Parameter Efficient Multi-task Fine-tuning by Learning to
Transfer Token-wise Prompts

Muling Wu'2, Wenhao Liu'?, Jianhan Xu'?, Changze Lv'?, ZiXuan Ling'?
Tianlong Li!?, LongTao Huang®, XiaoQing Zheng!?, Xuanjing Huang'>
1School of Computer Science, Fudan University, Shanghai, China
2Shanghai Key Laboratory of Intelligent Information Processing
3 Alibaba Group, Zhejiang, China
{mlwu22,whliu22,cz1v22,zixuanling21,t11i22}@m. fudan.edu.cn
{jianhanxu20,zhengxq, xjhuang}@fudan.edu.cn

Abstract

Prompt tuning has been proven to be successful
on various tasks by incorporating a small num-
ber of trainable parameters while freezing large
pre-trained language models (PLMs). How-
ever, it is still unsettled how to generate more
proper prompts for any individual examples
and how to extend prompt tuning to multi-task
learning scenarios by leveraging cross-task fea-
tures. To address these challenges, we propose
a token-wise prompt tuning (TPT), in which
a bank of finer-grained soft prompt tokens is
built for multi-task learning by memory net-
work. The tokens are retrieved from the bank
against an input example and assembled to an
instance-dependent prompt. Extensive experi-
mental results on 14 datasets demonstrated that
the models enhanced by our TPT performed
far better than full parameter fine-tuned mod-
els and achieved state-of-the-art by tuning only
0.035% parameters.'

1 Introduction

The architecture of Transformers (Vaswani et al.,
2017) has yielded impressive performances on var-
ious natural language processing (NLP) tasks and
has been widely established as the building block
for PLMs. The dominant paradigm is to pre-train
on large-scale unlabeled datasets and then fine-tune
on task-related datasets (Devlin et al., 2019; Raf-
fel et al., 2019; Radford and Narasimhan, 2018).
However, performing full parameter fine-tuning for
each task would be prohibitively expensive with
the growing model scale. Thus, there has been
growing interest in developing parameter-efficient
fine-tuning (PEFT) methods (Houlsby et al., 2019;
Hu et al., 2021; Ben-Zaken et al., 2021) that strive
to achieve results comparable to full parameter fine-
tuning with a small number of trainable parameters.

Prompt learning (Lester et al., 2021), as a new
effective method of PEFT, can boost the model’s

'Our code is available at https://github.com/mlwu22/
TPT

ifriuh f 3
Similarity Scores 1 _______ , 5

1
Retrieval Module | | Pooling Module | | Frozen LM 3%

4
==
ts||ts |+« |ta| Di| %y
]
LI

Retrieved Prompt ¢ Input

B".

Token-wise Prompt Bank

1 5

Figure 1: Token-wise prompting solution. An input
text of length I, {x1,z2, -+ ,x;}, is sent to a pooling
module that produces a feature vector & for the input. A
retrieval module retrieves the most similar prompt to-
kens, {ts,t5," - ,t,}, from a prompt bank based on the
similarity scores estimated between 2 and n soft prompt
tokens {t1,t,- - , ¢y} stored in the bank. The retrieved
prompt tokens are assembled to an instance-dependent
prompt and concatenated with the original input. The
concatenated result is sent to a frozen LM for both in-
ference and training, in which only the retrieved prompt
tokens are tuned through error back-propagation.

performance on various tasks by simply adding ad-
ditional context to the input. Although promising,
there are at least two limitations: (a) It overlooks
the inherent differences among instances. Even a
well-learned prompt might not be suitable for all
data instances within a large population, as high-
lighted by Scao and Rush (2021). (b) It fails to
leverage the rich cross-task features, as the learned
prompts were exclusively designed for individual
tasks, making it difficult for these prompts to be
reused or transferred across tasks (Vu et al., 2021).

To overcome the first limitation, we propose a
novel approach to automatically generate a more
suitable prompt for each input example. Bari et al.
(2022) proposed to retrieve non-trainable tokens,
also referred to as hard prompt, from the embed-
ding layer of the language model, which can en-
hance both the training and inference processes of
the model. Compared to directly copying the fixed
embedding layer as a source of extra information
for each example, training an additional embedding
layer on the target task can provide more appropri-

8734

Findings of the Association for Computational Linguistics: EMNLP 2023, pages 8734-8746
December 6-10, 2023 ©2023 Association for Computational Linguistics

https://github.com/mlwu22/TPT
https://github.com/mlwu22/TPT

ate information. Therefore, we go further on this
line by decomposing the trainable soft prompt into
finer-grained soft prompt tokens, these tokens con-
stitute the token-wise prompt bank, which can be
viewed as a trainable embedding layer. Memory
network (Weston et al., 2014) is also used to store,
tune and combine these tokens, as illustrated in
Figure 1. In contrast to previous methodologies
that consider the soft prompt as a single whole, our
approach dissects it into fine-grained prompt to-
kens. This refined breakdown of the prompt widens
the scope of search space, facilitating a more ex-
haustive combination of soft tokens, and ultimately
leading to the generation of superior prompts.

To address the second issue, we extend the pro-
cess of constructing a token-wise prompt bank (i.e.,
the memory network of token-wise soft prompts)
to multi-task learning scenarios. There are many
features that can be shared between different tasks,
and these features can be learned through multi-
task learning (Mahabadi et al., 2021). Additionally,
prior work by Vu et al. (2020) demonstrated that
performing prompt tuning on intermediate tasks be-
fore doing it on the target task can yield even better
results. Following their recipe, we first pre-train
the token-wise prompt bank across multiple source
tasks, then utilize this resulting bank as initializa-
tion to train the token-wise prompt bank specifi-
cally for the target task.

