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Abstract
Hierarchical multi-label text classification
(HMTC) aims at utilizing a label hierarchy in
multi-label classification. Recent approaches
to HMTC deal with the problem of impos-
ing an overconstrained premise on the output
space by using contrastive learning on gener-
ated samples in a semi-supervised manner to
bring text and label embeddings closer. How-
ever, the generation of samples tends to intro-
duce noise as it ignores the correlation between
similar samples in the same batch. One solu-
tion to this issue is supervised contrastive learn-
ing, but it remains an underexplored topic in
HMTC due to its complex structured labels. To
overcome this challenge, we propose HJCL, a
Hierarchy-aware Joint Supervised Contrastive
Learning method that bridges the gap between
supervised contrastive learning and HMTC.
Specifically, we employ both instance-wise
and label-wise contrastive learning techniques
and carefully construct batches to fulfill the
contrastive learning objective. Extensive ex-
periments on four multi-path HMTC datasets
demonstrate that HJCL achieves promising re-
sults and the effectiveness of Contrastive Learn-
ing on HMTC. Code and data are available at
https://github.com/simonucl/HJCL.

1 Introduction

Text classification is a fundamental problem in nat-
ural language processing (NLP), which aims to
assign one or multiple categories to a given doc-
ument based on its content. The task is essential
in many NLP applications, e.g. in discourse re-
lation recognition (Chan et al., 2023), scientific
document classification (Sadat and Caragea, 2022),
or e-commerce product categorization (Shen et al.,
2021). In practice, documents might be tagged
with multiple categories that can be organized in a
concept hierarchy, such as a taxonomy of a knowl-
edge graph (Pan et al., 2017b,a), cf. Figure 1. The
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Figure 1: Example of an input sample and its annotated
labels from the New York Times dataset (Sandhaus,
2008). The Label Taxonomy is a subgraph of the actual
hierarchy.

task of assigning multiple hierarchically structured
categories to documents is known as hierarchical
multi-label text classification (HMTC).

A major challenge for HMTC is how to semanti-
cally relate the input sentence and the labels in the
taxonomy to perform classification based on the
hierarchy. Recent approaches to HMTC handle the
hierarchy in a global way by using graph neural net-
works to incorporate the hierarchical information
into the input text to pull together related input em-
beddings and label embeddings in the same latent
space (Zhou et al., 2020; Deng et al., 2021; Chen
et al., 2021; Wang et al., 2022b; Jiang et al., 2022).
At the inference stage, most global methods reduce
the learned representation into level-wise embed-
dings and perform prediction in a top-down fashion
to retain hierarchical consistency. However, these
methods ignore the correlation between labels at
different paths (with varying lengths) and different
levels of abstraction.

To overcome these challenges, we develop a
method based on contrastive learning (CL) (Chen
et al., 2020). So far, the application of contrastive
learning in hierarchical multi-label classification
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has received very little attention. This is because
it is difficult to create meaningful positive and neg-
ative pairs: given the dependency of labels on the
hierarchical structure, each sample could be char-
acterized with multiple labels, which makes it hard
to find samples with the exact same labels (Zheng
et al., 2021). Previous endeavors in text classi-
fication with hierarchically structured labels em-
ploy data augmentation methods to construct posi-
tive pairs (Wang et al., 2022a; Long and Webber,
2022). However, these approaches primarily focus
on pushing apart inter-class labels within the same
sample but do not fully utilize the intra-class labels
across samples. A notable exception is the work
by Zhang et al. (2022a) in which CL is performed
across hierarchical samples, leading to consider-
able performance improvements. However, this
method is restricted by the assumption of a fixed
depth in the hierarchy i.e., it assumes all paths in
the hierarchy have the same length.

To tackle the above challenges, we introduce
a supervised contrastive learning method, HJCL,
based on utilising in-batch sample information for
establishing the label correlations between samples
while retaining the hierarchical structure. Techni-
cally, HJCL aims at achieving two main goals: 1)
For instance pairs, the representations of intra-class
should obtain higher similarity scores than inter-
class pairs, meanwhile intra-class pairs at deeper
levels obtain more weight than pairs at higher lev-
els. 2) For label pairs, their representations should
be pulled close if their original samples are similar.
This requires careful choices between positive and
negative samples to adjust the contrastive learning
based on the hierarchical structure and label simi-
larity. To achieve these goals, we first adopt a text
encoder and a label encoder to map the embeddings
and hierarchy labels into a shared representation
space. Then, we utilize a multi-head mechanism to
capture different aspects of the semantics to label
information and acquire label-specific embeddings.
Finally, we introduce two contrastive learning ob-
jectives that operate at the instance level and the
label level. These two losses allow HJCL to learn
good semantic representations by fully exploiting
information from in-batch instances and labels. We
note that the proposed contrastive learning objec-
tives are aligned with two key properties related
to CL: uniformity and alignment (Wang and Isola,
2020). Uniformity favors feature distribution that
preserves maximal mutual information between the

representations and task output, i.e., the hierarchi-
cal relation between labels. Alignment refers to
the encoder being able to assign similar features to
closely related samples/labels. We also emphasize
that unlike previous methods (Zhang et al., 2022a),
our approach has no assumption on the depth of
the hierarchy.

Our main contributions are as follows:

• We propose HJCL, a representation learning
approach that bridges the gap between super-
vised contrastive learning and Hierarchical
Multi-label Text Classification.

• We propose a novel supervised contrastive
loss on hierarchical structure labels that weigh
based on both hierarchy and sample similar-
ity, which resolves the difficulty of applying
vanilla contrastive in HMTC and fully utilizes
the label information between samples.

• We evaluate HJCL on four multi-path datasets.
Experimental results show its effectiveness.
We also carry out extensive ablation studies.

