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Abstract

Despite the popularity of the pre-train then fine-
tune paradigm in the NLP community, existing
work quantifying energy costs and associated
carbon emissions has largely focused on lan-
guage model pre-training. Although a single
pre-training run draws substantially more en-
ergy than fine-tuning, fine-tuning is performed
more frequently by many more individual ac-
tors, and thus must be accounted for when con-
sidering the energy and carbon footprint of NLP.
In order to better characterize the role of fine-
tuning in the landscape of energy and carbon
emissions in NLP, we perform a careful empir-
ical study of the computational costs of fine-
tuning across tasks, datasets, hardware infras-
tructure and measurement modalities. Our ex-
perimental results allow us to place fine-tuning
energy and carbon costs into perspective with
respect to pre-training and inference, and out-
line recommendations to NLP researchers and
practitioners who wish to improve their fine-
tuning energy efficiency.

1 Introduction

Fine-tuning pre-trained language models is a fre-
quent occurrence in natural language processing
(NLP) research and practice, yet the vast major-
ity of work quantifying the energy and carbon
footprints of NLP workloads has focused on pre-
training (Strubell et al., 2019; Dodge et al., 2022;
Luccioni et al., 2023) or inference (Desislavov
et al., 2023; Luccioni et al., 2023). The typical
lifecycle of an NLP model includes data inges-
tion, pre-training, fine-tuning and inference, all of
which contribute non-trivially to energy use and
corresponding emissions (Patterson et al., 2021;
Wu et al., 2022). Better understanding of the role
that each phase plays in overall energy and car-
bon footprint is vital to inform policy decisions,
yet we still lack basic data quantifying the rela-

“Denotes equal contribution.

tive contributions due to different aspects of model
development and use (Kaack et al., 2022).

In this work we perform an empirical study
to quantify the energy requirements of language
model fine-tuning, including in the context of pre-
training and inference energy requirements. While
this may seem like it should be a straightforward
calculation, there are several variables that can in-
fluence compute time and energy consumption,
ranging from: (1) the type of hardware used for
both pre-training and fine-tuning (since this usually
differs between the two), (2) the type of task and
the type of computation required to carry it out,
and (3) intrinsic characteristics of the dataset, such
as average sequence length, its similarity with the
pre-training dataset, etc.

In order to isolate the factors that have the most
influence on fine-tuning dynamics, we compare
fine-tuning energy use across a suite of common
supervised NLP datasets including the tasks of en-
tailment, sentiment analysis, question answering,
and named entity recognition, and with training
data sizes ranging from 6K to 400K examples. We
also measure energy use across two different sets
of hardware, using the CodeCarbon (Schmidt et al.,
2021) software package and a physical energy mea-
surement device at the wall, to quantify variance
due to physical factors. To enable carefully con-
trolled comparison of the roles of pre-training and
fine-tuning in NLP model lifecycle energy use, we
additionally pre-train BERT variants from scratch
on the same hardware. We find that pre-training
BERT is equivalent to anywhere from 400 (MNLI)
to 45,000 (RTE) fine-tuning runs depending on the
dataset size, and that number of training tokens'
is a reasonable heuristic for estimating fine-tuning
energy use. Further comparison of fine-tuning in-

!The “true” number of training tokens seen, accounting for
dynamic padding of sequences to the maximum length in a
batch, is a better predictor than relying on to mean or median
number of tokens per example.
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ference energy intensity across tasks confirms that
example sequence length holds a much stronger in-
fluence on energy intensity in the fine-tuning phase
than in the inference phase, in alignment with ex-
pectations from previous work (Zhou et al., 2021).
Together, our observations contextualize the en-
ergy and carbon requirements of fine-tuning in the
broader model lifecycle and highlight the need to
study fine-tuning energy efficiency separately from
pre-training and inference workloads in NLP mod-
els. We hope that our careful measurement of the
relative costs of different NLP workloads will serve
as a valuable datapoint informing decision-making
both within and beyond the NLP community.