Finally, we extend our approach, which is called
token-wise prompt tuning (TPT), by combining
token-wise prompt bank with task-specific prompt
tuning, as illustrated in Figure 2. In our approach,
all examples within a given task share a task-level
prompt, which is generated by way of task-specific
prompt tuning. Additionally, for each individual ex-
ample, an instance-level prompt is retrieved based
on the similarity between the input example and
tokens in the token-wise prompt bank. These two
prompts are concatenated together, incorporating
both instance-level and task-level features, as part
of the input to facilitate model inference. More-
over, extensive experimental results on 14 datasets
demonstrated the effectiveness of our methods.

The contribution of this study can be summa-
rized as follows:

* This study is among the first ones to introduce
token-wise prompt tuning by decomposing
soft prompts into tokens and constructing a
bank of trainable tokens by memory network.

* We extend the token-wise prompt bank to

multi-task learning scenarios, which demon-
strates a remarkable boost in transfer learning
on both seen and unseen tasks.

* Empirical results on 14 different datasets
demonstrate the effectiveness of TPT that out-
performs existing prompt-based methods by a
significant margin in accuracy and even out-
performs the full parameter fine-tuning on
both GLUE and SuperGLUE datasets by tun-
ing only 0.035% parameters.

2 Related Work

Task-dependent prompt. This line of research
focuses on enhancing the generation of more effec-
tive prompts for specific target tasks.

Specifically, Brown et al. (2020) introduced the
utilization of a small set of manually crafted sen-
tences as prompt, typically consisting of task de-
scriptions and relevant examples. The prompt is
fed to the frozen model as part of the input, offer-
ing the potential to enable the pre-trained model
to achieve comparable performance to fine-tuned
models, particularly when well-designed.

Auto-prompt (Shin et al., 2020), LM-BFF (Gao
et al., 2021), and EFL (Wang et al., 2021a) ex-
tend this direction by automating the process of
generating discrete prompts. However, optimizing
prompts within discrete spaces presents challenges
and is likely to be sub-optimal. Prompt tuning
(Lester et al., 2021), Prefix tuning (Li and Liang,
2021), and P-tuning (Liu et al., 2021) adopt an
alternative strategy by introducing continuous vec-
tors, known as soft prompt, in front of the input
sequence. Only these continuous vectors need to be
adjusted during training, so the optimization prob-
lem in discrete spaces is converted to a continuous
optimization task, which can be handled through
simple gradient descent.

Moreover, later work has started to consider
prompt tuning in the transfer learning scenario. Su
et al. (2021) and SPoT (Vu et al., 2021) explore the
transferability of prompts learned from different
tasks, and address the sensitivity of prompt tuning
to initialization through transfer learning. Wang
et al. (2023) and PANDA (Zhong et al., 2022) pro-
posed to learn a transfer prompt on the source tasks
through knowledge distillation.

Instance-dependent prompt. This line of research
takes into account the individual characteristics of
different examples and generates distinct prompts
tailored to each specific example.

8735

In particular, Levine et al. (2022) and IDPG (Wu
et al., 2022) generate instance-wise prompts via
multi-layer perceptions (MLPs) based on the input
encoded by the language model.

Li et al. (2022) and Wang et al. (2021b) main-
tain a prompt pool to store the prompts learned
over source tasks, where each prompt is classified
into specific categories and assigned key vectors.
The encoded input serves as the query vector, and
the target prompts are obtained by weighing the
prompts in the prompt pool according to the re-
sults of the query and key vector calculations. In
addition, ATTEMPT (Asai et al., 2022) calculates
weights simply based on the similarity between
the input and the prompts learned from the source
tasks, without the need for pre-computed clusters.

Unlike these approaches that weighted the soft
prompt as a whole, we instead utilize the finer-
grained prompt tokens for combination, and only
the tokens retrieved according to the input receive
the gradient during training. Therefore, a more
appropriate prompt can be generated for each ex-
ample. SPT (Bari et al., 2022) proposed to use
retrieved non-trainable hard prompt as a prefix to
guide the training of the prompt. In contrast, our
method is to retrieve the trainable soft prompt and
can be extended to scenarios of multi-task learning
to incorporate cross-task features.

3 Preliminaries

Prompt Tuning. Given a pre-trained LM with
parameters ¢, and a target task T}q;ge¢ With training
data D = {X, yi}f\;l, conventional full parameter
fine-tuning (FT) seeks to maximize the likelihood
of decoding the desired output y; given input X;
over training data D:

N
meaxglpe(yﬂxi) (D

Unlike FT, prompt tuning freezes the pre-trained
language model and only needs to train a very small
number of parameters. Specifically, it prepends m
randomly initialized vectors, also known as soft
prompt P = {p1,p2,--- , pm}, where p; € R?, be-
fore the input X, the optimization goal of prompt
tuning as follows:

N
max > po(ys|[P Xi]) @)

=1

where 6 is frozen, and only P is trainable.

Prompt Transfer. Transfer learning methods at-
tempt to learn a new target task given a collection
of source tasks Tsource = {11, T2, - ,Tt}, which
have been a long-standing way to improve the ef-
fectiveness and efficiency of NLP systems(Ruder,
2017). Recent studies such as (Vu et al., 2021; Su
et al., 2021) have demonstrated the applicability
of transfer learning in the context of prompt tun-
ing, also referred to as prompt transfer. Instead
of training the prompt from scratch over target
task, these approaches employ the source prompts
Psource = {P1,Po,- - , Py}, which are trained ac-
cording to equation (2) over source tasks. These
source prompts Pgyrce can then serve as either ini-
tialization vectors or weighted vectors for training
the target prompt.

4 Method

Our proposed method TPT (As illustrated in Figure
2) consists of two stages: pre-training token-wise
prompt bank (Section 4.1) and jointly prompt tun-
ing (Section 4.2).