2 Related Work

Hierarchical Multi-label Text Classification
Existing HMTC methods can be divided into two
groups based on how they utilize the label hi-
erarchy: local or global approaches. The local
approach (Kowsari et al., 2017; Banerjee et al.,
2019) reuses the idea of flat multi-label classifi-
cation tasks and trains unique models for each
level of the hierarchy. In contrast, global meth-
ods treat the hierarchy as a whole and train a single
model for classification. The main objective is
to exploit the semantic relationship between the
input and the hierarchical labels. Existing meth-
ods commonly use reinforcement learning (Mao
et al., 2019), meta-learning (Wu et al., 2019), atten-
tion mechanisms (Zhou et al., 2020), information
maximization (Deng et al., 2021), and matching
networks (Chen et al., 2021). However, these meth-
ods learn the input text and label representations
separately. Recent works have chosen to incorpo-
rate stronger graph encoders (Wang et al., 2022a),
modify the hierarchy into different representations,
e.g. text sequences (Yu et al., 2022), or directly in-
corporate the hierarchy into the text encoder (Jiang
et al., 2022; Wang et al., 2022b). To the best of
our knowledge, HJCL is the first work to utilize
supervised contrastive learning for the HMTC task.
Contrastive Learning In HMTC, there are two
major constraints that make challenging for su-
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pervised contrastive learning (SCL) (Gunel et al.,
2020) to be effective: multi-label and hierarchical
labels. Indeed, SCL was originally proposed for
samples with single labels, and determining posi-
tive and negative sets becomes difficult. Previous
methods resolved this issue mainly by reweight-
ing the contrastive loss based on the similarity to
positive and negative samples (Suresh and Ong,
2021; Zheng et al., 2021). Note that the pres-
ence of a hierarchy exacerbates this problem. Con-
trastiveIDRR (Long and Webber, 2022) performed
semi-supervised contrastive learning on hierarchy-
structured labels by contrasting the set of all other
samples from pairs generated via data augmenta-
tion. Su et al. (2022b) addressed the sampling
issue using a kNN strategy on the trained samples.
In contrast to previous methods, HJCL makes fur-
ther progress by directly performing supervised
contrastive learning on in-batch samples. In a re-
cent study in computer vision, HiMulConE (Zhang
et al., 2022a) proposed a method similar to ours
that focused on hierarchical multi-label classifica-
tion with a hierarchy of fix depth. However, HJCL
does not impose constraints on the depth of the hier-
archy and achieves this by utilizing a multi-headed
attention mechanism.

3 Background
Task Formulation Let Y = {y1, . . . , yn} be a
set of labels. A hierarchy H = (T, τ) is a labelled
tree with T = (V,E) a tree and τ : V → Y a
labelling function. For simplicity, we will not dis-
tinguish between the node and its label, i.e. a label
yi will also denote the corresponding node. Given
an input text X = {x1, . . . ,xm} and a hierarchy
H, the hierarchical multi-label text classification
(HMTC) problem aims at categorizing the input
text into a set of labels Y ⊆ Y , i.e., at finding a
function F such that given a hierarchy, it maps a
document xi to a label set Y ⊆ Y . Note that, as
shown in Figure 1, a label set Y could contain ele-
ments from different paths in the hierarchy. We say
that a label set Y is multi-path if we can partition
Y (modulo the root) into sets Y 1, . . . , Y k, k ≥ 2,
such that each Y i is a path in H.

Multi-headed Attention Vaswani et al. (2017)
extended the standard attention mechanism (Luong
et al., 2015) to allow the model to jointly attend
to information from different representation sub-
spaces at different positions. Instead of comput-
ing a single attention function, this method first

projects the query Q, key K and value V onto h
different heads and an attention function is applied
individually to these projections. The output is a
linear transformation of the concatenation of all
attention outputs: The multi-headed attention is
defined as follows (Lee et al., 2018):

Multihead(Q,K, V ) = WO [O1||O2|| . . . ||Oh]
(1)

where Oj = Attention(QW q
j ,KW k

j , V W v
j ), and

W q
j ,W

k
j ∈ Rdq×dhq , W v

j ∈ Rdv×dhv and WO ∈
Rhdhv×d are learnable parameters in the multi-head
attention. || represents the concatenation operation,
dhq = dq/h and dhv = dv/h.

Supervised Contrastive Learning Given a
mini-batch with m samples and n labels, we define
the set of label embeddings as Z = {zij ∈ Rd | i ∈
[1,m], j ∈ [1, n]} and the set of ground-truth la-
bels as Y = {yij ∈ {0, 1} | i ∈ [1,m], j ∈ [1, n]}.
Each label embedding can be seen as an inde-
pendent instance and can be associated to a la-
bel {(zij , yij)}ij . We further define I = {zij ∈
Z | yij = 1} as the gold label set. Given an an-
chor sample zij from I , we define its positive set as
Pij = {zkj ∈ I | ykj = yij = 1} and its negative
set as Nij = I \{{zij} ∪ Pij}. The supervised
contrastive learning loss (SupCon) (Khosla et al.,
2020) is formulated as follows:

Lcon =
∑

zij∈I

−1

|Pij |
∑

zp∈Pij

log
exp(zij · zp/τ)∑

za∈Pij∪Nij
exp(zij · za/τ)

(2)

4 Methodology

The overall architecture of HJCL is shown in Fig.
2. In a nutshell, HJCL first extracts a label-aware
embedding for each label and the tokens from the
input text in the embedding space. HJCL combines
two distinct types of supervised contrastive learn-
ing to jointly leverage the hierarchical informa-
tion and the label information from in-batch sam-
ples.: (i) Instance-level Contrastive Learning and
(ii) Hierarchy-aware Label-enhanced Contrastive
Learning (HiLeCon).

4.1 Label-Aware Embedding
In the context of HMTC, a major challenge is that
different parts of the text could contain informa-
tion related to different paths in the hierarchy. To
overcome this problem, we first design and extract
label-aware embeddings from input texts, with the
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Figure 2: The model architecture for HJCL. The model is split into three parts: (a) shows the multi-headed attention
and the extraction of label-aware embeddings; parts (b) and (c) show the instance-wise and label-wise contrastive
learning. The legend on the lower left of (a) shows the labels corresponding to each color. We use different colors to
identify the strength of contrast: the lighter the color, the less pushing/pulling between two instances/labels.

objective of learning the unique label embeddings
between labels and sentences in the input text.

Following previous work (Wang et al., 2022a;
Jiang et al., 2022), we use BERT (Devlin et al.,
2019) as text encoder, which maps the input tokens
into the embedding space: H = {h1, . . . , hm},
where hi is the hidden representation for each
input token xi and H ∈ Rm×d. For the label
embeddings, we initialise them with the average
of the BERT-embedding of their text description,
Y ′ = {y′

1, . . . ,y
′
n}, Y ′ ∈ Rn×d. To learn the hi-

erarchical information, a graph attention network
(GAT) (Velickovic et al., 2018) is used to propagate
the hierarchical information between nodes in Y ′.

After mapping them into the same representa-
tion space, we perform multi-head attention as
defined at Eq. 1, by setting the ith label embed-
ding yi as the query Q, and the input tokens rep-
resentation H as both the key and value. The
label-aware embedding gi is defined as follows:
gi = Multihead(y′

i, H,H), where i ∈ [1, n] and
gi ∈ Rd. Each gi is computed by the attention
weight between the label yi and each input token in
H , then multiplied by the input tokens in H to get
the label-aware embeddings. The label-aware em-
bedding gi can be seen as the pooled representation
of the input tokens in H weighted by its semantic
relatedness to the label yi.

