invariant shown
in Figure 6 after 2 unsuccessful attempts.

(define-fun inv_fun ((i Int) (n Int) (a Int) (b Int))
Bool
    (and (<= i n) (= (+ a b) (* i 3)))
)

Figure 6: Correct invariant generated by gpt-4.

iRank trained based on text-embedding-ada-
002 repositioned the gpt-3.5-turbo at 8th posi-
tion in the list and the gpt-4 generated correct
invariant in position 2. Note that we show this
example only for illustration purposes.

D Experiment on Expected re-ranking

The list of invariants generated by LLM as a ranked
list could be unstable and susceptible to variations
in performance across different experiments. Thus,
as described in Section 5.1, we estimate the ex-
pected ranks by randomly permutating the list. Ide-
ally, to get a perfect estimation, we should consider
all possible permutations of the list, which can be
very expensive (exponential order on the number
of elements in the list). Figure 7 shows ablation
of mean rank w.r.t. the number of random permuta-
tions. As we can see, with a gradual increase in the
number of permutations, the variance in the met-
rics gradually reduces, i.e., the metrics converges.
Throughout the paper, we set the number of permu-
tations to be 100 for estimating the expected rank
metrics.
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Figure 7: Result stabilization with an increasing number of
random permutations

E Visualization of the impact of training
in iRank

Figure 8 show a t-SNE plot of the raw LLM em-
beddings and the transformed embeddings for a
few example problems. For the first three exam-
ples(Figures 8a, 8b, 8c, respectively), iRank brings
the correct invariant closer to the problem than any
other invariants. For the example presented in Fig-
ure 8d, iRank could not make the correct invariant
as the closest to the problem. While there are cases
where iRank’s transformation fails to bring the cor-
rect invariant in the closest proximity, in most cases,
it can bring correct invariants closer to the trans-
formed problem embedding, as corroborated by the
results in Appendix B
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W/O training

Problem Correct Invariant Incorrect Invariant

With training

(a) Example - 1

Problem Correct Invariant Incorrect Invariant

W/O training

Problem Correct Invariant Incorrect Invariant

With training

(b) Example - 2

Problem Correct Invariant Incorrect Invariant

W/O training

Problem Correct Invariant Incorrect Invariant

With training

(c) Example - 3

Problem Correct Invariant Incorrect Invariant

W/O training

Problem Correct Invariant Incorrect Invariant

With training

(d) Example - 4

Figure 8: t-SNE plots of embeddings with and without training for a few example problems. The number of incorrect invariants
is downsampled for better visualization clarity.
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