Role of Context in Unsupervised Sentence Representation Learning: the
Case of Dialog Act Tagging

Rastislav Hronsky
Jheronimus Academy of Data Science

Emmanuel Keuleers
Tilburg University

Sint Janssingel 92, 5211 DA ’s-Hertogenbosch Warandelaan 2, 5037 AB Tilburg

Netherlands
r.hronsky@tue.nl

Abstract

Unsupervised learning of word representations
involves capturing the contextual information
surrounding word occurrences, which can be
grounded in the observation that word form
is largely disconnected from word meaning.
While there are fewer reasons to believe that
the same holds for sentences, learning through
context has been carried over to learning rep-
resentations of word sequences. However, this
work pays minimal to no attention to the role of
context in inferring sentence representations. In
this article, we present a dialog act tag probing
task designed to explicitly compare content-,
and context-oriented sentence representations
inferred on utterances of telephone conversa-
tions (SWDA). Our results suggest that there is
no clear benefit of context-based sentence rep-
resentations over content-based sentence rep-
resentations. However, there is a very clear
benefit of increasing the dimensionality of the
sentence vectors in nearly all approaches.

1 Introduction

Unsupervised methods for constructing word rep-
resentations vary widely in their implementation
(Landauer and Dumais, 1997; Mikolov et al.,
2013a; Pennington et al., 2014), but share the core
property that they try to capture the contextual in-
formation surrounding word occurrences. This can
be grounded in the observation that word form is
largely disconnected from word meaning (De Saus-
sure, 1916) and that, therefore, trying to extract
meaning from form directly would be pointless.
However, there are fewer reasons to believe
that representing the meaning of a fully composed
sentence requires the description of its context
in the way that a word does. Still, much effort
has been devoted to developing and evaluating
context-oriented methods for sentence representa-
tion (Kiros et al., 2015; Logeswaran and Lee, 2018;
Cer et al., 2018). Interestingly, the theoretical justi-
fication for the approach —roughly paraphrased— is
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that it works well for words (Kiros et al., 2015).

In the present article, we examine whether a
contextual signal is of any significant benefit to
general-purpose sentence representation.

To accommodate this goal, we infer two sets of
utterance representations from telephone conversa-
tion transcripts, one by a model trained to encode
the transcripts’ content, and one by a model trained
to encode the transcripts context in a Skip-Thought-
like fashion. We evaluate the learned representa-
tions with a linear probe classifying the dialog act
tags. Below, we discuss these choices more exten-
sively.

The reason for the linear probing technique is
to avoid any further representation learning in the
downstream task training, such that the resulting
accuracy numbers solely reflect the unsupervised
representations. This technique is commonly used
to assess to what extent sentence representations
exhibit certain linguistic properties, such as part-of-
speech or syntax (Conneau et al., 2018; Chrupata
and Alishahi, 2019; Perone et al., 2018; Belinkov,
2022a).

We chose the Switchboard Dialog Act Corpus
(SwDA) (Jurafsky, 1997) corpus for the following
properties: (1) its size allows for inferring repre-
sentations with both traditional, statistical learn-
ing methods and modern neural network based
methods; (2) at the same time, the corpus is fairly
narrow-domain, enabling small models to converge
to meaningful representations '; (3) it contains ut-
terance labels that we consider suitable for a prob-
ing task with respect to contextuality: while a dia-
log act tag unquestionably depends on the utterance
contents, the surrounding utterances likely provide
a good signal about its label too. See example
utterances from the corpus in Table 1.

'As opposed to some other well-known sentence-level
tasks, such as NLI (Bowman et al., 2015), SICK (Marelli et al.,
2014), SST-2 (Socher et al., 2013), that require "universal"
sentence representations.
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But I, my grandparents were
looking into it before.

SD So I know what they’ve said.
B Uh-huh.

"H Well, I'm trying to think.

SD*E

Table 1: Example dialog act tags and utterances from
the SWDA corpus. (SD"E = Statement expanding y/n
answer, SD = Statement-non-opinion, B = Backchannel,
AH = Hold before answer/agreement).

Using context to enhance dialog act predictions
is not a novel idea (Raheja and Tetreault, 2019;
Li and Wu, 2019; Kalchbrenner and Blunsom,
2013). To ascertain the usefulness of context
in this task, we checked for the reduction in en-
tropy of a tag in a "unigram" setting vs. con-
ditioned on a previous tag, a "bigram" setting.
The results were H(currenttag) = 2.1bit and
H(currenttag|previoustag) = 1.86bit, mean-
ing that such a context-enhanced baseline would,
at least, increase the chance-level accuracy.