4.2 Integrating with Contrastive Learning

Following the general paradigm for contrastive
learning (Khosla et al., 2020; Wang et al., 2022a),
the learned embedding gi has to be projected into a
new subspace, in which contrastive learning takes
place. Taking inspiration from Wang et al. (2018)
and Liu et al. (2022), we fuse the label representa-

tions and the learned embeddings to strengthen the
label information in the embeddings used by con-
trastive learning, ai = [gi||y′

i] ∈ R2d. An attention
mechanism is then applied to the final represen-
tation zi = αT

i H , where zi ∈ Rd, αi ∈ Rm×1,
αi = softmax(H(Waai + ba)) (Wa ∈ Rd×2d

and ba ∈ Rd are trainable parameters)
Instance-level Contrastive Learning For
instance-wise contrastive learning, the objective
is simple: the anchor instances should be closer
to the instances with similar label-structure than
to the instances with unrelated labels, cf. Fig.
2. Moreover, the anchor nodes should be closer
to positive instance pairs at deeper levels in the
hierarchy than to positive instance pairs at higher
levels. Following this objective, we define a
distance inequality: distpos

ℓ1
< distpos

ℓ2
< distneg,

where 1 ≤ ℓ2 < ℓ1 ≤ L and distpos
ℓ is the distance

between the anchor instance Xi and Xℓ, which
have the same labels at level ℓ.

Given a mini-batch for instances {(Zi, Yi)}n,
where Zi = {zij | j ∈ [0, n]}, Zi ∈ Rn×d con-
tains the label-aware embeddings for sample i, we
define their subsets at level ℓ as Zℓ

i = {zij | zij ∈
Zi, depth(yij) ≤ ℓ}, Y ℓ

i = {yij | depth(yij) ≤ ℓ}.

Llevel(Zℓ
i , Z

ℓ
j ) = log

exp(Xℓ
i ·Xℓ

j/τ)∑
Zk∈Nℓ\i exp(Xℓ

i ·Xℓ
k/τ)

where Xℓ
i = average(Zℓ

i ) and Xℓ
i ∈ Rd is the

mean pooling representation of Zℓ
i ∈ Rnℓ×d.

LInst. =
1

L

L∑

l

−1

|Pℓ|
∑

i∈I

∑

Zj∈Pℓ

Llevel(Zℓ
i , Z

ℓ
j ) · exp(

1

|L| − ℓ
)

where L = {1, . . . , ℓh} is the set of levels in the
taxonomy, |L| is the maximum depth and the term
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exp( 1
|L|−ℓ) is a penalty applied to pairs constructed

from deeper levels in the hierarchy, forcing them
to be closer than pairs constructed from shallow
levels.

Label-level Contrastive Learning We will also
introduce label-wise contrastive learning. This is
possible due to our extraction of label-aware em-
beddings in Section 4.1, which allows us to learn
each label embedding independently. Although
Equation 2 performs well in multi-class classifi-
cation (Zhang et al., 2022b), it is not the case
for multi-label classification with hierarchy. (1)
It ignores the semantic relation from their origi-
nal sample {Xi,Xk}. (2) Nij contains the label
embeddings from the same samples but with differ-
ent classes, zik. Pushing apart labels that are con-
nected in the hierarchy could damage the classifica-
tion performance. To bridge this gap, we propose
a Hierarchy-aware Label-Enhanced Contrastive
Loss Function (HiLeCon), which carefully weighs
the contrastive strength based on the relatedness
of the positive and negative labels with the anchor
labels. The basic idea is to weigh the degree of con-
trast between two label embeddings zi, zj by their
samples’ label similarity, Yi, Yj ∈ {0, 1}n. In par-
ticular, in supervised contrastive learning, the gold
labels for the samples from where the label pairs
come can be used for their similarity measurement.
We will use a variant of the Hamming metric that
treats differently labels occurring at different levels
of the hierarchy, such that pairs of labels at higher
level should have a larger semantic difference than
pairs of labels at deeper levels. Our metric between
Yi and Yj is defined as follows:

ρ(Yi, Yj) =

n∑

k=0

dist(yik, yjk)

dist(yik, yjk) =

{
|L| − ℓk + 1 yik ̸= yjk

0 Otherwise

where ℓi is the level of the i-th label in the hier-
archy. For example, the distance between News
and Classifields in Figure 1 is 4, while the distance
between United Kingdom and France is only 1. In-
tuitively, this is the case because United Kingdom
and France are both under Countries, and samples
with these two labels could still share similar con-
texts relating to the World News.

We can now use our metric to set the weight
between positive pairs zij ∈ Pij and negative pairs
zik ∈ Nij in Eq. 2:

σij = 1− ρ(Yi, Yj)

C
, γik = ρ(Yi, Yk) (3)

where C = ρ(0n,1n)
1 is used to normalize the σij

values. HiLeCon is then defined as

LHiLeCon =
1

N

∑

zij∈I

−1

|Pij |
∑

zp∈Pij

(4)

[log
σijf(zij , zp)∑

za∈Pij
σijf(zij , za) +

∑
zk∈Nij

γikf(zij , zk)
]

where n is the number of labels and f(·, ·) is the
exponential cosine similarity measure between two
embeddings. Intuitively, in LHiLeCon the label em-
beddings with similar gold label sets should be
close to each other in the latent space, and the mag-
nitude of the similarity is determined based on how
similar their gold labels are. Conversely, for dis-
similar labels.

4.3 Classification and Objective Function

At the inference stage, we flatten the label-aware
embeddings and pass them through a linear layer
to get the logits si for label i:

S = (Ws([g1||g2|| . . . ||gn]) + bs) (5)

where Ws ∈ Rn×nd, bs ∈ Rn, S ∈ Rn×1 and S =
{s1, . . . , sn}. Instead of Binary Cross-entropy, we
use the novel loss function “Zero-bounded Log-
sum-exp & Pairwise Rank-based” (ZLPR) (Su
et al., 2022a), which captures label correlation in
multi-label classification:

LZLPR = log


1 +

∑

i∈Ωpos

e−si


+ log


1 +

∑

j∈Ωneg

esj




where si, sj ∈ R are the logits output from the
Equation (5). The final prediction is as follows:

ypred = {yi|si > 0} (6)

Finally, we define our overall training loss function:

L = LZLPR + λ1 · LInst. + λ2 · LHiLeCon (7)

where λ1 and λ2 are the weighting factors for the
Instance-wise Contrastive loss and HiLeCon.

