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Abstract

By grounding natural language inference in
code (and vice versa), researchers aim to create
programming assistants that explain their work,
are “coachable” and can surface any gaps in
their reasoning. Can we deduce automatically
interesting properties of programs from their
syntax and common-sense annotations alone,
without resorting to static analysis? How much
of program logic and behaviour can be captured
in natural language? To stimulate research in
this direction and attempt to answer these ques-
tions we propose HTL , a dataset and protocol
for annotating programs with natural language
predicates at a finer granularity than code com-
ments and without relying on internal compiler
representations.

The dataset is available at the following address:
https://doi.org/10.5281/zenodo.7893113 .

1 Introduction

Software engineering is an interactive, social prac-
tice, in which communication with peers and read-
ing program code are as important if not more than
the act of writing code itself. Recent focus on the
application of large language models to program-
ming enabled the analysis and synthesis of ever-
growing segments of text (both for program syn-
thesis (Xu et al., 2022) and summarization (Wang
et al., 2021)), with helpful and remarkably human-
like responses, hinting at the possibility of artificial
assistants to augment human users.

A common issue with generative models of text
is that their output cannot be explicitly controlled,
and as such it may contain factual inaccuracies,
copies of the training set, etc. It is desirable, then,
that such models produce explanations of their out-
put, in the form of “entailment trees”’(Dalvi et al.,
2021), references to their sources, and the like.

Inspired by recent results in explainable open-
domain question answering (Dalvi et al., 2021;
Tafjord et al., 2021) and natural language inference
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Figure 1: Two program statements .S; and So annotated
with one or more pre-and post-conditions. Can an au-
tomatic system deduce ()2 or P; from the remaining
annotations?

with missing premises (Sprague et al., 2022) we
ask whether it is possible to reason about programs
with natural language.

As a first step towards answering this ques-
tion, we present a bi-modal dataset, HTL (“Hoare
Triples via Language”), composed of natural
language predicates describing a pre- and post-
condition of a given program expression or state-
ment, paired with spans of program code.

By asking practitioners to produce behavioural
annotations of statements and larger blocks of
code as they would communicate to a mentee, we
aim to capture “intuitive theories” (Tenenbaum
et al., 2007) of program semantics in language,
i.e. sketches of causal knowledge that can guide
deduction and inform explanation of results.

A natural language approximation of program
semantics aims to fill the gap between code “com-
ments” (as programmers usually attach to functions
or module headers) and exact formal methods. On
one hand, comments can be highly informative
about programmer intent (which may or may not
coincide with program behaviour) but generally fol-
low no set quality standard and contain jargon and
abbreviations; on the other, formal methods such
as static analysis and symbolic execution provide
sound approximations but require expertise in for-
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for v, f in zip(valids, filenames):

n_digits = sum(c.isdigit() for c in f)
P : "'c' is a character”
S : c.isdigit()
Q : "'true' if 'c' contains a digit”
P : "'f' is a string”

S : c.isdigit() for c in f
Q : "a list with 'true'
<~ 'false' otherwise”

P : "'filenames' is a list of strings”
: for v, f in zip(valids, filenames):
Q : "'f' is bound to each string in

wn

at each position where 'f'

contains a digit character and

"filenames '"

Figure 2: A code snippet from Schuster et al. (2021) and three HTL labeled instances obtained from it. The
annotation triples are presented in order of inclusion of the variables’ lexical scope, see the Annotation Guidelines
in Section 2 for details. Please refer to Appendix 5 for a full description of the schema.

malizing the specification (Iordache and Ciobaca,
2021) as well as advanced tooling, when implemen-
tations even exist.

To summarize, in this paper we make the follow-
ing contributions:

* We introduce HTL , a new dataset of fine-
grained natural-language annotations of pro-
gram behaviour

* We describe the annotation protocol and tool
we developed to produce the dataset.

Background Hoare (1969) laid an axiomatic
foundation for proving properties of computer
programs, by introducing friples (written as
{P} S{Q} ) relating a precondition predicate P, a
statement .S and a postcondition predicate () that
results from executing the statement (provided this
terminates). It is worth noting that predicates P
and @ can apply either to individual variables in
the program or to sets of those. The Hoare for-
malism has been extended in many ways since the
original publication to account for features of mod-
ern programming languages such as lexical scope
and recursive function calls (de Boer and Hiep,
2021). By relating pairs of triples with appropri-
ate rules, Hoare logic deduces pre- and postcondi-
tions of larger programs; for example, in order to
compute the final postcondition of a two-statement
program S7; Sy , the composition axiom of Hoare
triples can then be invoked, as long as the interme-
diate postcondition coincides with or implies the
next precondition: in symbols, given {P;} S {Q}

and {Q} Sz {R} , the compound triple is written
{P1} S1;S2 {R} . In the example of Figure 1, the
two triples can be composed because the second
one appears in the lexical scope introduced by the
first one.