TPT pre-trains a token-wise prompt bank that
integrates the cross-task features on various source
tasks Tsource = {11, T2, -+ ,T;} and then utilizes
this resulting bank as the initial token-wise prompt
bank of the next stage to generate instance-level
retrieved prompt for each example. In addition, all
examples of the target task T}qrq4e¢ also share the
same task-level soft prompt. These two kinds of
prompts are concatenated with the input as the final
input of the frozen LM and provide both additional
instance-level and task-level features for that input,
which enhance the model’s training and inference
processes, leading to improved performance.

4.1 Pre-training Token-wise Prompt Bank

We first pre-train a token-wise prompt bank over
t high-resource tasks Tsoyrce Via the memory net-
work. The examples from multiple datasets are
mixed together, enabling the implicit integration of
cross-task features within the learning process of
the token-wise prompt bank, thereby endowing it
with a powerful capacity for knowledge transfer.
Formally, given the training data Dgyyree =
{D1, Dy, , Dy} of source tasks Tsource, ONE
of the input sequence denoted as X; =
{x1,29,--- ,1;} € R where [is the input
length, d is the dimension of hidden state. The
input X; and a randomly initialized token-wise
prompt bank B are simultaneously sent to the re-

8736

P e e e e e e e e e e e R T

7 Token-wise Prompt Bank

DDDDDD Frozen LM %

[Task k i
‘Té.skZ
I, OO0~ DeHE-Mx

Retrieved Prompt ¢ Input

—— = = e e e e = e e = e e

(1) Pre-training Token-wise Prompt Bank

Token-wise Prompt Bank Soft Prompt

IDDDDDD‘ [DDD‘ Frozen LM N—l

Task
rOE- W WE- o)

R [R]

Retrieved Prompt#®y Soft Prompt ¢ Input

—— = e e e e e e e e e e e

(2) Jointly Prompt Tuning

Figure 2: The overall process of TPT. The first step is to pre-train a token-wise prompt bank that absorbs cross-task
features on multiple source tasks. The second step utilizes this prompt bank as initialization, transfers the knowledge
of the source tasks to the target task and generates a retrieved prompt for each example, and jointly trains with the
soft prompt on the target task. Instance-level retrieved prompt and task-level soft prompt provide richer contextual
information for input to help the model train and infer better.

trieval module for calculation and an instance-level
retrieved prompt R; is generated for X; according
to the similarity results. The retrieved prompt R;
is prepended in front of the input sequence X; to
form [R;;X;], which together serve as the final in-
put of the frozen LM. The training objective is to
maximize the likelihood of conditional generating
over Dsoyrce = {D1, D2, -+, Dy}, which is:

k
ﬁng}éz Z po(yil[Ri; Xs]) 3)

=" j=1X,€D;

4.1.1 Soft Prompt Decomposition

Unlike the previous prompt-based method, which
weights or combines prompts as a whole (Asai
et al., 2022; Li et al., 2022; Wang et al., 2021b),
TPT disassembles prompts into finer-grained
prompt tokens to complete these operations, en-
abling a more comprehensive amalgamation of soft
tokens, and thereby expanding the range of possible
combinations.

For this reason, what is stored in the bank is not
the soft prompts trained on the source tasks, but
smaller units of prompts, that are, n soft prompt
tokens, B = {t1,t2,--- ,t,}, where t, € R"*%,
The n soft prompt tokens in the token-wise prompt
bank will calculate the similarity scores with the
input, and the k tokens with the highest scores will
be retrieved and concatenated into the instance-
level reFrieved prompt R; = {t.i, ¢, s b }s
where r;, € {1,2,--- ,n} indicates that the k-th
token of the retrieved prompt R; generated for the
t-th example X; corresponds to the index of the
token stored in the token-wise prompt bank.

During the training process, only the k tokens
{tpi tn, - b } retrieved from the token-wise

prompt bank will attain the gradient for adjustment,
and the other tokens that have not been retrieved
remain untouched.

4.1.2 Similarity Score Estimation

The retrieval module controls which tokens to se-
lect from the token-wise prompt bank each time
an instance-level retrieved prompt is generated by
calculating the similarity between the example and
prompt tokens in the token-wise prompt bank.
Specifically, the retrieval module will generate
the similarity scores S; = {s%,s5, -+, s’} be-
tween input X; and the n tokens in the bank, where
s} denotes the similarity score between X; and j-th
token in the bank. The tokens located at the k in-
dexes {r},r%,--- ,ri} of that token-wise prompt
bank, which possesses the highest similarity scores
with the input are retrieved and concatenated into
the retrieved prompt of that example, as follows:

{ri, rhoo. ,ri} = Index(TopK(S:)) 4)

where T'op K () function returns the largest k values
of the given input, and Indez() function returns
the subscript of the given input value, which is the
index in the bank.

To deal with inputs of various lengths, we apply
max-pooling over input X; to generate the pooled
input &; € R? with the same length of soft prompt
tokens t; in the token-wise prompt bank and the
generated Z; will be fed into the retrieval module to
calculate similarity scores between ; and ¢; based
on their inner product, which is:

Z; = MazPooling(X;) 5)
sh = (&, t;) (6)

where (,) denotes the operation of inner product.

8737

4.2 Jointly Prompt Tuning

When jointly prompt tuning, the token-wise prompt
bank trained in the first step is utilized as initializa-
tion to generate the instance-level retrieved prompt
according to the method described in section 4.1.
Transfer learning is performed based on it, and the
knowledge of the source tasks is transferred to the
target task.

In addition, for all examples of the target
task, we initialize a task-level soft prompt P =
{p1,p2, - ,Pm}, where P € R™ 9 which is
shared by them. Instance-level retrieved prompt R;
and task-level soft prompt P are concatenated in
front of the input to form [R;; P; X;], and fed into
frozen LM together as the contextual information.