1The maximum value for ρ, i.e. the distance between the
empty label sets and label sets with all labels.
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Model BGC AAPD RCV1-V2 NYT

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Hierarchy-Aware Models

TextRCNN - - - - 81.57 59.25 70.83 56.18
HiAGM 77.22 57.91 - - 83.96 63.35 74.97 60.83
HTCInfoMax 76.84 58.01 79.64 54.48 83.51 62.71 74.84 59.47
HiMatch 76.57 58.34 80.74 56.16 84.73 64.11 74.65 58.26

Instruction-Tuned Language Model

ChatGPT 57.17 35.63 45.82 27.98 51.35±0.18 32.20±0.30 - -

Pretrained Language Models

BERT 78.84 61.19 80.88 57.17 85.65 67.02 78.24 65.62
HiAGM (BERT) 79.48 62.84 80.68 59.47 85.58 67.93 78.64 66.76
HTCInfoMax (BERT) 79.16 62.94 80.76 59.46 85.83 67.09 78.75 67.31
HiMatch (BERT) 78.89 63.19 80.42 59.23 86.33 68.66 - -
Seq2Tree (T5) 79.72 63.96 80.55 59.58 86.88 70.01 - -
HiMulConE (BERT)△ 79.19 60.85 80.98 57.75 85.89 66.65 77.53 61.08
HGCLR (BERT)△ 79.22 64.04 80.95 59.34 86.49 68.31 78.86 67.96

HJCL (BERT) 81.30↑1.58
±0.29 66.77↑2.73

±0.37 81.91↑0.96
±0.18 61.59↑2.01

±0.23 87.04↑0.16
±0.24 70.49↑0.48

±0.32 80.52↑1.66
±0.28 70.02↑2.06

±0.31

Table 1: Experimental results on the four HMTC datasets. The best results are in bold and the second-best is
underlined. We report the mean results across 5 runs with random seeds. Models with △ are those using contrastive
learning. For HiAGM, HTCInfoMax and HiMatch, their works used TextRCNN (Zhou et al., 2020) as encoder in
their paper, we replicate the results by replacing it with BERT. The ↑ represents the improvement to the second best
model; the ± represent the std. between experiments.

5 Experiments

Datasets and Evaluation Metrics We conduct
experiments on four widely-used HMTC bench-
mark datasets, all of them consisting of multi-path
labels: Blurb Genre Collection (BGC)2, Arxiv
Academic Papers Dataset (AAPD) (Yang et al.,
2018), NY-Times (NYT) (Shimura et al., 2018),
and RCV1-V2 (Lewis et al.). Details for each
dataset are shown in Table 5. We adopt the data
processing method introduced in Chen et al. (2021)
to remove stopwords and use the same evaluation
metrics: Macro-F1 and Micro-F1.

Baselines We compare HJCL with a variety
of strong hierarchical text classification baselines,
such as HiAGM (Zhou et al., 2020), HTCInfoMax
(Deng et al., 2021), HiMatch (Chen et al., 2021),
Seq2Tree (Raffel et al., 2019), HGCLR (Wang
et al., 2022a). Specifically, HiMulConE (Zhang
et al., 2022a) also uses contrastive learning on the
hierarchical graph. More details about their imple-
mentation are listed in A.2. Given the recent ad-
vancement in Large Language Models (LLMs), we
also consider ChatGPT gpt-turbo-3.5 (Brown
et al., 2020) with zero-shot prompting as a base-
line. The prompts and examples of answers from
ChatGPT can be found in Appendix C.

2https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/
data/blurb-genre-collection.html

5.1 Main Results

Table 1 presents the results on hierarchical multi-
label text classification. More details can be found
in Appendix A. From Table 1, one can observe
that HJCL significantly outperforms the baselines.
This shows the effectiveness of incorporating su-
pervised contrastive learning into the semantic and
hierarchical information. Note that although HG-
CLR (Wang et al., 2022a) introduces a stronger
graph encoder and perform contrastive learning on
generated samples, it inevitably introduces noise
into these samples and overlooks the label correla-
tion between them. In contrast, HJCL uses a sim-
pler graph network (GAT) and performs contrastive
learning on in-batch samples only, yielding signifi-
cant improvements of 2.73% and 2.06% on Macro-
F1 in BGC and NYT. Despite Seq2Tree’s use of
a more powerful encoder, T5, HJCL still shows
promising improvements of 2.01% and 0.48% on
Macro-F1 in AAPD and RCV1-V2, respectively.
This demonstrates the use of contrastive model bet-
ter exploits the power of BERT encoder. HiMul-
ConE shows a drop in the Macro-F1 scores even
when compared to the BERT baseline, especially
on NYT, which has the most complex hierarchi-
cal structure. This demonstrates that our approach
to extracting label-aware embedding is an impor-
tant step for contrastive learning for HMTC. For
the instruction-tuned model, ChatGPT performs
poorly, particularly suffering from minority class
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performance. This shows that it remains challeng-
ing for LLMs to handle complex hierarchical in-
formation, and that representation learning is still
necessary.
5.2 Ablation Study

Ablation Models RCV1-V2 NYT
Micro-F1 Macro-F1 Micro-F1 Macro-F1

Ours 87.04 70.49 80.52 70.02
r.m. Label con. 86.67 69.26 79.90 69.15
r.m. Instance con. 86.83 68.38 79.71 69.28
r.m. Both con. 86.39 68.06 79.23 68.21
r.p. BCE Loss 86.42 69.24 79.74 69.26
r.m. Graph Fusion 85.15 67.61 79.03 67.25

Table 2: Ablation study when removing components
on the RCV1-V2 and NYT datasets. r.m. stands for
removing the component; r.p. stands for replace with.

To better understand the impact of the differ-
ent components of HJCL on performance, we con-
ducted an ablation study on both the RCV1-V2
and NYT datasets. The RCV1-V2 dataset has a
substantial testing set, which helps to minimise
experimental noise. In contrast, the NYT dataset
has the largest depth. One can observe in Table 2
that without label contrastive the Macro-F1 drops
notably in both datasets, 1.23% and 0.87%. The
removal of HiLeCon reduces the potential for label
clustering and majorly affects the minority labels.
Conversely, Micro-F1 is primarily affected by the
omission of the sample contrast, which prevents
the model from considering the global hierarchy
and learning label features from training instances
of other classes, based on their hierarchical inter-
dependencies. When both loss functions are re-
moved, the performance declines drastically. This
demonstrates the effectiveness of our dual loss ap-
proaches.

Additionally, replacing the ZMLR loss with
BCE loss results in a slight performance drop,
showcasing the importance of considering label
correlation during the prediction stage. Further
analysis between BCE loss and ZLPR is shown in
Appendix B.3. Finally, as shown in the last row in
Table 2, the removal of the graph label fusion has
a significant impact on the performance. The pro-
jection is shown to affect the generalization power
without the projection head in CL (Gupta et al.,
2022). Ablation results on other datasets can be
found in Appendix B.1.