For the content-oriented representation variants,
the representations of utterances were inferred via
classic topic modeling methods, word vector aver-
aging, or an LSTM-based auto-encoder (see Sec-
tion 3 for details). The resulting sentence vectors
were then used as input for a Skip-Thought-like
training regime, where the goal was to learn their
context-oriented version by projecting them such
that they are predictive of surrounding utterances.
Additionally, we trained a version where the utter-
ance encoding and projection are trained jointly,
with an LSTM-based encoder of identical propor-
tions with the one used for auto-encoding.

2 Related Work

In the literature review, we summarize some of
the most important work in sentence representa-
tion and relate it to the issues outlined in previous
paragraphs.

Before the deep learning era of NLP, text-
processing methods relied mainly on lexical fea-
tures of sentences and were invariant to word or-
der. Using word frequency transformations, e.g.,
tf-idf (Ramos et al., 2003), has proven effective
to base the representations on more semantically
laden words. Techniques such as singular value de-
composition (SVD) (Landauer and Dumais, 1997;
Landauer et al., 1998), or topic modeling (Blei
et al., 2003; Blei, 2012; Hofmann, 2001) were used

to transform the sparse word-count matrices into
dense vectors.

With the subsequent success of simple neu-
ral networks such as word2vec (Mikolov et al.,
2013a,b; Goldberg and Levy, 2014) or GloVe (Pen-
nington et al., 2014) at representing words and
phrases, a seemingly naive method of averaging
these word vectors was shown to produce use-
ful sentence/paragraph/document representations
(Arora et al., 2017).

With further success of neural networks in
text processing, the research on the topic grew
markedly. Among the unsupervised methods, recur-
sive auto-encoders (RAEs) (Socher et al., 2011a,b;
Pollack, 1990) were trained to reconstruct sen-
tences via recursively encoding nodes in a depen-
dency parse tree and performed well at a para-
phrasing task (Dolan et al., 2004). Tree-LSTMs
(Tai et al., 2015) later succeeded the RAEs in the
same recursive set up but using an LSTM encoder
(Hochreiter and Schmidhuber, 1997), and evaluated
on predicting semantic relatedness between two
sentences (Marelli et al., 2014) and classifying sen-
timent (Socher et al., 2013). The current state-of-
the-art unsupervised, general-purpose sentence rep-
resentation systems are based on pre-trained Trans-
former language models (Vaswani et al., 2017) and
fine-tuned via contrastive learning (Gutmann and
Hyvirinen, 2012; Chen et al., 2020), i.e., pulling
representations of alternative sentence formulations
closer together and those of unrelated, random sen-
tence pairs apart (Gao et al., 2021; Chuang et al.,
2022).

The success of skip-gram-based word represen-
tations inspired researchers to transfer the idea to
sentence representation. Skip-Thought (Kiros et al.,
2015) is a large, LSTM-based (Hochreiter and
Schmidhuber, 1997), sentence encoder that was
trained to produce representations predictive of sur-
rounding sentences. Quick-Thought (Logeswaran
and Lee, 2018) is a similar system that differs in
that it casts the problem as contrastive learning
(Gutmann and Hyvirinen, 2012). The Universal
Sentence Encoder (USE) is a Transformer-based
(Vaswani et al., 2017) system introduced by Cer
et al. (2018) that uses the Skip-Thought as one of
the tasks in a multi-task learning set-up (includ-
ing some supervised tasks). The task of decid-
ing whether two sentences are consecutive or not
(NSP task) was also used in training of BERT (De-
vlin et al., 2019). The latest dialog processing sys-
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tems, built on top of Transformer language models
(Vaswani et al., 2017), typically learn to predict
contextual utterrances within the contrastive learn-
ing framework and achieve superior performance
on dialog tasks compared to universal representa-
tions (Wu et al., 2020; Zhou et al., 2022; Zeng et al.,
2023; Oh et al., 2023).

While sentence contextuality is used in all of the
above-mentioned studies, there is little to no focus
on assessing the necessity for using context to de-
rive sentence representations. An ablation of the
NSP task is presented by Devlin et al. (2019), sug-
gesting a slight performance benefit over a version
where the task is omitted. However, Devlin et al.
(2019) only evaluate the fine-tuning pipeline, while
the raw BERT representations were shown to per-
form poorly overall (Reimers and Gurevych, 2019).
Further, results by Liu et al. (2019) are contradic-
tory and do not credit a performance improvement
to the NSP task. Lastly, Zhou et al. (2022) addi-
tionally compare the representations resulting from
dropout augmentations (Gao et al., 2021) to those
of consecutive utterrances and found a significant
benefit in favor of the latter augmentations. Their
results are perplexing, however, since the dropout
version they implemented performed even worse
than that of SimCSE (Gao et al., 2021), which also
uses dropout augmentation, and should in fact per-
form worse, not being tailored for dialog.