2 The HTL dataset

Desiderata One of our aims while preparing this
dataset was that the “code” part should be straight-
forward to verify. The source data should then be
made of code that is self-contained (i.e. needs no
external libraries) and it should be efficiently com-
putable as a ground truth. In addition, it should be
possible to reason locally about the behavior of the
statements to be annotated; this restricted us to an
idealized fragment of the programming language,
e.g. without object class declarations and instances.

”

Dataset construction We had a few “false starts
while constructing the dataset; many of the paired
code-language dataset we initially evaluated (e.g.
Kocetkov et al. (2022); Yin et al. (2018); Husain
et al. (2019)) are scraped from public software
repositories and often their instances cannot be
executed in isolation (since that would require ex-
ternal libraries or modules that are not included in
the dataset).

Another unsuccessful attempt was with anno-
tating the language documentation pages directly
(e.g. “reference” in docs.python.org); these con-
tain extensive commentary but relatively few code
snippets apart from the class headers and method
signatures.
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Figure 3: Annotation coverage of the dataset.

The current version of the HTL dataset builds
upon the “Programming Puzzles” dataset of Schus-
ter et al. (2021). Each instance in the source
dataset is a Python function implemented to re-
turn a Boolean indicating whether the input solves
the programming puzzle or not; the code snippets
in the source dataset are all on the order of a few
tens of lines in length, which explains the distribu-
tion of the resulting annotations in Figure 3. Some
resulting instances that appear in HTL can be seen
in Figure 2.

Apart from assert statements, the code is
mostly “referentially transparent” , i.e. it performs
no file or socket I/0, however there are instances
of in-place variable mutation .

Annotation guidelines Following where possi-
ble the protocol of Dalvi et al. (2021), authors were
asked to write annotations that are :

* entailments®: postconditions should immedi-
ately follow from the statement, and precon-
ditions should be immediately precedent to
it,

* compositional: allowing more general facts
to be proven from specific ones. Considering
two annotations with one span strictly con-
taining the other one, the preconditions of the
contained one can be taken to apply to the
surrounding one as well.

When an annotation does not have a pre- or post-
condition, we take the empty slot as shorthand for
the T atom: {T}S{Q@} means that whenever S
halts @ holds; conversely, {P}S{T} is true for
all compatible and terminating P and S.

Since the annotations are free-text, we enclose in
single quotes any references to program variables

"More specifically, a reference can be substituted with the
definition it points to. N.B.: asserts are optimized away with
the -0 runtime flag, and the absence of side effects cannot be
determined a priori in Python.

2 A entails B (written A - B) if A cannot be true without
B being true.

min max mean std.dev.

Preconditions 0 122 20.1 22.9
Postconditions 5 142 535 23.7
Statements 4 501 46.9 68.4

Table 1: Annotation length statistics (no. of characters)

or built-in names., e.g. ’state’ has at least
’i’ elements, in order to later tokenize them as
distinct entities.

Anneotation tool We implemented an interac-
tive code annotation tool, consisting of a browser-
based frontend and a server that samples from the
memory-mapped source dataset and implements a
simple REST API for annotating single triples, and
proceeding to the next example (see Figure 4).
The design of the annotation UI underwent a
few iterations too, in order to support a human
programmer with contextual feedback and allow to
build upon previous knowledge incrementally.

3 Related Work

Datasets for program understanding Seman-
tic parsing (SP) (i.e. translating a natural utter-
ance to formal language while preserving meaning)
and program summarization (the inverse process)
are well-studied problems that progressed together
with the diffusion of code-natural language datasets
(such as Yu et al. (2018); Hasan et al. (2021);
Lu et al. (2021); Lai et al. (2022)). Most of the
larger datasets employ some form of automatic
web scraping of sources that contain both code
and natural-language descriptions (e.g. comments,
forum questions and answers, etc.), followed by
multiple steps of de-duplication and human cura-
tion; this approach trades off specificity for scale,
and is in general not guaranteed to contain func-
tional code or informative text (compare with our
desiderata in Section 2).

Reasoning with natural language Bos and
Markert (2005) discuss the approximate entailment
problem and “distance” to entailment, but their se-
mantic representation is based on first-order logic
formulas and grounded with WordNet.