5.3 Effects of the Coefficients λ1 and λ2

As shown in Equation (7), the coefficients λ1 and
λ2 control the importance of the instance-wise and
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Figure 3: Effects of λ1 (left) and λ2 (right) on NYT and
RCV1. The step size for λ1 is 0.1 and λ2 is 0.2. λ1 has
a smaller step size since it is more sensitive to changes.

Figure 4: F1 scores on 4 different datasets with different
contrastive methods. The texts above the bar show the
offset between the models to the SupCon model.

label-wise contrastive loss, respectively. Figure 3
illustrates the changes on Macro-F1 when varying
the values of λ1 and λ2. The left part of Figure 3
shows that the performance peaks with small λ1

values and drops rapidly as these values continue to
increase. Intuitively, assigning too much weight to
the instance-level CL pushes apart similar samples
that have slightly different label sets, preventing
the models from fully utilizing samples that share
similar topics. For λ2, the F1 score peaks at 0.6
and 1.6 for NYT and RCV1-V2, respectively. We
attribute this difference to the complexity of the
NYT hierarchy, which is deeper. Even with the as-
sistance of the hierarchy-aware weighted function
(Eq. 3), increasing λ2 excessively may result in
overwhelmingly high semantic similarities among
label embeddings (Gao et al., 2019). The remaining
results are provided in Appendix B.1.

5.4 Effect of the Hierarchy-Aware Label
Contrastive loss

To further evaluate the effectiveness of HiLeCon
in Eq. 4, we conduct experiments by replacing it
with the traditional SupCon (Khosla et al., 2020)
or dropping the hierarchy difference by replacing
the ρ(·, ·) at Eq. 3 with Hamming distance, LeCon.
Figure 4 presents the obtained results and detailed
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Micro-F1 Macro-F1
Method BGC AAPD RCV1-V2 NYT p-value BGC AAPD RCV1-V2 NYT p-value

HiLeCon 81.30 81.91 87.04 80.52 - 66.77 61.59 70.49 70.02 -
LeCon 80.63 81.78 86.23 79.91 3.3e-2 65.12 61.42 69.01 68.57 4.0e-2
SupCon 78.64 80.70 84.54 78.64 8.3e-3 62.44 58.86 67.53 66.97 2.8e-3

Table 3: Comparison results on different Contrastive Learning approaches on the Label embedding, performed on
the 4 datasets. HiLeCon denotes our proposed method. The p-value is calculated by two-tailed t-tests.

Dataset Model AccP AccD

NYT

HJCL 75.22 71.96
HJCL (w/o con) 70.94 67.62
HGCLR 71.26 70.47
BERT 70.48 65.65

RCV1

HJCL 63.61 79.26
HJCL (w/o con) 60.50 75.83
HGCLR 62.99 78.62
BERT 61.90 75.60

Table 4: Measurement for AccP and AccD on NYT
and RCV1. The best scores are in bold and the second
best is underlined. The formula and results on BGC and
AAPD are shown in Appendix B.4.

results are shown in Table 3. HiLeCon outperforms
the other two methods in all four datasets with a
substantial threshold. Specifically, HiLeCon sig-
nificantly outperforms the traditional SupCon in
the four datasets by an absolute gain of 2.06% and
3.27% in Micro-F1 and Macro-F1, respectively.
As shown in Table 3, the difference in both met-
rics is statistically significant with p-value 8.3e-3
and 2.8e-3 by a two-tailed t-test. Moreover, the
improvement from LeCon in F1 scores by consid-
ering the hierarchy is 0.56% and 1.19% which are
statistically significant (p-value = 0.033, 0.040).
This shows the importance of considering label
granularity with depth information.

5.5 Results on Multi-Path Consistency

One of the key challenges in hierarchical multi-
label classification is that the input texts could
be categorized into more than one path in the hi-
erarchy. In this section, we analyze how HJCL
leverages contrastive learning to improve the cov-
erage of all meanings from the input sentence. For
HMTC, the multi-path consistency can be viewed
from two perspectives. First, some paths from the
gold labels were missing from the prediction, mean-
ing that the model failed to attribute the semantic
information about that path from the sentences;
and even if all the paths are predicted correctly, it
is only able to predict the coarse-grained labels at

upper levels but missed more fine-grained labels
at lower levels. To compare the performance on
these problems, we measure path accuracy (AccP )
and depth accuracy (AccD), which are the ratio of
testing samples that have their path number and all
their depth correctly predicted. (Their definitions
are given in the Appendix B.4). As shown in Table
4, HJCL (and its variants) outperformed the base-
lines, with an offset of 2.4% on average compared
with the second-best model HGCLR. Specifically,
the AccP for HJCL outperforms HGCLR with an
absolute gain of 5.5% in NYT, in which the ma-
jority of samples are multi-path (cf. Table 9 in the
Appendix). HJCL shows performance boosts for
multi-path samples, demonstrating the effective-
ness of contrastive learning.

5.6 Qualitative Analysis

United states

U.S. Washington

Contributors

(a) Gold Labels

United states

U.S. Washington

Contributors

Sports

Precision: 1.0 Recall: 1.0 !!: 1.0

(b) HJCL

United states

U.S. Washington

Contributors

Sports

Precision: 0.75 Recall: 0.23 !!: 0.35

(c) HGCLR

United states

U.S. Washington

Contributors

Sports

Precision: 0.92 Recall: 0.69 !!: 0.78

(d) HJCL (w/o con)
Texts: Last time we had Pat Robertson and Pat Buchanan. We had the Republican 
Chairman, warning that if Bill Clinton was elected as the U.S. President, Jane 
Fonda would be sleeping in the White House “as guest of honor at a state dinner...

Figure 5: Case study on a sample from the NYT dataset.
Orange represents true positive labels; Green repre-
sents false negative labels; Red represents false positive
labels; Blue represents true negative labels. The L99
indicates that two nodes are skipped. Part of the input
texts is shown at the bottom, the full text and prediction
results are in Appendix B.6.

HJCL better exploits the correlation be-
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tween labels in different paths in the hierar-
chy with contrastive learning. For an intu-
ition see the visualization in Figure 9, Ap-
pendix B.5. For example, the F1 score
of Top/Features/Travel/Guides/Destinations/North
America/United States is only 0.3350 for the HG-
CLR method (Wang et al., 2022a). In contrast,
our methods that fully utilised the label correlation
information improved the F1 score to 0.8176. Fig-
ure 5 shows a case study for the prediction results
from different models. Although HGCLR is able
to classify U.S. under News (the middle path), it
fails to take into account label similarity informa-
tion to identify the United States label under the
Features path (the left path). In contrast, our mod-
els correctly identify U.S. and Washington while
addressing the false positive for Sports under the
News category.