2 Related Work

Measurement of energy consumption and car-
bon emissions of NLP models has become an
active area of research since it was first identi-
fied that modern state-of-the-art models based on
deep learning can produce substantial greenhouse
gas emissions due to the energy required to train
them (Strubell et al., 2019; Schwartz et al., 2020).
These measurements have mostly focused on two
research directions. First, there has been a series
of empirical studies on different model architec-
tures, focused on estimating the carbon emissions
generated by their training process and the rela-
tive efficiency of different methods (Naidu et al.,
2021; Patterson et al., 2021, 2022). Recent work
by Luccioni et al. has built upon this, aiming to en-
compass the embodied emissions of manufacturing
computing hardware as well as those produced via
the inference process (2023). There has also been
complementary work measuring the energy used
by Transformer models during inference and ways
of predicting those costs for different architectures
and models (Cao et al., 2021; Ang et al., 2022).
Closest to our work, the HULK bench-
mark (Zhou et al., 2021) was proposed to measure
the relative efficiency-accuracy trade-offs of differ-
ent pre-trained models, measuring the wall-clock
time for different pre-trained models to reach a
target accuracy on one of three fine-tuning tasks.
Different from Zhou et al. (2021), our work explic-
itly focuses on the energy and carbon required for
fine-tuning (theirs uses time and financial cost as
proxies), evaluates a wider variety of fine-tuning
tasks and hardware settings in order to elucidate the
factors that predict fine-tuning energy requirements,
and further contextualizes fine-tuning energy re-

quirements in the bigger picture of ML model life-
cycle emissions.

Another related direction of research examines
the dynamics of pre-training and fine-tuning of
language models and the influence of factors like
random seeds and early stopping (Dodge et al.,
2020), scaling (Tay et al., 2022) and learning dy-
namics (Hao et al., 2020). While all of these stud-
ies have shed important light on these processes, in
practice most of the decisions made remain empiri-
cal, with practitioners either referring to previous
work (when hyperparameters and other training de-
tails are reported), or using techniques such as grid
or random search (Bergstra and Bengio, 2012) to
converge on optimal parameter values. Our own
work builds upon both of these research directions.
We study both the pre-training and fine-tuning pro-
cess, and our experiments for studying their energy
intensity are based on the works cited above.

3 Methodology

Full training details can be found in Appendix A.1.
We release code for replicating our measurements.”
We encourage others to run our code on their hard-
ware to add to a repository of measurements across
different hardware platforms.

3.1 Pre-training BERT

In this work we are interested in measuring the
energy consumption of fine-tuning, as it compares
to other stages of model use: pre-training and in-
ference. In order to establish a comparable base-
line for the energy consumption and carbon emis-
sions of pre-training, we pre-trained a BERT-base
model (Devlin et al., 2019) from scratch on the
same hardware that we use for fine-tuning (Sec-
tion 3.3). Although in practice pre-training and
fine-tuning are often done separately and on differ-
ent hardware, we fixed the machine for both sets
of experiments in order to aid direct comparability
of energy usage measurements. Following Devlin
et al. (2019), we pre-train our model on the Book-
Corpus (Zhu et al., 2015) and the 2020 version of
Wikipedia (Foundation, 2020), both downloaded
from HuggingFace Datasets (Lhoest et al., 2021).
Our precise pre-training methodology differs
slightly from Devlin et al. (2019): our data nec-
essarily differs slightly because the original train-
ing corpus was not released along with the model,
and we only use the masked language modeling

2https: //github.com/swangxr/FT-energy.git
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(MLM) objective without next sentence prediction
(NSP) following Liu et al. (2019), who found that
removing NSP did not substantially impact end-
task performance.

In order to assess the relative impact of using
a more efficient pre-trained BERT variant, we
also followed the DistilBERT (Sanh et al., 2019)
recipe, performing knowledge distillation on our
pre-trained BERT-base model.

3.2 Fine-tuning BERT

We evaluate the energy consumption and carbon
emissions of the fine-tuning process on the tasks
in Table 1. We deliberately chose this selection of
end-tasks in order to vary fine-tuning dataset size,
task type, and sequence length, while also aligning
with tasks commonly used in NLP applications.

Seq. length
Dataset Task Examples Med. Batch
Wiki+Books  MLM 43M 128 128
RTE NLI 6K 56 128
MNLI NLI 433K 37 90
SQUADy4 QA 98K 159 336
SQUADy2 QA 142K 158 336
IMDB Sent. 50K 128 128
SST2 Sent. 70K 10 40
CONLL2003 NER 21K 15 53

CONLL2012 NER 143K 20 65

Table 1: Pre-training and fine-tuning dataset descrip-
tions. We report two sequence length statistics: Median
tokens per sequence in the dataset, and Batch, the aver-
age maximum sequence length per batch as predicted by
simulated sampling. The latter is included as a more di-
rect predictor of computation cost for dynamic padding.