During the training process, retrieved prompt R;
and soft prompt P adjust simultaneously, and the
optimization objective is transformed to maximize
the likelihood of decoding the desired output y;

given input X; over training data D = {X;, y;} ¥ |,
as follows:
N
Iﬁlia}g;pe(y I))

In contrast to vanilla prompt tuning, which only
provides a shared task-level soft prompt P for all
examples of the target task, TPT provides an addi-
tional instance-level retrieved prompt R; specific
to each example X; of the target task as a com-
plementary. This instance-level prompt R; cap-
tures the particular information related to the input
X, while the task-level prompt P encompasses the
overall information from the training data D to
which X; belongs. By incorporating these distinct
levels of features, a more comprehensive contex-
tual framework is established for X;, which can
facilitate enhanced model training and inference
capabilities.

S Experiments

Following the previous prompt-based methods
(Lester et al., 2021; Asai et al., 2022), we perform
our experiments on 14 different datasets with full-
dataset and few-shot settings, and the experimental
results show the effectiveness of our TPT in various
scenarios.

5.1 Datasets and Tasks

The TPT method is divided into the first stage of
pre-training on source tasks, and the second stage
of task adaptation on the target task. Specifically,

we utilize 6 high-resource datasets as source tasks
and select 14 tasks from GLUE (Wang et al.,
2018), SuperGLUE (Wang et al., 2019) and Sci-
Tail(Khot et al., 2018) as target tasks for evaluation.

Source tasks. As in (Asai et al., 2022) and (Wang
et al., 2023), we use 6 datasets with more than100k
annotations as source tasks: MNLI (Williams et al.,
2017), QNLI (Demszky et al., 2018), QQP (Wang
et al., 2018), SST-2 (Socher et al., 2013), SQuAD
(Rajpurkar et al., 2016), and ReCoRD (Zhang
et al., 2018).

Target tasks. We selected a total of 14 tasks as tar-
get tasks for evaluation, among which, 8 tasks are
selected from GLUE: MNLI, QQP, QNLI, SST-2,
STS-B (Cer et al., 2017), MRPC (Dolan and Brock-
ett, 2005), RTE (Bar-Haim et al., 2006), and COLA
(Warstadt et al., 2018), 5 tasks are selected from Su-
perGLUE: MultiRC (Khashabi et al., 2018), BoolQ
(Clark et al., 2019), CB (de Marneffe et al., 2019),
WiC (Pilehvar and Camacho-Collados, 2018), and
WSC (Levesque et al., 2011), and another dataset
SciTail (Khot et al., 2018). SciTail is a scientific
entailment dataset, which is chosen for few-shot
evaluation.

5.2 Models

Following the standard approach in previous
prompt-based method (Lester et al., 2021; Asai
et al., 2022; Wang et al., 2023), we mainly ex-
periment using the publicly available pre-trained
T5-base model with 220M parameters. In our abla-
tion study, we also consider T5-Small (60M) and
T5-Large (770M) models.

5.3 Baselines

We compare TPT with the following baselines: (1)
full parameter fine-tining (FT), where all the model
parameters are tuned during adaptation on each
downstream task, while other methods solely focus
on adjusting the specific components mentioned
below. Specifically, (2) prompt tuning (PT) (Lester
et al., 2021), where target prompt vectors are ini-
tialized by randomly sampled top vocabularies; (3)
SPoT (Vu et al., 2021) and ATTEMPT (Asai et al.,
2022) initialize target prompts by retrieving or ag-
gregating prompts trained over source tasks; (4)
Adapter (Houlsby et al., 2019) and AdapterDrop
(Riicklé et al., 2020) insert trainable modules in the
middle of the model; (5) BitFit (Ben-Zaken et al.,
2021) only needs to adjust the bias term. (6) MPT

8738

Method Param GLUE SuperGLUE

MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg. | Multi BoolQ WiC WSC CB Avg.
FT 220M | 86.8 91.6 93.0 94.6 89.7 90.2 719 61.8 849 | 728 81.1 70.2 59.6 857 73.9
Adapters 1.9M 86.5 90.2 93.2 93.8 90.7 85.3 719 64.0 845 | 75.9 82.5 671 673 857 757
AdapterDrop | 1.1M 86.3 90.2 93.2 93.6 914 86.3 712 627 844 | 729 82.3 683 673 8.7 753
BitFit 280K 85.3 90.1 93.0 94.2 90.9 86.8 676 582 833 | 745 79.6 70.0 596 786 725
ATTEMPT 232K 84.3 903 93.0 93.2 89.7 85.7 734 574 834 | 744 788 66.8 538 786 70.5
PT 77K 81.3 89.7 928 90.9 89.5 68.1 54.7 106 722 | 58.7 61.7 489 519 679 578
SPoT 77K 85.4 90.1 93.0 93.4 90.0 79.7 689 571 823 4 772 67.0 500 46.4 62.9
MPT 77K 859 903 93.1 93.8 90.4 89.1 794 624 85.6 | 74.8 79.6 69.0 673 79.8 741
TPT 539K 85.5 90.1 93.2 94.7 89.8 89.7 823 59.8 85.6 | 744 80.1 69.8 67.3 94.6 T77.2

Table 1: Results on GLUE and SuperGLUE. All of the results are based on T5-base models. The middle of the table
shows the results of the prompt-based method, the top of the table shows the results of other PEFT methods, and the
bottom of the table is the result of our proposed TPT. For these experiments, we exclude SQuAD and ReCoRD
from source prompts inventories for comparison with prior work. We use Pearson Correlation for STS-B, F1 for
MultiRC (Multi), and accuracy for other tasks as metrics. "param/task" denotes the number of parameters trained

for each task in GLUE.

(Wang et al., 2023) learns target prompt through
knowledge distillation.

5.4 Implementation Details

To pre-train the token-wise prompt bank, we con-
duct a 5-epoch training phase on a mixture of 6
high-resource source tasks. For jointly prompt tun-
ing, we reuse the trained token-wise prompt bank
to generate the instance-level retrieved prompt and
use the prompt trained on the target task or inter-
mediate task to initialize the soft prompt. Unless
specified, we use T5-base as our base LMs for TPT
and more details in Appendix A.2.