6 Conclusion

We introduce HJCL , a combination of two novel
contrastive methods that better learn the represen-
tation for embedding in Hierarchical Multi-Label
Text Classification (HMTC). Our method has the
following features: (1) It demonstrates that con-
trastive learning can help retain the hierarchy infor-
mation between samples. (2) By weighting both
label similarity and depth information, applying
supervised contrastive learning directly at the label
level shows promising improvement. (3) Evalu-
ation on four multi-path HMTC datasets demon-
strates that HJCL significantly outperforms previ-
ous baselines and shows that in-batch contrastive
learning notably enhances performance. Overall,
HJCL bridges the gap between supervised con-
trastive learning in hierarchical structured label
classification tasks in general and demonstrates
that better representation learning is feasible for
improving HMTC performance.

In the future, we plan to look into applying our
approach in some special kinds of texts, such as
arguments (Saadat-Yazdi et al., 2022, 2023; Chaus-
son et al., 2023), news (Pan et al., 2018; Liu et al.,
2021; Long et al., 2020a,b) and events (Guan et al.,
2023). Furthermore, we will also further develop
our approach in the setting of multi-modal (Kiela
et al., 2018; Chen et al., 2022b; Huang et al., 2023;
Chen et al., 2022a) classification, involving both
texts and images.
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Our method is based on the extraction of a label-
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onomy through multi-head attention and performs
contrastive learning on the learned embeddings.
Although our method shows significant improve-
ments, the use of label-aware embeddings scales
according to the number of labels in the taxon-
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ble for other HMTC datasets which consist of a
large number of labels. Recent studies (Ni et al.,
2023) show the possible improvement of Multi-
Headed Attention (MHA), which is to reduce the
over-parametrization posed by the MHA. Further
work should focus on reducing the number of label-
aware embeddings but still retaining the compara-
ble performance.
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Dataset L D Avg(Li) Train Dev Test

BGC 146 4 3.01 58,715 14,785 18,394
AAPD 61 2 4.09 53,840 1,000 1,000

RCV1-V2 103 4 3.24 20,833 2,316 781,265
NYT 166 8 7.60 23,345 5,834 7,292

Table 5: Dataset statistics. L is the number of classes.
D is the maximum level of hierarchy. Avg(Li) is the
average number of classes per sample. Note that the
commonly used WOS dataset (Kowsari et al., 2017) was
not used as its labels are single-path only.

A Appendix for Experiment Settings

A.1 Implementation Details

We implement our model using PyTorch-
Lightning3 since it is suitable for our large batches
used for contrastive learning. For fair comparison,
we employ the bert-base-uncased model which
was used by other HMTC models to implement
HJCL. The batch size is set to 80 for all datasets.
Unless noted otherwise, the λ1 and λ2 at Eq. 7 are
fixed to 0.1 and 0.5 for all datasets without any
hyperparameter searching. The temperature τ is
fixed at 0.1. The number of heads for multi-head
attention is set to 4. We use 2 layers of GAT for
hierarchy injection to BGC, AAPD and RCV1-V2;
and 4 layers for NYT due to its depth. The
optimizer is AdamW (Loshchilov and Hutter,
2017) with a learning rate of 3e−5. The early
stopping is set to suspend training after Macro-F1
in the validation dataset and does not increase for
10 epochs. Since contrastive learning imposed
stochasticity, we performed experiments with 5
random seeds. between experiments. For the
baseline models, we use the hyperparameters
from the original paper to replicate their results.
For HiMulConE (Zhang et al., 2022a), as the
model was used on the image domain, we replaced
its ResNet-50 feature encoder with BERT and
replicated its experiment by first training the
encoder with the proposed loss and the classifier
with BCE loss, with 5e−5 learning rate.

A.2 Baseline Models

To show the effectiveness of our proposed method,
HJCL, we compared it with previous HMTC works.
In this section, we mainly describe baselines in
recent work with strong performance.

• HiAGM (Zhou et al., 2020) proposes

3https://github.com/Lightning-AI/lightning

Ablation Models AAPD BGC
Micro-F1 Macro-F1 Micro-F1 Macro-F1

Ours 81.91 61.59 81.30 66.77
r.m. Label con. 80.86 59.06 80.72 65.68
r.m. Instance con. 81.79 60.47 80.85 65.89
r.m. Both con. 80.47 58.88 80.57 65.12
r.p. BCE Loss 80.95 59.73 80.48 65.87
r.m. Graph Fusion 80.42 58.38 79.53 64.17

Table 6: Ablation study when removing components of
on the AAPD and BGC. r.m. stands for removing the
component; r.p. stands for replace with.

hierarchy-aware attention mechanism to ob-
tain the text-hierarchy representation.

• HTCInfoMax (Deng et al., 2021) utilises in-
formation maximization to model the interac-
tions between text and hierarchy.

• HiMatch (Chen et al., 2021) turns the prob-
lem into a matching problem by grouping the
text representation with its hierarchical label
representation.

• Seq2Tree (Yu et al., 2022) introduces a
sequence-to-tree framework and turns the
problem into a sequence generation task using
the T5 Model (Raffel et al., 2019).

• HiMulConE (Zhang et al., 2022a) is the clos-
est to our work, also performs contrastive
learning on hierarchical labels, where their hi-
erarchy has fixed height and labels are single-
path only.

• HGCLR (Wang et al., 2022a) incorporates
the hierarchy directly into BERT and performs
contrastive learning on the generated positive
samples.

B Appendix for Evaluation Result and
Analysis

B.1 Ablation study for BGC and AAPD

The ablation results for BGC and AAPD are pre-
sented in Table 6. It is worth noting that in the
case of AAPD, the removal of label contrastive
loss significantly affects the Micro-F1 and Macro-
F1 scores in both datasets. Conversely, when the
instance contrastive loss is removed, only minor
changes are observed in comparison to the other
three datasets. This can be primarily attributed to
the shallow hierarchy of AAPD, which consists
of only two levels, resulting in smaller differences
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Figure 6: Effects of λ1 (left) and λ2 (right) on the Micro-
F1 for NYT and RCV1-V2.

between instances. Furthermore, the results in Ta-
ble 1 demonstrate that the substantial improvement
in Macro-F1 for AAPD can be attributed to HiLe-
Con, further highlighting the effectiveness of our
Hierarchy-Aware label contrastive method. On the
other hand, the results for BGC follow a similar
trend as RCV1-V2 where both have similar hier-
archy structure (c.f. Table 5), where the removal
of either loss leads to a comparable drop in per-
formance. The findings presented in the last two
rows of Table 6 are consistent with the performance
observed in the ablation study for NYT and RCV1-
V2, underscoring the importance of both ZMLR
loss and graph label fusion.