All models are fine-tuned on the BERT models
described in §3.1. For each fine-tuning task, we
use typical fine-tuning hyperparameters specific to
the task or user-reported hyperparameters on cur-
rent fine-tuned models on HuggingFace, in order
to mimic the common real-world use cases. For
each task, we dynamically pad sequences to the
maximum length in each batch. All fine-tuning
hyperparameters are reported in Appendix A.1.

We also report average per-example energy use
for inference. All the inference tasks are performed
on 1 GPU with batch size 1 on the same machines.

3.3 Hardware Platforms

To ensure reproducibility and measure variability
across hardware platforms, we replicate experi-
ments across two hardware platforms: One A100
machine and one RTX 8000 machine, where each

machine had four GPUs. Pre-training experiments
used all 4 GPUs in each machine.

All fine-tuning tasks were performed on the
same machines, but using only one GPU. This re-
flects the typical scenario where fine-tuning is done
on a single GPU even if the machine itself has
more GPUs. To better compare the energy usage
results across pre-training and fine-tuning, we also
report an energy usage estimate for BERT-base pre-
training on 1 RTX 8000 GPU with hyperparameters
equivalent to training on 4 GPUs, extrapolated from
a 12-hour partial training run. Details are recorded
in Appendix A.1.

3.4 Measuring Energy and Carbon

To measure the energy consumed, we use the soft-
ware tool CodeCarbon (Schmidt et al., 2021). Re-
cent work has found that the existing libraries and
code for estimating the carbon emissions of NLP
techniques vary in terms of their accuracy and gen-
eralizability to different types of hardware (Ban-
nour et al., 2021). To compensate for this, we
calibrate the programmatic energy usage readings
with a physical energy meter, with which we record
energy readings directly from the compute node
during experiments. Subsequently, we calculate a
coefficient of expected power loss, 1.059, as the
average proportion (over runs across fine-tuning
tasks) of physical energy reading vs. programmatic
energy measurement. Full results are given in Ap-
pendix A.2. Thus, the energy consumed in kWh,
denoted as F, is determined via the formula:

E (kWh) = 1.059 - codecarbon kWh

Converting the power loss adjusted values to
CO4 emissions is done through CodeCarbon us-
ing a coefficient specific to the energy grid based
on the location of the server from the most recent
EPA Power Profiler Data. The conversion factor
for the server’s location (Pittsburgh, PA) in Ta-
ble 2 is 1046.1 1bs/MWh, while the factor for the
second server’s location (Haverford, PA) is 672.8
Ibs/MWh. The total kilograms of CO; emitted,
denoted as C, is then determined via:

Ib 1MWh 1kg
MWh ~ 1000kWh ~ 2.20462Ib

We convert the CO5 emissions result to human
understandable reference values using the EPA
Greenhouse Gas Equivalencies Calculator; in Ta-
ble 2, we also show the equivalent CO2 emissions
of miles driven by an average gasoline-powered
passenger vehicle.

C = FE x1046.1
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Training / Fine-tuning Inference
Task Dataset Energy Emissions  Time Equiv.  Equiv. Energy Equiv.
(kWh) (kg CO2) # PT miles &kwh) / # FT
runs 1000 ex. runs

4 GPU (1Im @ len 128) 270.9 128.6 27 hr 1.358 330 — —

MLM 1 GPU (Im @ len 128) 419.6 199.1 673 hr 0.646 510 — —

4 GPU (100k @ len 512) 124.1 58.90 114 hr 2.965 151 — —

Total 4 GPU 368.0 174.6 357 hr 1.000 408 — —
NLI RTE 0.008 0.004 59s 45109 0.01 0.794e-3 1k
MNLI 0.938 0.445 6700 s 392 1.14 7.349¢-3 127k
QA SQuAD vl 0.537 0.255 3780 s 685 0.65 2.157e-3 249k
SQuAD v2 0.795 0.377 5604 s 463 0.97 2471e-3 322k
Sent IMDB 0.151 0.072 1074 s 2441  0.18 0.849¢-3 178k
’ SST2 0.081 0.038 587 s 4540 0.10 0.691e-3 12k
NER CoNLL2003 0.021 0.010 149s 17886 0.03 0.808e-3 3k
CoNLL2012 0.207 0.098 1487 s 1778 0.25 0.878e-3 24k