Using the natural language inference (NLI) task
has been effective in several general sentence rep-
resentation learning systems (Conneau et al., 2017;
Reimers and Gurevych, 2019; Zhou et al., 2022).
However, along with machine translation models,
these systems fall outside the category of unsuper-
vised sentence representations.

3 Method

We trained several variants of content-based repre-
sentations, their context-based counterparts, and an
end-to-end, Skip-Thought like system, trained to
encode and predict sentences.

We evaluated the following variants of content-
based sentence representation 2:

1. Latent Semantic Analysis (LSA) *

2. Latent Dirichlet Allocation (LDA)* (Blei
et al., 2003)

“Entries marked with x use the GenSim implementation.

3. Mean of GloVe word vectors * (Pennington
etal., 2014) 3

4. LSTM-based auto-encoder (Hochreiter and
Schmidhuber, 1997)

5. Mean of arbitrarily assigned word vectors

We also varied the final dimension of the sen-
tence vector, namely D € {6, 12,25}, either by set-
ting the number_of_topics parameter, setting the
auto-encoder bottleneck size, or truncating GloVe
vectors. The auto-encoder was based on a 2-layer,
bidirectional Long Short-Term Memory (LSTM)
neural network with hidden size of Dj,;q4en = 64,
dropout of p = 0.1. The variant 5 is one where
we randomly assigned a feature vector from an 8-
dimensional raster to each vocabulary entry (a pro-
cedure by which we want to emulate the usage of
1-hot vector encoding, but with dense, real-valued
vectors), and created the final sentence representa-
tion by averaging corresponding word vectors.

To create the context-based representations, we
devised a learning regimen for 2 linear layers for
each variant. One layer was used to project the sen-
tence content vector to the context space (encode),
and the other layer was used to predict the content
vectors of surrounding sentences from the context
vector (decode).

Finally, we trained a Skip-Thought-like model,
where each sentence was represented by a sequence
of word vectors (obtained via the same procedure
as in variant 5), optionally truncated and padded to
20 tokens, processed via an LSTM (identical with
the auto-encoder in variant 4), and projected such
that, conditioned on the resulting vector, a decoder-
LSTM reconstructs the surrounding sentences well
via teacher forcing.

In all of the context-based variants, we varied
the context size between 1 and 2 sentences, on each
side.

3.1 Dataset and Evaluation

To infer and evaluate the representations, we used
the Switchboard Dialog Act Corpus (SWDA) (Ju-
rafsky, 1997), with exception of the GloVe vectors,
where we used the pre-trained glove-twitter-25 vec-
tors. The SWDA contains transcripts of casual tele-
phone conversations in which the two parties were
instructed to discuss a certain topic, e.g. "care of
the elderly". Every utterance is assigned a label

3We used the pre-trained glove-twitter-25 version.
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Train Dev Test Context
Utterances 212,145 26,518 26,519 Content 1 utt. 2 utt.
Tokens 1,833M 227K 227K Algo. Dim. Accuracy [%]
Tokens per utt. 8.64 8.56 8.32 Maj. class 35.00
SD 3547% 33.52% 35.00% GLOVE 6 51.62 50.37 50.14
%/0ther 27.45% 25.77% 25.60% 12 52.82 52.60 52.55
B 18.52% 21.54% 23.02% 25 57.29 57.24 56.52
SV 13.76% 14.60% 13.73% LDA 6 51.10 51.16 51.05
AA 481% 4.57%  2.65% 12 53.32 5299 52.73
25 56.82 56.36 56.13
Table 2: Summary of the SWDA dataset. In the upper LSA 6 5107 5062 5058
sF:ction of the table, w§ summa.rize the corpus statis- D 5194 5144 51.04
tics. In the lower section we list the percentages of : ) )
dialog act labels per corpus split (SD="Statement-non- 25 5202 52.11 S2.12
opinion", B="Backchannel", SV="Statement-opinion", Random 6 36.52 41.55 41.83
AA="Agree/Accept"). 12 46.99 47.17 46.47
25 48.46 47.69 47.59
describing the "role" of the act, in a similar way Auto-enc. 6 23.88  52.27 3163
that part-of-speech tags describe roles of words in 12 5446 53.89 5234
PO, Speeeh g 25 5243 5318 52.57
sentences ~. .
To pre-process the texts, (1) we tokenized the ut- Skip-Th. 6 51.13 ~ 39.66
terances with the reference Morfessor 2.0 (Virpioja 12 53.33 5238
25 55.21 57.54

et al., 2013) implementation, (2) long utterances
were broken down into multiple shorter utterances
with a sliding-window of 20 words and a step-size
of 18 words, and (3) we split the corpus into a
train, dev, and test split with respective propor-
tions of 80%, 10%, and 10% of the utterances. For
an overview of the final corpus statistics, including
the dialog act tags, see Table 2.