If a dataset does not have public test split with an-
notations, we use a development set as our test set
or split the development set into our development
and test sets, following (Davison, 2021).

In few-shot experiments, for each number of
shots k, following (Mahabadi et al., 2021; Asai
et al., 2022), we randomly sample 3 times from the
training set with different random seeds and report
the mean performances. In addition, the task-level
soft-prompt is initialized randomly or following
(Vu et al., 2021) to use the prompt trained on the
MNLI dataset as initialization.

5.5 Results

We present main results, which are the full-data
adaption in Section 5.5.1, few-shot adaption in Sec-
tion 5.5.2, and parameter efficiency in 5.5.3.

5.5.1 Full-data adaption

Table 1 presents the per-task performance of differ-
ent methods on all datasets.

As shown in Table 1, TPT has established state-
of-the-art (SOTA) performances on the datasets
of GLUE and SuperGLUE compared with these

s @ °® ® ® FT
* *
(9] % 75 % Adapter
w g 3 g‘ O BitFit
= 80 g0 Q
o s @ SPoT
o P 65 @ ATTEMPT
<, & @ VvV MPT
>
< 60 L &l
o © TPTf

le5 1le6 1le7 1e8
of Parameters

le5 le6 1le7 1le8
of Parameters

Figure 3: Parameter efficiency on GLUE (left) and Su-
perGLUE (right). All results are based on T5-base (Raf-
fel et al., 2019).

baselines. Specifically, we achieved SOTA on high-
resource datasets: MNLI (93.2%), SST-2 (94.7%),
and on low-resource datasets: RTE (82.3%), WSC
(67.3%), CB (94.6%), which demonstrate the ef-
fectiveness of TPT across various data resource sce-
narios. Compared to vanilla prompt tuning, TPT
obtains a relative improvement of 13.4% on GLUE
and 19.4% on SuperGLUE, surpassing the perfor-
mance of vanilla prompt tuning across all datasets
by a large margin. This result further shows that
the instance-level retrieved prompt composed of
prompt tokens is complementary to the task-level
soft prompt generated by prompt tuning, and the
supplementary effect is universal. Moreover, TPT
outperforms full parameter fine-tuning (FT) on
GLUE by 0.7% and SuperGLUE by 4.7%, despite
tuning 0.245% as many task-specific parameters.

5.5.2 Few-shot adaption

Following (Mahabadi et al., 2021; Asai et al., 2022;
Wang et al., 2023), we conduct few-shot experi-
ments on BoolQ, CB and SciTail, to further ver-
ify the effectiveness of TPT under the resource-
constrained setup. Table 2 shows the results of
our approach and other baselines, which includes

8739

k-shot | FT (220M) AD (1.OM) PT (77K) ST (77K) HF (638K) ATP (232K) MPT (77K) | TPT(538K)
BoolQ | 4 50.5 53.4 61.6 50.5 48.0 61.8 62.2 62.2
16 56.5 51.4 61.9 50.6 50.2 60.0 63.3 63.5
32 58.4 54.5 61.7 61.2 58.3 65.3 68.9 67.4
CB 4 57.7 51.1 53.5 714 60.7 82.1 73.6 78.6
16 77.0 74.8 63.5 64.3 76.3 78.5 78.6 80.4
32 80.0 74.8 67.8 64.3 81.4 85.7 82.1 86.3
SciTail | 4 79.6 795 57.7 69.6 82.0 0.2 0.2 81.0
16 80.0 83.2 60.8 71.9 86.5 79.5 87.3 85.5
32 81.9 85.0 60.2 71.9 85.8 80.2 86.3 85.2

Table 2: Few-shot results (k =4, 16, 32). FT, AD, PT, ST, HF, and ATP denote Fine-tuning, Adapter, Prompt tuning,
SPoT, HyperFormer (Mahabadi et al., 2021), and ATTEMPT.

full parameter fine-tuning, Adapter, prompt tuning,
SPoT, HyperFormer, ATTEMPT, and MPT. To be
specific, TPT outperforms other methods in certain
cases, achieving both SOTA on BoolQ (4, 16-shot)
and CB (16, 32-shot). These results clearly indi-
cate that TPT can effectively use cross-task features
in source tasks to target tasks in few-shot domain
adaptation.

5.5.3 Parameter efficiency

Figure 3 compares the performance of different
models versus their number of updated parameters
on GLUE and SuperGLUE. In addition, TPT-f is a
variant of TPT, that is, the parameters of the bank
are frozen during the joint training process, and
only the parameters corresponding to the task-level
soft prompt need to be adjusted.

Specifically, TPT outperforms all other base-
lines on both GLUE and SuperGLUE with only
a small number of parameter adjustments, espe-
cially over full-parameter fine-tuning. TPT-f still
maintains very high accuracy (y-axis) when adjust-
ing a smaller number of parameters per task (x-
axis). TPT-f adjusts as many parameters as vanilla
prompt tuning, but the performance on GLUE and
SuperGLUE is more than prompt tuning by a large
margin, which proves that the TPT and TPT-f have
a high degree of parameter effectiveness.

5.6 Ablation Study

Model Scaling. We empirically analyze how in-
creasing the backbone LM size affects TPT perfor-
mance. Figure 4 shows the performance of TPT
as well as full parameter fine-tuning, Adapter, AT-
TEMPT, prompt tuning and MPT with three dif-
ferent T5 models (T5-small, T5-base, T5-large).
These results show that TPT largely benefits from
backbone LM size increase, which is aligned with
the finding of (Lester et al., 2021). Furthermore,
TPT demonstrates effectiveness across a wide

range of model scales, spanning from 60M to 770M
parameters. As the model size increases, TPT ex-
hibits increasingly pronounced advantages. Partic-
ularly, when the model size is large, TPT surpasses
other baselines on all three datasets.