Table 2: Energy consumption of pre-training BERT and fine-tuning on the RTX8000 GPU machine. Energy is
computed as raw energy measured by CodeCarbon multiplied by a coefficient to correct for power loss (Eq. 3.4).
Equiv. miles refers to the approximate number of vehicle miles driven resulting in equivalent CO5 emissions. 1 GPU
pre-training costs are extrapolated from a shorter pre-training run lasting only a few hours. Total cost of fine-tuning
is derived from 900k steps of pre-training on sequences of length 128 followed by 100k steps on sequences of length
512, following (Devlin et al., 2019). Energy consumption for inference is calculated using single-example batches.

4 Results and Discussion

Table 2 shows energy, carbon, and wall-clock time
required to fine-tune BERT-base models on the
RTX8000 machine. Results on the A100 machine
are recorded in Appendix A.3 in Tables 8 and 9.

Task Dataset Energy Time Emiss.
(kWh) (kg CO2)

Distil.  Wiki+Books 187.74 175.5 hr 89.08
NLI RTE 0.004 30s 0.002
MNLI 0.481 3447 s 0.228

QA SQuAD vl 0.276 1954 s 0.131
SQuAD v2 0.412 2916 s 0.196

Sent IMDB 0.077 549 s 0.037
" SST 0.042 306 s 0.020
NER CoNLL2003 0.011 78s 0.005
CoNLL2012 0.107 762 s 0.051

Table 3: Energy consumption of training (distillation)
and fine-tuning DistilBERT on the RTX8000 machine.
Energy calculations are the same as in Table 2. Distil-
lation is performed on a pre-trained model, and so the
true “total” cost includes the pre-training cost as well.

4.1 Pre-training and Distillation

We observe that it requires an additional 50% of
the energy cost of pre-training in order to perform
knowledge distillation, but it takes nearly 50% less
energy to fine-tune on the same tasks using Dis-
tilBERT vs. normal BERT (see Table 3). By our
estimate, one can fully amortize the up-front cost
of distillation within anywhere from 86 fine-tuning

runs of an MNLI-like task, to 47k fine-tunings on
an RTE-like task.®> DistilBERT fine-tuning results
on the A100 machine are in Appendix A.3.

4.2 Comparing and Predicting Fine-tuning
Emissions

We find that, controlling for hardware, energy con-
sumption scales most predictably with wall clock
time and number of tokens encountered during
training (including the pad tokens added to se-
quences to match the maximum sequence length
in a batch). The linear relationship between en-
ergy consumption and total number of tokens holds
similarly on both machines (see Figure 1).Addi-
tionally, we observe a consistently higher energy
consumption in the RTX 8000 GPU machine. This
is likely due to the higher energy overhead and
the (in)efficiency of the hardware compared to the
A100 GPUs. Other figures in Appendix A.3 il-
lustrate that, in contrast, energy requirements as
a function of optimization steps or even number
of examples in the dataset can vary significantly
across datasets and tasks.

3Note that cheaper inference is often the primary goal
of knowledge distillation. Inference is much cheaper than
training and therefore requires more to amortize the initial cost
of distillation, but inference also occurs much more frequently
than training. Models running inference at scale are typically
highly optimized with respect to specific deployment settings,
S0 our estimates approximate a lower bound.
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Energy consumed vs # tokens seen
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Figure 1: Total energy consumed (kWh) is strongly re-
lated to number of tokens seen for BERT models on both
A100 and RTX 8000 GPU machines, although the rela-
tionship is more predictive on the RTX 8000 machine
and energy usage is less consistent with DistilBERT.
Note that both axes are in log scale. An alternative view
of similar data in Figure 4 distinguishes pre-training
workloads’ energy consumption slightly from that of
fine-tuning tasks.