B.2 Appendix for Hyperparameter Analysis

The hyperparameter analysis for Micro-F1 scores
for NYT and RCV1-V2 is shown in Figure 6. The
results are aligned with the observations for Macro-
F1. Moreover, the hyperparameter analysis for
BGC and AAPD regarding λ1 and λ2 is presented
in Figure 7. Consistent with the observations from
the previous ablation study section, the instance
loss has a minor influence on AAPD, with per-
formance peaking at λ1 = 0.2 and subsequently
dropping. Conversely, for any value of λ2, the
performance outperforms the baseline at λ2 = 0,
highlighting its effectiveness in shallow hierarchy
labels. Additionally, the changes in BGC is consis-
tent with those observed in RCV1-V2, as depicted
in Figure 3.

Loss BCE ZLPR
Model Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT 78.24 65.62 78.75 66.24
HiMatch - - - -
HGCLR 78.86 67.96 79.11 68.37
HJCL 79.74 69.26 80.52 70.02

Table 7: Experimental results on NYT dataset with
traditional BCE and ZLPR loss. Best results are in
bold.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

78

79

80

81

82

83

M
ic

ro
-F

1
(%

)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

78

79

80

81

82

83

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Instance-wise Loss (λ1)

58

60

62

64

66

68

M
ac

ro
-F

1
(%

)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Label-wise Loss (λ2)

58

60

62

64

66

68

BGC AAPD

Figure 7: Effects of λ1 (left) and λ2 (right) on both
Micro- and Macro-F1 scores among the testing set for
BGC and AAPD.

Loss BCE ZLPR
Model Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT 85.65 67.02 86.05 67.42
HiMatch 86.33 68.66 86.47 68.98
HGCLR 86.49 68.31 86.76 68.34
HJCL 86.42 69.24 87.04 70.49

Table 8: Experimental results on RCV-1 dataset with
traditional BCE and ZLPR loss. Best results are in bold.

B.3 BCE v.s ZLPR

In this paper, we replaced the commonly-used BCE
by new loss function, ZLPR (Su et al., 2022a), as
it presents a more balanced loss function for the
multi-label classification task, achieving this by
leveraging the softmax function and considering
the correlations between labels, in contrast to the
Sigmoid + BCE approach proposed in the original
paper (Zhang et al., 2022a). We consider this char-
acteristic to be fundamental as it aligns with our
approach of emphasizing label correlations across
different paths on the hierarchy.

To provide a fairer comparison, we conducted
additional experiments on strong baselines, in line
with our ablation study settings. We replaced their
BCE loss with the ZLPR loss on the NYT and
RCV1 datasets. As shown in Tables 7 and 8, ZLPR
consistently demonstrated improvements across dif-
ferent methods, further highlighting its effective-
ness in enhancing multi-label classification. On the
other side, even with the integration of the ZLPR
loss function, our method continues to outperform
other baseline models. This shows that it is not
only the adoption of the ZLPR loss function, but
the overall design that allows our model to outper-
form the state-of-the-art.
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Dataset \ #Path 1 2 3 4 5
BGC 94.36 5.49 0.15 - -

AAPD 57.68 6.79 35.13 0.36 0.04
RCV1-V2 85.16 12.2 2.59 0.05 -

NYT 49.74 34.27 15.97 0.03 -

Table 9: Path statistics (%) among all datasets.
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Figure 8: (a) Micro-F1 and (b) Macro-F1 scores on
testing data of NYT, grouped by paths in the hierarchy.
HiLeCon is our proposed method and HiLeCon (w/o)
dropped the contrastive learning function.

B.4 Performance on Multi-Path Samples
Statistics for the number of path distributions on the
four multi-path HMTC datasets are shown in Table
9. Figure 8 presents the results of the performance
on samples with different paths in NYT dataset.

Before we formalize AccP and AccD, we give
the definition of some auxiliary functions. Given
the testing datasets D = {(Xi, ŷi)}N and the pre-
diction results yi,∀i ≤ N , where ŷi,yi ⊆ Y , the
true positive labels for each sample is defined as
yPos
i = yi ∩ ŷi. Then we decompose both label

sets ŷi and yPos
i into disjoint sets where each set

contains labels from a single path: Path(ŷi) =
{Y i|Y i ∩ Y j = ∅}. We say that the gold label ŷi

and prediction yi are path consistent when:

Pathconsistent(ŷi,yi) =

{
1 |Path(ŷi)| = |Path(yi)|
0 Otherwise

and we say a path Yi is consistent in the predictions
as:

Depthconsistent(Y
j ,yi) =

{
1 {Y j ∩ yi} = Y j

0 Otherwise

With these two definitions, we can calculate the
ratio of samples and paths that are consistent with
the following formulas:

AccP =

∑N
i=1 Pathconsistent(ŷi,y

Pos
i )

N
(8)

AccD =

∑N
i=1

∑
Y j∈Path(ŷi)

Depthconsistent(Y
j ,yPos

i )
∑N

i=1 |Path(ŷi)|
(9)
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Figure 9: T-SNE visualisation (van der Maaten and Hin-
ton, 2008) (a) HiLeCon without contrastive (b) HiLe-
Con. Each color represent label-aware embeddings from
different path.

The AccP is the measure for the ratio of predic-
tions that has all the path corrected predicted; the
AccD is the measure for the ratio of paths that the
prediction got it all correct. The results on multi-
path consistency for BGC and AAPD are shown in
Table 10.

Dataset Model AccP AccD

BGC

HJCL 63.79 72.30
HJCL w/o con 60.42 68.38
HGCLR 61.46 70.93
BERT 52.99 68.85

AAPD

HJCL 81.42 71.62
HJCL w/o con 80.11 70.76
HGCLR 80.76 71.59
BERT 77.10 68.89

Table 10: Measurement for Path Accuracy and Depth
Accuracy on BGC and AAPD.

B.5 T-SNE visualisation
To qualitatively analyse the HiLeCon, we plot the
T-SNE visualisation with learned label embedding
across the path, as shown in Figure 9.

B.6 Case study details
The complete news report in the NYT dataset used
for the case study is shown in Figure 10. The com-
plete set of labels for the four hierarchy plots (Fig-
ure 5) is shown in Table 11. Note that to save space,
the ascendants of leaf labels are omitted since they
are already self-contained within the names of the
leaf labels themselves.

C Discussion and Case Example for
ChatGPT

For each prompt, the LLM is presented with in-
put texts, label words structured in a hierarchical
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Last time we had Pat Robertson and Pat Buchanan. We had the 
Republican Chairman, Rich Bond, warning that if Bill Clinton was 
elected as the U.S. President, Jane Fonda would be sleeping in the 
White House "as guest of honor at a state dinner 'for Fidel Castro. "If 
you liked the 1992 Republican National Convention, with "its 
bashing of the un-Christian, you'll love the 1996 convention. 
Assuming, that is, that the party wins as big as it expects in 'the 
upcoming midterm elections. Next time the powerful new 
committee chairmen in a Republican-controlled Senate will surely be 
featured. Among them will be Jesse Helms, chairman of the Foreign 
Relations "Committee, and Alfonse D'Amato, chairman of Banking, 
Housing and Urban” Affairs. The Speaker of the House, Newt 
Gingrich, will be on the platform, expanding on his theme that 
Democrats are "the enemy of normal Americans.”
 