Clark et al. (2021) demonstrate deductive rea-
soning in transformer-based language models us-
ing deductive rules expressed in a restricted natural
language. In their setting, all premises and rules
must be explicitly stated to construct valid training
instances.
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def sat(vowels: List[str], texts=['sATExtIjopEJOWIVU', 'v',
'CAMe', 'SApiQuUzISYG', 'NaV'l):
for v, t in zip(vowels, texts):
i=0
for §, ¢ in enumerate(t):
if Calower()Iin "aeion” or ERTOWER(I==IYY and j == len(t) - 1:
assert v[i] == ¢
i+=1
assert i == len(v)
return len(vowels) == len(texts)

'teXT0GOzetEX",

'vowels' and 'texts' are lists or iterables

for v, t in zip(vowels, texts):
i=0
for j, c in enumerate(t):
if c.lower() in "aeiou" or c.lower() == 'y' and j
== len(t) - 1:

assert v[i] == ¢
i+=1

assert i == len(v)

the program stops if 'i' is not equal to the length of 'v*

't' is iterable

for j, c in enumerate(t):

159 325

't' is iterable every time 'c' satisfies the predicates

for j, ¢ in enumerate(t):
if c.lower() in "aeiou"
assert v[i] ==c¢
i+=1

ANNOTATE

'c' is a character

c.lower() in

if c.lower() in "aeiou" or c.lower() == 'y' and j "aeiou"

== len(t) - 1:

assert v[i] == c returns 'true' if 'c'isa
o= d vowel

'i" is incremented by 1 every time 'c' satisfies the predicates

Figure 4: The user interface of the HTL data labeler. Top left : one code instance. Top right : when the user
highlights a span of code, a callback copies it to the textbox, and the user can input pre- and a post-condition. After
each annotation round, the updated ranges of the current annotations are superimposed on the code as a heatmap.
Bottom row: as the user hovers on the highlighted spans, the backend retrieves the annotations that overlap with the

Cursor.

4 Discussion

In summary, we presented HTL , a new dataset
of fine-grained annotations of program behaviour
written in natural language and structured as Hoare
triples. We discussed the limitations of some cur-
rent labelling approaches for program understand-
ing datasets, and presented a new annotation proto-
col.

This work raised more questions than it an-
swered; we hope the dataset we presented here
can serve as a foundation for addressing some of
the following ones.

Grounding Our dataset currently lacks a connec-
tion between surface forms (program and language
strings) and valuations, and only associates the two
language modalities.

Open-world vs. closed-world Due to the lack
of typing of Python code, our annotations make as-
sumptions that might be unnecessarily restrictive;
it would be interesting to follow previous work
(Tafjord et al., 2021) and consider Unknown predi-
cate valuations as well.

Training language models on HTL We conjec-
ture that a language model can be trained with a
linearized tree of triples (similarly to the encoding
scheme of Dalvi et al. (2021)), e.g. by aiming to
reconstruct a missing pre- or a post-condition. In
symbols, one could approximate or optimize for Q

s.t. (P, S) F Q (deduction) and P s.t. P (S,Q)
(abduction), similarly to recent “masked” language
modeling objectives.

By “fine-tuning” a preexisting language model
such as TS5 (Raffel et al., 2020) with HTL we hope
to leverage the model’s implicit world knowledge
and language proficiency (e.g. with regards to syn-
onymity, polysemy etc.) which could help when
aligning semantically-related annotations.

Automatic labeling Understanding and annotat-
ing program fragments is a very laborious and time-
consuming process. Could we delegate this task to
a generative language model instead?

Limitations

Since the source dataset (Schuster et al., 2021) ad-
dresses algorithm design puzzles, it is implemented
using functions that do not have computational
side effects, does not define and use new types
and classes, and additionally does not admit im-
ported modules or libraries external to the Python
standard library. Consequently our derived HTL
dataset is subject to the same limitations and as
such its instances are not representative of many
real-world programs.

The annotations are written by humans; as such
and despite best efforts they might be noisy and of
an uneven standard across the corpus.
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Ethics Statement

Our dataset contains fine-grained annotations on
the behaviour of program code; as such, the knowl-
edge it embodies is of a very specialized nature and
in particular it does not carry potentially harmful
biases against any culture or society. We release
our HTL dataset for research purposes only.
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A Annotation Schema

{
"annTriple"”: {

"postcondition”: "declares a lambda function that returns the 'i+1'th element of 'kept'”,

"precondition”: "'kept' is a list",

"statement”: {
"trContent”: "lambda i: kept[i]”,
"trEnd”: 401,
"trStart”: 384

3
b
b

Figure 5: An annotated triple from the FilterInts:@
instance

Above in Figure 5 is an example of an anno-
tated triple, serialized as a JSON object. The fields
precondition and postcondition are called P
and @ respectively in the main text whereas the
trStart, trEnd fields are the position within the
original data instance of the start and end of the
highlighted code span (i.e. the trContent field
which corresponds to S in the Hoare triple defini-
tion).
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