Seq. length kWh/ 1k ex.
Dataset Med. Batch Inf. FT
RTE (NLI) 56 128 0.75e-3  1.09e-3
MNLI (NLI) 37 90 0.70e-3  0.80e-3
SQuUADy1 (QA) 159 336 1.08e-3  3.04e-3
SQuUADy> (QA) 158 336 1.24e-3  3.02e-3
IMDB (Sent.) 128 128 0.80e-3 1.21e-3
SST2 (Sent.) 10 40 0.65¢-3  0.40e-3
CoNLL2go3 (NER) 15 53 0.76e-3  0.49¢-3
CoNLL2g12 (NER) 20 65 0.83e-3  0.60e-3

Table 4: Inference vs. fine-tuning energy requirements
across end tasks. We see that fine-tuning energy usage
varies according to sequence length much more widely
than inference energy usage.

4.3 Fine-tuning vs Pre-training

Even for the more reliable predictors of energy
consumption and carbon emissions (duration of
training and number of tokens processed), the en-
ergy cost profiles of pre-training vs. fine-tuning are
different, likely due to differences in training infras-
tructure, training objectives, and sequence lengths
typically seen in pre-training vs. fine-tuning (see
Figures 4, 3, 5, and 6). Pre-training in general
is almost always performed over multiple GPUs
which incurs energy costs from communication
between GPUs, and often also with gradient accu-
mulation to accommodate large batches. Moreover,
sequences are packed together such that batches
consist largely or entirely of sequences of identical
length equal to the maximum sequence length for

the model.

On the other hand, there are many types of fine-
tuning tasks where examples consist of sequences
of varying lengths significantly shorter than the
maximum length that the model has been trained
on, as shown in Table 1. Since, effective sequence
lengths are determined dynamically at training time
(where sequences are padded to the maximum
length in each given batch), total training time is
not as simple to extrapolate from standard measures
of dataset size as in pre-training.

4.4 Fine-tuning vs. Inference

Although we do observe that per-example inference
efficiency costs are related to sequence lengths,
there is overall less variation across datasets and
tasks in inference costs compared to fine-tuning
costs (see Table 4). This mirrors an observation
noted in the HULK benchmark (Zhou et al., 2021),
though to the best of our knowledge ours is the first
to explicitly draw comparisons across task types
and different aspects of dataset size (i.e. number of
examples and examples’ sequence lengths).

4.5 Single vs. Multiple GPUs

In general, typical hardware and data settings for
pre-training and fine-tuning tend to differ. Though
to the best of our knowledge it is less common
to fine-tune causal LMs of this scale on multiple
GPUs, we present additional results from multi-
GPU fine-tuning on the 4 x RTX8000 machine
with the same fine-tuning tasks in Table 10 in Ap-
pendix A.3. Our recommendations from an energy
efficiency standpoint align with common rules of
thumb for effective utilization of hardware; if the
resources would be idle otherwise, one could rea-
sonably consider increasing batch size and learning
rate to saturate the available hardware for both time-
and energy-efficient training.

5 Conclusion

We share a procedure for rigorous measurement of
energy consumption from causal LM fine-tuning
given multiple concrete hardware settings. We
hope our work is useful to researchers and prac-
titioners who are interested in obtaining measure-
ments for their own specific hardware, gaining intu-
itions about factors affecting relative energy costs
of different types of fine-tuning tasks, or under-
standing these energy costs in context of the model
lifecycle.
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Limitations

While our work provides important first steps
towards a clearer understanding of model fine-
tuning’s impact on the environment, we note that
our experimentation is limited to various token
classification, sequence classification, and question
answering tasks with BERT-base and DistilBERT-
base models. We do not make claims or extrap-
olations about much larger language models, or
models with different architectures, as well as other
types of tasks such as summarization. Future work
in this direction can expand the number of tasks
that we consider as well as feature different archi-
tectures such as RoBERTa (Liu et al., 2019).

Additionally, the on-premises hardware infras-
tructure used for our experimentation is realistic
and typical of compute resources in academic set-
tings, but we provide no firsthand evidence of fine-
tuning emissions profiles expected from either local
model training (where the impracticality of pre-
training makes direct comparisons with fine-tuning
emissions difficult) or fine-tuning on hardware that
is part of much larger scale infrastructure such as
on a public cloud. Furthermore, we expect that use
of specialized hardware such as TPUs (as opposed
to GPUs, which we use) would be associated with
different emissions profiles.