--  New York Times, 1994

Figure 10: The complete input text sample used for the
case study in Section 5.6.

Gold Labels

• Top/News/U.S.
• Top/News/Washington
• Top/Features/Travel/Guides/Destinations/

North America/United States
• Top/Opinion/Opinion/Op-Ed/Contributors

Models Predictions

HJCL

• Top/News/U.S.
• Top/News/Washington
• Top/Features/Travel/Guides/Destinations/

North America/United States
• Top/Opinion/Opinion/Op-Ed/Contributors

HJCL

• Top/News/Sports
• Top/Features/Travel/Guides/Destinations/

North America/United States
(w/o Con) • Top/Opinion/Opinion/Op-Ed

HGCLR
• Top/News/Sports
• Top/News/U.S.
• Top/Opinion

Table 11: Complete labels set for the case study diagram
shown in Figure 5. Orange represent labels that are in
the gold label set but some of its decedents were missing;
Red represents the incorrect labels.

format, and a natural language command that asks
it to classify the correct labels related to the texts
(Wang et al., 2023). We flatten the hierarchy labels
following the method used by Chan et al. (2023) in
their prompt tuning approach for Discourse Rela-
tion Recognition with hierarchical structured labels.
This method maintains the hierarchy dependency
by connecting labels with an arrow (→). For exam-
ple, taking the label from BGC, the label "World
History" appears at level-3 in the hierarchy with
ascendants "History" and "Nonfiction". This label
is flattened into words as "Nonfiction → History →
World History". This dependency relation is also
explicitly mentioned within the prompt. Three ex-
amples for AAPD, BGC, and RCV1-V2 are given

Dataset Micro-P Micro-R Macro-P Macro-R OOD

AAPD 50.97 41.61 36.89 30.75 6.113
BGC 50.82 65.33 35.65 45.02 12.03
RCV1 42.15±0.26 65.67±0.14 29.84±0.34 46.59±0.28 7.213
NYT - - - - -

Table 12: gpt-turbo-3.5 performance details on
HMTC datasets. The Micro/Macro-P and Micro/Macro-
R refers to the precision and recall for each metric
respectively. The OOD refer to the ratio of "Out-of-
Domain" labels in the returned answers.

in Tables 13, 14, and 15. In the experimental stage,
since RCV1-V2 contains a huge testing dataset, we
performed random sampling with 30,000 samples
(3 × 10,000) without replacement, using a random
seed of 42. The performance in Table 1 for RCV1-
V2 records the mean and standard deviation (std)
for the three runs. As shown in Table 12, ChatGPT
mainly struggles in predicting minority labels, lead-
ing to significantly lower results in Macro Precision.
Meanwhile, Hallucination is a well-known prob-
lem in ChatGPT (Bang et al., 2023), and this issue
also occurs in text classification, as demonstrated
in the last column of Table 12, which represents
the ratio of returned answers that are not within
the provided categories list. Although Few-shot
In-context Learning (Brown et al., 2020) may be
able to mitigate this problem by providing a small
subset of training samples, the flatten hierarchical
labels occupy most of the tokens, and the training
samples may not fit within the maximum token
limit (4096 tokens). Future work on HMTC for
in-context learning should focus on finding better
ways to decompose and shorten the hierarchy la-
bels.
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Prompt Template

Classifiy the given text into the following categories, which
could belong to single or multiple categories:
[’Computer Science’, ’Computer Science -> Performance’,
’Computer Science -> Formal Languages and Automata Theory’
’Computer Science -> Robotics’, . . . , ’Mathematics -> Logic’]
Rules:
1. The label prediction must be consistent, which means

predicting "A -> B" also needs to predict "A"
2. No explanation is needed, output only the categories
Texts: [Input]

Input Texts

In this paper we investigate the descriptional complexity of knot
theoretic problems and show upper bounds for planarity problem of
signed and unsigned knot diagrams represented by Gauss words ...
We study these problems in a context of automata models
over an infinite alphabet.

Answer Computer Science -> Formal Languages and Automata Theory,
Mathematics -> Combinatorics.

Gold Labels [’cs.fl’, ’cs.cc’, ’cs’]

Table 13: Example for Question and Answer from gpt-turbo-3.5 from AAPD

Prompt Template

Classifiy the given text into the following categories, which
could belong to single or multiple categories:
[’Children’s Books’, ’Poetry’, ’Fiction’, ’Nonfiction’
’Teen & Young Adult’, ’Classics’, ’Humor’ , . . .
’Nonfiction -> History -> World History -> Asian World History’]
Rules:
1. The label prediction must be consistent, which means

predicting "A -> B" also needs to predict "A"
2. No explanation is needed, output only the categories
Texts: [Input]

Input Texts

Title: Jasmine Is My Babysitter (Disney Princess).
Text: An original Disney Princess Little Golden Book starring
Jasmine as a super-fun babysitter!.... each Disney Princess
and shows how they relate to today’s girl

Answer [’Children’s Books’, ’Fiction’,
Children’s Books -> Step Into Reading’]

Gold Labels [’Children’s Books’]

Table 14: Example for Question and Answer from gpt-turbo-3.5 from BGC
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Prompt Template

Classifiy the given text into the following categories, which
could belong to single or multiple categories:
[’CORPORATE/INDUSTRIAL’, ’ECONOMICS’, ’GOVERNMENT/SOCIAL’,
’MARKETS’, ’CORPORATE/INDUSTRIAL -> STRATEGY/PLANS’, . . .
’CORPORATE/INDUSTRIAL -> LEGAL/JUDICIAL’
Rules:
1. The label prediction must be consistent, which means

predicting "A -> B" also needs to predict "A"
2. No explanation is needed, output only the categories
Texts: [Input]

Input Texts

A stand in a circus collapsed during a show in northern France
on Friday, injuring about 40 people, most of them children,
rescue workers said. About 25 children were injured and
another 10 suffered from shock when their seating fell from
under them in the big top of the Zavatta circus. One of the
five adults injured was seriously hurt.

Answer GOVERNMENT/SOCIAL -> DISASTERS AND ACCIDENTS

Gold Labels [GOVERNMENT/SOCIAL, DISASTERS AND ACCIDENTS]

Table 15: Example for Question and Answer from gpt-turbo-3.5 for RCV1-V2
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