—o— PT —a— ATTEMPT Adapter —— FT —— MPT —— TPT

90 80

Accuracy (%)
~
w

~

o

Accuracy (%)
3

%
=}

base
(c) wiC

40
base small

(b) MultiRC

55
base small

(a) BoolQ

60
small large large large

Figure 4: Performance with different backbone LMs.

In addition, we also conducted experiments on a
larger scale model (T5-3B), and table 3 shows that
our TPT method still has strong competitiveness in
the era of large models.?

Method | GLUE
PT 79.7
TPT 88.1

Table 3: Experimental results on large language model
(T5-3B).

Effectiveness of token-wise prompt bank. We
also conduct experiments to assess the effectiveness
of solely utilizing the retrieved prompt, abbreviated
as RP, generated from the token-wise prompt bank.

Instead of concatenating the instance-level re-
trieved prompt with the task-level soft prompt and
jointly performing prompt tuning, we exclusively
prepend the instance-level retrieved prompt, which
is composed of tokens retrieved from the token-
wise prompt bank, to the input during task adap-
tation. To be specific, RP-S signifies training the

The large language model (T5-3B) can bring better per-
formance, but the training process is relatively unstable.

8740

prompt bank for the target task from scratch, while
RP-M involves pre-training a token-wise prompt
bank on multiple source tasks and subsequently em-
ploying it as initialization to train the token-wise
prompt bank for the target task. In addition, the
training method of PR-W is similar to that of RP-S.
But unlike RP-S, which decomposes soft prompts
into finer grained prompt tokens and then retrieves
and adjusts these tokens in the token-wise prompt
bank, RP-W treats soft prompts as a whole and then
retrieves and adjusts these prompt in the prompt
bank.

The results presented in Table 4 reveal that even
when using only the retrieved prompt, RP-S out-
performs vanilla PT and RP-W by a large margin
and RP-M surpasses ATTEMPT by a large mar-
gin, which validates that the method of dismantling
soft prompts into finer-grained prompt tokens and
then combining them can generate a more suitable
prompt for each example and also demonstrates
the effectiveness of our token-wise prompt bank.
Moreover, RP-M performs better than RP-S, which
indicates that multi-task learning on source tasks
can facilitate a beneficial transfer effect on both
seen and unseen target tasks.

Method GLUE _ SuperGLUE
PT 72.2 57.8
RP-W 78.6 62.5
RP-S 83.5 67.2
ATTEMPT | 83.4 705
RP-M 84.2 74.7

Table 4: The effectiveness of token-wise prompt bank.
"PR" indicates that only the instance-level prompt re-
trieved from the token-wise prompt bank is used. "-S"
means to train the bank from scratch on the target task,
"-M" means to perform multi-task learning on multiple
source tasks, and then perform transfer learning on the
target task to train the bank, and "-W" means to treat the
soft prompt as a whole.

Combination Methods. We also explore the im-
pact of the two different methods of combining
instance-level prompts and task-level prompts on
performance: (1) Following the approach of AT-
TEMPT (Asai et al., 2022), the values of corre-
sponding positions in the two prompts are directly
added. (2) Prepending the instance-level prompt in
front of the task-level prompt as (Bari et al., 2022).

The results of table 5 show that the second
method yields superior performance. This find-
ing suggests that processing the task-level features
and instance-level features separately, rather than

directly adding them to an agreement vector, leads
to better outcomes.

Method GLUE SuperGLUE
Addition 83.4 75.2
Concatenation 85.6 77.2

Table 5: The impact of different combinations of
instance-dependent prompts and task-specific prompts.

Prompt Initialization. We explore the impact of
soft prompt initialization in the context of the joint
prompt tuning process. Our investigation focuses
on three distinct initialization strategies: (1) Ran-
dom Initialization: This approach involves replicat-
ing embeddings from the most frequent tokens in
the vocabulary. (2) SPoT Initialization: Following
the methodology of SPoT, we employ the prompt
trained on the MultiNLI dataset as the initialization
for the sentence-level classification target task. (3)
Target Task Initialization: We utilize the prompt
trained specifically for the target task as the initial-
ization. By examining these different strategies,
we aim to understand the effects of soft prompt ini-
tialization on the overall performance of the joint
prompt tuning process.

The results presented in table 6 demonstrate that
initializing the task-level soft prompt in three dif-
ferent ways for joint prompt tuning is much better
than vanilla prompt tuning, which shows that the
soft prompts initialized by these different meth-
ods have significantly improved performance on all
datasets after being prefixed with the instance-level
prompt we proposed for jointly prompt tuning, thus
verifying that our proposed instance-level retrieved
prompt is complementary to all these different task-
level soft prompts.

Furthermore, employing the prompt trained on
the target task as the initialization yields the most
favorable outcomes, while the randomly initialized
prompt exhibits relatively poor results. This ob-
servation also indicates the more task-related soft
prompt can play a greater role during the joint
prompt tuning process.

6 Conclusions

In this study, we have introduced TPT, a novel
parameter-efficient fine-tuning method designed
to address the challenges of generating more suit-
able prompts for individual examples and extend-
ing prompt tuning to multi-task learning scenarios
for capturing cross-task features. TPT harnesses
the power of a memory network to construct a finer-

8741

Method GLUE SuperGLUE
Random 84.4 70.7
Intermediate task 84.7 72.9
Target task 85.5 77.2

Table 6: The impact of different initialization methods.
The results are indicated by “Intermediate task”, where
the prompts are initialized with those trained on the in-
termediate task, and by “Target taks” where the prompts
are initialized with those tuned on the target task.

grained token-wise prompt bank comprising soft
prompt tokens in multi-task learning settings. Our
extensive experimental results have demonstrated
the effectiveness of TPT. It has demonstrated supe-
rior performance over full parameter fine-tuning in
specific cases while requiring significantly fewer
adjusted parameters. Moreover, these experiments
have also verified the compatibility of our method
with existing prompt-based approaches, thereby
contributing new insights to the field of parameter-
efficient fine-tuning.