Ethics Statement

Training and deploying ML models and systems
requires large amounts of energy, the production of
which results in the emission of greenhouse gases.
While the goal of our research is to contribute to-
wards a better understanding of the factors that in-
fluence these emissions, by carrying out our experi-
ments, we were ourselves responsible for the emis-
sion of 350 kg of carbon equivalents. We release
our code and the data generated by our experiments
to maximize the transparency and reproducibility
of our work.
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A Appendix

A.1 Pre-training and Fine-tuning Details

For pre-training BERT with MLM, we mainly fol-
low what is listed in Devlin et al. (2019). The
specific hyperparameters used for pre-training are
listed in Table 5 and were used on both machines.

Hyperparameters
maximum steps 1000000
training batch size per device 64
evaluation batch size per device 64
maximum sequence length 128
learning rate le—4
warmup steps 10000
weight decay 0.01

Table 5: Hyperparameters used for pre-training BERT
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In Table 6, we list the set of hyperparameters
used to fine-tune each task. All fine-tuning tasks
were run on both machines.

Hardware details The A100 machine is located
in Haverford, Pennsylvania, USA, and has 4x
NVIDIA A100 GPUs with 40GB GDDR SDRAM,
376GB main memory and 32 Intel Xeon processors.
The RTX 8000 machine is located in Pittsburgh,
Pennsylvania, USA, and has 4x NVIDIA Quadro
RTX 8000 GPUs with 48GB GDDR SDRAM, 36
Intel Xeon processors and 251GB RAM.

A.2 Kill-A-Watt Measurements

Energy is lost during the process of transferring en-
ergy from a power source to the machine. The coef-
ficient for the loss is acquired through the readings
from Kill-A-Watt devices. The device measures
the instantaneous Watt reading extracted from the
wall and displays on the monitor. The measure-
ments for the A100 machine were recorded only
on the single node of the cluster containing it (the
RTX8000 machine is not part of a larger cluster).
The GPU node is connected to two outlets, and we
plug separate Kill-A-Watt devices into both. For
each instantaneous reading, we read off of and sum
up the readings on both Kill-A-Watt devices. To
best compare between the package reading and the
wall reading, we read off of the device at the same
15 second interval that CodeCarbon records the
energy consumed. To convert each instantaneous
Watts readings into Kilowatt-Hours, we follow the
formula:

watts x hours
1000

15 seconds y
3600 seconds

kWh =

We sum up all the calculations for the entire run of
a fine-tuning experiment. Then, we can compare
the sum of the wall readings with the Code Car-
bon energy consumption recording. We divide the
wall reading over the package reading to get a co-
efficient, measuring the more realistic energy used.
The setup of an instantaneous reading on the A100
machine is shown in Figure 2. The recordings of
the wall readings on the A100 GPU machine are
recorded in Table 7.

We ran these wall reading experiments for both
machines and obtained a coefficient of 1.09 on the
A100 machine, and a coefficient of 1.05 on the
RTX machine.

Figure 2: Kill-A-Watt wall reading measurement setup

A.3 Additional Results

BERT pre-training and fine-tuning results Ta-
ble 8 records the energy consumption results from
the A100 GPU machine, located in Haverford, PA.
The conversion factor for this location is 672.8 Ibs
CO2/MWh. We then calculate the emissions using
raw output from CodeCarbon, which is listed in
Table 8.

DistilBERT results Table 9 records the energy
consumption and emission on the A100 GPU ma-
chine. Distillation is not done on this machine, and
all the fine-tunings are done on the DistilBERT
trained on the RTX8000 machine. The results on
the A100 machine shows a similar trend that fine-
tunings on DistilBERT takes around 50% less en-
ergy than on BERT base models.

10 Energy consumed vs tokens seen on A100
dataset — mnli task
conll2003 — rte —— named entity recognition
conll2012 squadvl == sentiment analysis
imdb squadv2 e textual entailment
—— sst2 —— pre-train (4 gpus) === question answering
—-= masked language modeling
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Figure 3: Energy consumed (kWh) against total tokens
seen on A100 machine