For each representation type, we trained a lin-
ear ridge-regression®-based classifier with 10-fold
cross-validation (on the training set) to predict the
dialog act labels. Altogether, there were 42 distinct
dialog acts. To simplify the probe, we only selected
the 10 most frequent labels to classify, while group-
ing the remaining labels under a single category.

4 Results

The classification accuracy results are presented
in Table 3. We established baseline performance
as the frequency of the majority class. The only
variant performing below the majority baseline was
the Random variant (Dp;q4en, = 6), which used
means of arbitrarily assigned word vectors. The
other variants achieved scores in the range of up
to 15 — 21% above the majority baseline. Except

4See the Coder’s manual (Jurafsky, 1997) for more infor-
mation.

>We opted for ridge regression, instead of logistic regres-
sion, because of high colinearity (except for LDA and LSA)

across feature vectors. See correlation matrices in the ap-
pendix Section A. We used the Scikit-Learn implementation.

Table 3: Results. The three right-most columns contain
the accuracy percentages for the content-only, context
of distance 1, and context of distance 2 variants.

for LSA, each algorithm achieved the highest score
with Dpidden = 25.

There were no big differences and no discern-
ing patterns in the performance of the contextually
projected variants.

The only case where the training regime of pre-
dicting two neighboring sentences on each side
scored the best was with the end-to-end, Skip-
Thought like variant, which also achieved the over-
all highest score.

5 Discussion

All tested models performed well over the major-
ity baseline, including the averaged random word
vectors which exceeded the majority baseline by a
large margin when coupled with high dimensional-
ity. One reason for this might be that, when aver-
aging word vectors of higher dimension, there is a
higher chance that some important lexical features
will remain separable from the noise (also appli-
cable to GloVe). Only in case of LSA and Auto-
Encoder, the effect of dimensionality was small.
For the latter, using a variational or contrastive
learning set-up might allow for better scaling of
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performance with capacity. Based on the patterns
observed here, increasing the dimensionality in-
creases performance on the probe, with or without
context.

We did not find either of these aspects discussed
in the mainstream related work (Conneau et al.,
2018; Belinkov, 2022b). The question of how far
increasing the dimensionality helps performance
should be explored in future work.

The presented results on the dialog act tag
probing task are in line with related literature
in that sequence/document representations with
word embeddings and classical topic modeling ap-
proaches are a tough-to-beat baseline for many
neural networks (Conneau et al., 2018; Reimers
and Gurevych, 2019). Our results suggest that
transforming existing, content-oriented represen-
tations to context-oriented ones provides minimal
to no meaningful improvement in representation.
An improvement of small, but perhaps meaningful
magnitude is one from the best performing Auto-
Encoder to Skip-Thought variant ( 3%), suggesting
that some benefit in this training scheme may be
found for sentences, too.

However, our experimental design limits us in
drawing conclusions about what the Skip-Thought
set-up benefited from specifically: the more gen-
eral sentence representations may simply be an
artifact of the more difficult learning task (predict-
ing neighboring sentences), as opposed to being a
result of form disambiguation via context, the way
it works with words. Future work should employ
methodology that separates the contribution of the
competing sources of signal more clearly.

When compared to the obvious benefits of con-
text on learning word representations, it is striking
that the benefits for learning sentence representa-
tions appear to be very small at best.

This observation is suggestive of a more serious
blind-spot in NLP: because context-based repre-
sentations work well for words, many researchers
assume that the same holds for any level of analysis.
This is akin to claiming arbitrariness of the sign at
any level of language processing.

6 Conclusion

We presented evidence that explicitly examines the
differences between content-, and context-oriented
unsupervised sentence representations. While re-
sults suggest that dimensionality, rather than con-
text, is the determining factor in building good

sentence representations, end-to-end approaches
based on reconstructing surrounding sentences are
a promising way forward.

Limitations

Since this work only presents evidence from one
sentence task, the conclusions drawn are task-
specific. Although we believe the chosen task to
be fairly general, one can easily think of tasks that
would likely challenge the drawn conclusions, e.g.,
recognition of humor or sarcasm. However, these
are rather rare cases and it is questionable, where
the best position of the boundary between unsu-
pervised and task-specific lies. Additionally, the
selected range of dimensions is limited to a small
amount, and at larger scales the patterns of results
might change.
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A Correlation Matrices

Pearson correlation between features (dim=6)
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Figure 1: Correlation matrices of feature vectors across
representation variants with dimension of 6.

Pearson correlation between features (dim=12)
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Figure 2: Correlation matrices of feature vectors across
representation variants with dimension of 12.
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