Limitations

We have demonstrated the potential of integrating
instance-dependent prompts, derived from token-
wise prompts, with task-specific prompts to en-
hance performance. It would be intriguing to ex-
amine the feasibility of generating task-specific
prompts on-the-fly, leveraging the assembly and
retrieval of their token-wise, fine-grained prompts.
Additionally, our future research will focus on the
creation of a generalized token-wise soft prompts
model, which can be applicable across a wide spec-
trum of NLP tasks, rather than being restricted to a
select few.

Ethics Statement

This work fully comply with the ACL Ethics Policy.
All the authors declare that there is no ethical issues
in this paper submitted to ACL 2023 for review.

Acknowledgements

The authors would like to thank the anonymous
reviewers for their valuable comments. This work
was supported by National Natural Science Foun-
dation of China (No. 62076068), and Shanghai
Municipal Science and Technology Project (No.
21511102800).

References

Akari Asai, Mohammadreza Salehi, Matthew E. Peters,
and Hannaneh Hajishirzi. 2022. Attempt: Parameter-
efficient multi-task tuning via attentional mixtures of
soft prompts. In Conference on Empirical Methods
in Natural Language Processing.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second pascal recognising tex-
tual entailment challenge.

M Saiful Bari, Aston Zhang, Shuai Zheng, Xingjian Shi,
Yi Zhu, Shafiq R. Joty, and Mu Li. 2022. Spt: Semi-
parametric prompt tuning for multitask prompted
learning. ArXiv, abs/2212.10929.

Elad Ben-Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. ArXiv, abs/2106.10199.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Daniel Matthew Cer, Mona T. Diab, Eneko Agirre, Ifiigo
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity multilingual
and crosslingual focused evaluation. In International
Workshop on Semantic Evaluation.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surpris-
ing difficulty of natural yes/no questions. ArXiv,
abs/1905.10044.

Joe Davison. 2021. Compacter: Efficient low-rank hy-
percomplex adapter layers.

Marie-Catherine de Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Investi-
gating projection in naturally occurring discourse.

Dorottya Demszky, Kelvin Guu, and Percy Liang.
2018. Transforming question answering datasets
into natural language inference datasets. ArXiv,
abs/1809.02922.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. ArXiv, abs/1810.04805.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.

8742

http://arxiv.org/abs/2005.14165

In International Joint Conference on Natural Lan-
guage Processing.

Tianyu Gao, Adam Fisch, and Danqgi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Association for Computational Linguis-
tics (ACL).

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Inter-
national Conference on Machine Learning.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large
language models. ArXiv, abs/2106.09685.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In North Amer-
ican Chapter of the Association for Computational
Linguistics.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In AAAI Conference on Artificial
Intelligence.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Hector J. Levesque, Ernest Davis, and L. Morgenstern.
2011. The winograd schema challenge. In Interna-
tional Conference on Principles of Knowledge Rep-
resentation and Reasoning.

Yoav Levine, Itay Dalmedigos, Ori Ram, Yoel Zeldes,
Daniel Jannai, Dor Muhlgay, Yoni Osin, Opher
Lieber, Barak Lenz, Shai Shalev-Shwartz, Amnon
Shashua, Kevin Leyton-Brown, and Yoav Shoham.
2022. Standing on the shoulders of giant frozen lan-
guage models. ArXiv, abs/2204.10019.

Junyi Li, Tianyi Tang, Jianyun Nie, Ji rong Wen, and
Wayne Xin Zhao. 2022. Learning to transfer prompts
for text generation. In North American Chapter of
the Association for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Annual Meeting of the
Association for Computational Linguistics.

Mohammad Taher Pilehvar and José Camacho-Collados.
2018. Wic: the word-in-context dataset for evaluat-
ing context-sensitive meaning representations. In
North American Chapter of the Association for Com-
putational Linguistics.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. ArXiv, abs/1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. Squad: 100,000+ ques-
tions for machine comprehension of text. ArXiv,
abs/1606.05250.

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2020. Adapterdrop: On the efficiency
of adapters in transformers. In Conference on Empir-
ical Methods in Natural Language Processing.

Sebastian Ruder. 2017. An overview of multi-task learn-
ing in deep neural networks. ArXiv, abs/1706.05098.

Teven Le Scao and Alexander M. Rush. 2021. How
many data points is a prompt worth?

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV
au2, Eric Wallace, and Sameer Singh. 2020. Auto-
prompt: Eliciting knowledge from language models
with automatically generated prompts.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, A. Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Conference on Empirical Methods in Natural Lan-
guage Processing.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,
Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan
Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, and
Jie Zhou. 2021. On transferability of prompt tuning
for natural language processing. In North Ameri-
can Chapter of the Association for Computational
Linguistics.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

8743

https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.08493
http://arxiv.org/abs/2103.08493
http://arxiv.org/abs/2010.15980
http://arxiv.org/abs/2010.15980
http://arxiv.org/abs/2010.15980

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou,
and Daniel Matthew Cer. 2021. Spot: Better frozen
model adaptation through soft prompt transfer. ArXiv,
abs/2110.07904.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessan-
dro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. 2020. Ex-
ploring and predicting transferability across nlp tasks.
ArXiv, abs/2005.00770.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. In Neural Information Processing
Systems.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. ArXiv,
abs/1804.07461.

Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao,
and Hao Ma. 2021a. Entailment as few-shot learner.