Training duration and energy consumption
From Figure 5 and 6, we see that there is a strong
correlation between training time and energy con-
sumption, which holds across our models and hard-
ware settings (Figure 7). However, similarly to
tokens seen, we observe that pre-training exhibits
a slightly different energy consumption profile, as
do question answering tasks on the A100 machine
(which have the longest sequences out of our fine-
tuning tasks). When training time estimates are not
feasible in advance (such as in certain hyperparam-
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RTE MNLI IMDB SST2 SQuAD SQuAD CoNLL CoNLL
vl v2 2003 2012
epochs | 3 3 5 3 2 2 3 3
train bs | 32 32 16 32 32 32 32 32
eval bs | 32 32 16 32 32 32 32 32
max seq len ‘ 128 128 128 128 384 384 128 128
doc stride | 128 128
Ir | 2e—5 2e—5 2e—5 2e—5 3e—5 3e—5 5e—5 5e—b
Table 6: Hyperparameters used for fine-tuning tasks
Task Random seed Wall reading Code Carbon Power Loss Co-
converted reading (kWh) efficient
(kWh)
SST2 (no AC) 42 0.103 0.088 1.170
SST2 123 0.059 0.055 1.057
IMDB 42 0.070 0.061 1.134
IMDB 42 0.079 0.071 1.122
IMDB 123 0.0793 0.073 1.092
RTE 42 0.00641 0.00602 1.065
Table 7: Kill-A-Watt experiment recordings for the A100 GPU machine
Task Dataset Energy Emissions Training Equiv. # PT  Equivalent
(kWh) (kg CO2) time (s) runs emissions of
miles driven
MLM Wiki + Books  146.150 44.602 726553 1 144
RTE 0.002 0.002 19 58442 0.005
MNLI 0.356 0.239 2400 406 0.613
SQuAD vl 0.171 0.115 1061 846 0.295
fine-tunin SQuAD v2 0.263 0.177 1580 549 0.454
& IMDB 0.062 0.0190 478 2114 0.048
SST2 0.051 0.034 377 2858 0.087
CoNLL2003 0.011 0.007 78 13411 0.018
CoNLL2012  0.091 0.061 654 1584 0.156

Table 8: Energy consumption of pre-training BERT and fine-tuning on the A100 GPU machine. Energy is computed
as raw energy measured by CodeCarbon multiplied by a coefficient to correct for power loss (Eq. 3.4). Equiv. miles
refers to the approximate number of vehicle miles driven resulting in equivalent CO5 emissions. Note that here,
unlike in Table 2, the “baseline” pre-training cost is fixed to the cost of 1 million steps of masked language modeling

of sequences of length 128.

Task Dataset Energy Time Emiss.
Entailment RTE 0.001 10 0.001
MNLI 0.210 1539 0.141
QA SQuAD vl 0.091 566 0.061
SQuAD v2 0.141 915 0.095
Sentiment IMDB 0.045 341 0.012
SST 0.034 262 0.023
NER CoNLL2003  0.007 57 0.005
CoNLL2012 0.059 448 0.040

Table 9: Energy consumption of training (distillation)
and fine-tuning DistilBERT on the A100 machine. Units
and energy calculations are the same as given in Table 8.

eter sweeps), we recommend that researchers and
practitioners use token counts estimates (including
dynamic padding tokens) if they have reasonable
knowledge of their data.

As indicated in Figure 8 and Figure 9, energy in-
creases as the optimization steps increases. This is
not surprising given the correlation between train-
ing time and energy consumption. However, we
see that for different tasks, the energy required for
each step is very different. Each step of pre-training
takes a longer time, likely due to the higher batch
size than all fine-tuning tasks. For QA tasks, the
per-step energy consumption is higher than other
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Figure 4: Energy consumed (kWh) against total tokens
seen on RTX8000 machine
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Figure 5: Energy consumed (kWh) against training time
(s) on A100 machine, showing the first 30 minutes

Energy consumed vs training time on RTX8000
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Figure 6: Energy consumed (kWh) against training time
(s) on RTX8000 machine, showing the first 30 minutes

tasks. This is likely due to the maximum sequence
length of 384 being higher than for the other tasks.

Figure 10 shows the number of examples of the
task and the energy consumed in log scale. Similar
to Figure 1, we see a direct correlation between

Energy consumed vs duration
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Figure 7: Total training time is strongly predictive of
total energy consumed (kWh) for both BERT and Dis-
tilBERT models, on both A100 and RTX 8000 GPU
machines. Note that both axes are in log scale. Dif-
ferent from token counts, the trendlines themselves are
similar as well across models and hardware settings.
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Figure 8: Energy consumed (kWh) against optimization
steps on A100 machine machine

Energy consumed vs training steps on RTX8000
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Figure 9: Energy consumed (kWh) against optimization
steps on RTX8000 machine
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Energy consumed vs examples seen
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Figure 10: Energy consumed (kWh) against total num-
ber of examples seen on both A100 and RTX8000 ma-
chines. Comparing with Figure 1, we see that merely
counting number of training examples is much less pre-
dictive of energy consumption than accounting for ex-
ample sequence lengths along with batch size (which
affects the maximum sequence length in each batch)

higher number of training examples and higher
energy usage on both machines.

Task accuracy vs emissions
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Figure 11: CO- emissions (kg) against task accuracy
for SST-2 fine-tuning on RTX 8000 GPU machine

Figure 11 shows the accuracy of SST2 task as
CO4 emissions (kg) increases. As shown previ-
ously in Figure 6, energy consumption increases as
time increases. Generally, as emission increases,
accuracy increases. We can see that as emissions
goes up, accuracy is trending towards converging.

Single- vs. multi-GPU fine-tuning We fine-tune
BERT-base and DistilBERT-base models on the
RTX8000 machine as well. If the same hyperpa-
rameters as the single-GPU setting are used naively
(i.e. the same batch size is split over 4 GPUs), fine-
tuning using 4 GPUs can (but does not always) take
even longer than using just 1 GPU, and can (but

Duration (s) Energy (kWh)

Dataset 1GPU 4GPU 1GPU 4GPU
BERT-base
RTE (NLI) 59 27 8.16e-3  8.52e-3
MNLI (NLI) 6700 3014  9.38e-1  8.64e-1
SQUADy7 (QA) 3780 1356 5.37e-1 4.28e-1
SQUAD,,> (QA) 5604 2011 7.95e-1  6.16e-1
IMDB (Sent.) 1074 472 1.51e-1  1.32e-1
SST2 (Sent.) 587 323 8.11e-2  8.39%-2
CoNLL2go3 (NER) 149 737 2.06e-2  2.05e-1
CoNLL2o12 (NER) 1487 737 2.07e-1  2.14e-1
DistilBERT
RTE (NLI) 30 18 4.34e-3  4.72e-3
MNLI (NLI) 3447 1760  4.81e-1  4.98e-1
SQUADy71 (QA) 1954 792 2.76e-1  2.40e-1
SQUAD,,> (QA) 2916 1170 4.12e-1  3.46e-1
IMDB (Sent.) 549 272 7.75¢-2  7.46e-2
SST2 (Sent.) 306 195 421e-2  5.49e-2
CoNLL2go3 (NER) 78 436 1.10e-2 1.18e-1
CoNLL2g12 (NER) 762 434 1.07e-1  1.19e-1

Table 10: Single-GPU vs. BS and LR-optimized 4-GPU
fine-tuning energy requirements across end tasks on the
RTX8000 machine, for BERT-base and DistilBERT.

does not always) use about twice as much energy
in both BERT-base and DistilBERT. If we increase
batch size x 4 with 4 GPUs (and adjust learning
rate accordingly), however, and compare single-
GPU fine-tuning with multi-GPU fine-tuning (see
Table 10), we observe that energy cost is typically
similar or even less than when using 1 GPU, while
taking around half as much time or less. In both the
“naive” and “optimized” multi-GPU settings, the
single-vs-multi-GPU difference in energy cost and
job duration seems to be related to dataset sequence
lengths. Tasks with longer sequences (such as QA
tasks, and, to a lesser extent, IMDB and RTE) tend
to exhibit more consistent and dramatic energy and
time efficiency gains than the other tasks when us-
ing 4 GPUs. On the other hand, tasks with shorter
sequences (such as NER) tend to require more en-
ergy with 4 GPUs, even if the wall-clock efficiency
may be improved. One way one might interpret this
is a large-enough per-device batch size and typical
sequence length is necessary for multi-GPU train-
ing to be “worth” the overhead of communication
between GPUs.

In light of these observations, our general rec-
ommendation is that, if one owns a machine with
multiple GPUs, one should consider using all avail-
able (idle) GPUs for energy- and time-efficient fine-
tuning. Although it is often sufficient to use a sin-
gle GPU when fine-tuning models of scale similar
to ours, and instantaneous energy usage may be
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higher using more GPUs, total energy used may
end up being less while also requiring less time, es-
pecially if the training sequences tend to be longer.
On the other hand, tasks with short sequences are
likely best kept to a single GPU.
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