Zhen Wang, Rameswar Panda, Leonid Karlinsky,
Rogério Schmidt Feris, Huan Sun, and Yoon Kim.
2023. Multitask prompt tuning enables parameter-
efficient transfer learning. ArXiv, abs/2303.02861.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,
Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot,
Jennifer G. Dy, and Tomas Pfister. 2021b. Learning
to prompt for continual learning. 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 139-149.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2018. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625-641.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2014.
Memory networks. CoRR, abs/1410.3916.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. In North
American Chapter of the Association for Computa-
tional Linguistics.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Rui Hou, Yux-
iao Dong, V. G. Vinod Vydiswaran, and Hao Ma.
2022. Idpg: An instance-dependent prompt gener-
ation method. In North American Chapter of the
Association for Computational Linguistics.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018.
Record: Bridging the gap between human and ma-
chine commonsense reading comprehension. ArXiv,
abs/1810.12885.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. 2022. Panda: Prompt transfer meets
knowledge distillation for efficient model adaptation.
ArXiv, abs/2208.10160.

8744

http://arxiv.org/abs/2104.14690

Method GLUE SuperGLUE
MNLI QQP QNLI SSI-2 STS-B__MRPC RIE CoLA Avg | Multi BoolQ WiC WSC CB Avg.
Random 855 90.0 932 942 802 887 800 540 845 | 720 787 69.6 635 69.6 70.7
Intermediate task | 84.8 90.0 932 938 89.3 897 80.1 565 847 | 733 795 67.7 635 80.4 729
Target task 846 901 932 947 89.8 807 823 598 855 | 744 80.1 698 67.3 946 77.2

Table 7: Experimental results of different initialization methods of task-level soft prompt to perform TPT on GLUE

and SuperGLUE.
Method GLUE SuperGLUE
MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg. | Multi BoolQ WiC WSC CB Avg.
PT 81.3 89.7 928 909 895 681 547 10.6 722 | 587 61.7 489 519 67.9 57.8
RP-W 81.7 89.7 928 9L7 889 689 585 57.0 786 | 657 622 522 644 67.9 625
RP-S 82.9 89.7 928 92.9 89.1 88.5 729 588 83.5 | 74.3 62.4 527 644 821 67.2
ATTEMPT | 84.3 90.3 93 93.2 89.7 85.7 734 574 834 | 744 788 66.8 53.8 786 70.5
RP-M 83.9 90.0 934 93.2 89.3 88.2 78.7 56.7 842 | 73.8 785 67.6 644 89.3 747
Table 8: Experimental results of a single instance-level retrieved prompt on GLUE and SuperGLUE.
Method GLUE SuperGLUE
MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg. | Multi BoolQ WiC WSC CB Avg.
Add 82.6 89.3 929 932 895 863 784 548 834 724 784 671 654 929 752
Concatenate | 84.6 90.1 93.2 94.7 89.8 89.7 82.3 59.8 855 | 744 80.1 69.8 673 946 T77.2

Table 9: Experimental results of TPT on GLUE and SuperGLUE through different prompt combination methods.

Method | Param GLUE SuperGLUE
ethod) Yaram "uINIT QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg. | Multi BoolQ WiC WSC CB Avg
TPTf | 77K | 8 90 931 938 895 887 809 588 849 | 743 792 0663 644 94.6 753
TPT | 539K | 84.6 90.1 93.2 947 898 807 823 598 855| 744 80.1 698 67.3 94.6 77.2
Table 10: Experimental results of TPT variant TPT-f on GLUE and SuperGLUE.
Appendix uations, specifically focusing on two distinct combi-

A More details
A.1 Detailed Results

The following provides more detailed information
for the experimental section of this paper.

Table 7 provides a comprehensive breakdown
of the outcomes obtained from GLUE and Super-
GLUE evaluations, specifically focusing on the
task-level soft prompt initialization. This approach
involves combining the task-specific soft prompt
with the instance-dependent retrieved prompt in or-
der to optimize prompt tuning. The table compares
the results for three distinct methods employed in
this initialization process.

Table 8 presents a comprehensive analysis of
the outcomes obtained from GLUE and Super-
GLUE assessments when exclusively relying on
the instance-level retrieved prompt as the supple-
mentary context. The aim of this investigation is
to evaluate the efficacy of the token-wise prompt
bank in generating appropriate prompts for each
input example.

Table 9 provides a detailed presentation of the
results obtained from GLUE and SuperGLUE eval-

nation methods employed to combine the instance-
dependent prompt and target-specific prompt. The
table highlights the outcomes achieved by utilizing
these combination approaches.

Finally, Table 10 presents a comprehensive anal-
ysis of TPT-f, a variant of TPT, in the context of
GLUE and SuperGLUE evaluations. TPT-f effec-
tively reduces the number of adjustable parameters
in comparison to TPT, while demonstrating com-
parable performance in terms of achieved results.

A.2 Training details

Hyperparameters. As used in TPT, we use the
prompt length of m = 100 for each prompt and
use the learning rate of 0.3 for prompt tuning to
train the task-specific prompt and set weight decay
to be 1 x 107°. In addition, we also utilize learning
rate of 0.3 for pre-training token-wise prompt
bank and jointly prompt tuning and optimize the
objective function using Adam (Kingma and Ba,
2014). In particular, we use the learning rate of 0.1
for SuperGLUE, and Yelp, WinoGrande, SciTail
and PAWS multi-task experiments, and 0.3 for
the other experiments. At the same time, we also

8745

try different schedulers and when we train the
task-level soft prompt, we choose the constant
learning rate of 0.3 and for the other experiments,
we also try the linear scheduler.

Few-shot Adaptation Experiments Details. Fol-
lowing (Mahabadi et al., 2021), we run few-shot
adaptation experiments three times and take the
mean of the performance. We cite the performance
of the full parameter fine-tuning (FT), Adapter
(AD), HyperFormer (HF) from (Mahabadi et al.,
2021), prompt tuning (PT), SPoT (ST), ATTEMPT
(Asai et al., 2022) (ATP), and MPT (Wang et al.,
2023) and random initialize the task-level soft
prompt or utilize the prompt trained on MNLI.

Per-device batch size for TPT and prompt tun-
ing. For T5 small and base, we set per-GPU batch
size to be 100 and 32, while for T5-large, we use
the batch size of 16.

8746

