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Abstract

This paper addresses the task of temporal sen-
tence grounding (TSG). Although many re-
spectable works have made decent achieve-
ments in this important topic, they severely rely
on massive expensive video-query paired anno-
tations, which require a tremendous amount
of human effort to collect in real-world ap-
plications. To this end, in this paper, we tar-
get a more practical but challenging TSG set-
ting: unsupervised temporal sentence ground-
ing, where both paired video-query and seg-
ment boundary annotations are unavailable dur-
ing the network training. Considering that
some other cross-modal tasks provide many
easily available yet cheap labels, we tend to
collect and transfer their simple cross-modal
alignment knowledge into our complex scenar-
ios: 1) We first explore the entity-aware object-
guided appearance knowledge from the paired
Image-Noun task, and adapt them into each
independent video frame; 2) Then, we extract
the event-aware action representation from the
paired Video-Verb task, and further refine the
action representation into more practical but
complicated real-world cases by a newly pro-
posed copy-paste approach; 3) By modulating
and transferring both appearance and action
knowledge into our challenging unsupervised
task, our model can directly utilize this gen-
eral knowledge to correlate videos and queries,
and accurately retrieve the relevant segment
without training. Extensive experiments on two
challenging datasets (ActivityNet Captions and
Charades-STA) show our effectiveness, out-
performing existing unsupervised methods and
even competitively beating supervised works.

1 Introduction

As a popular yet challenging natural language pro-
cessing task, temporal sentence grounding (TSG)

∗Equal contributions. †Corresponding author.
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(b) Illustration of our proposed CMKT.
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Figure 1: (a) Example of the temporal sentence ground-
ing (TSG) task. (b) Illustration of our proposed CMKT
network, where (b1) is the appearance knowledge learn-
ing module, (b2) is the action knowledge learning mod-
ule, and (b3) is the knowledge transfer module, where
“app” denotes “appearance”. Note that there are no
ground-truth annotations in (b3). Best viewed in color.

(Fang et al., 2022, 2023a; Liu et al., 2023c) has
drawn increasing attention in recent years. TSG
aims to locate a temporal video segment with an
activity that semantically corresponds to a given
sentence query. As shown in Figure 1(a), only
a short video segment semantically matches the
query, while most of the video contents are query-
irrelevant. Clearly, TSG tries to break through the
barrier between computer vision and natural lan-
guage processing techniques for more challeng-
ing cross-modal grounding (Li et al., 2023b,a,
2022; Wang and Shi, 2023; Wang et al., 2021a,
2020c,a,b).

Most previous TSG works (Liu et al., 2023a;
Fang et al., 2023b; Zhang et al., 2021; Fang et al.,
2020, 2021b,a; Fang and Hu, 2020; Liu et al.,
2021b, 2020b, 2022a, 2021a, 2022d, 2021c) are
under a fully-supervised setting, where each frame
is manually annotated as query-relevant or query-
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irrelevant. Despite the decent progress, these data-
hungry methods severely rely on numerous frame-
query annotations, which are significantly labor-
intensive and time-consuming to collect. To alle-
viate annotation reliance to a certain extent, some
recent works (Tan et al., 2021; Chen et al., 2019;
Mithun et al., 2019; Ma et al., 2020; Lin et al.,
2020; Song et al., 2020; Zhang et al., 2020d) ex-
plore a weakly-supervised setting to only leverage
the coarse-grained video-query annotations instead
of the fine-grained frame-query annotations. Un-
fortunately, this weakly-supervised setting still re-
quires expensive video-query annotations and its
performance validates unsatisfactory.

To this end, in this paper, we try to tackle
a more practical but challenging setting for the
TSG task, i.e., unsupervised TSG, which excludes
both coarse-grained video-query annotations and
fine-grained frame-query annotations. Therefore,
how to guide the unsupervised model to extract
the vision-language correlations becomes a crucial
problem. Luckily, unlike the expensively annotated
TSG task requiring long sentences and complicated
videos, some cross-modal tasks (e.g., image re-
trieval and video retrieval) always provide a mas-
sive number of cheap and fully-annotated datasets,
i.e., matched image-noun and paired video-verb.
Hence, we pose a brand-new idea: can we transfer
the annotation knowledge from other cheap cross-
modal annotations to the complicated and challeng-
ing unsupervised TSG task? Our main motivation
is that we can first learn simple image-noun and
video-verb correlations to extract the visual appear-
ance and action knowledge, respectively. Then,
by generalizing such cross-modal knowledge and
transferring it into unsupervised TSG, we can not
only well correlate the queries with corresponding
videos without large-scale video-query pairs, but
also match them with image-aware frames without
frame-query pairs. Therefore, the current problem
becomes how to separately collect the appearance
and action knowledge and adaptively transfer the
knowledge into our unsupervised TSG task.

To tackle these issues, we propose a novel Cross-
Modal Knowledge Transferring (CMKT) network,
which fine-tunes and transfers the extracted appear-
ance and action knowledge from other cross-modal
tasks to search the best-matching video activity re-
lated to given queries in the unsupervised TSG set-
ting. As shown in Figure 1(b), our CMKT contains
three modules: (i) In the appearance knowledge

module, we try to learn the object-guided matched
region-noun information from the Image-Noun task
to model the appearance information. (ii) In the
action knowledge module, single-action and multi-
action branches are designed to simulate complex
video scenes. In the single-action branch, we ex-
tract the pure action information based on a set of
labeled single-action videos. In the multi-action
branch, since real-world videos often contain mul-
tiple actions, we introduce a clip-level copy-paste
strategy to construct the action-hybrid videos to
adapt to more complex scenes. (iii) Finally, we re-
fine both the appearance and action knowledge, and
aggregate and transfer them into our complicated
unsupervised TSG for inference without further
training.

Our main contributions are summarized as fol-
lows:

• To the best of our knowledge, we make the
first attempt to transfer the cross-modal knowl-
edge from other tasks into the TSG task. With-
out any TSG annotation, we can directly gen-
eralize the collected pre-trained appearance
and action information for precise grounding,
which eliminates complex training.

• We carefully design the appearance and action
knowledge collection modules to learn simple
knowledge from other cheap tasks. To handle
the complicated video with multiple action
contexts, we introduce a copy-paste idea to
synthesize various multi-action clips, which
improves the generalization ability.

• Comprehensive experiments on two chal-
lenging datasets (ActivityNet Captions and
Charades-STA) show the effectiveness of our
proposed CMKT.

2 Related Works

Most existing TSG methods are under the fully-
supervised setting (Tang et al., 2021; Liu et al.,
2023b; Zhang et al., 2021; Cao et al., 2020; Lei
et al., 2020; Liu et al., 2020a, 2022b; Liu and Hu,
2022; Liu et al., 2022e), where all video-query
pairs and precise segment boundaries are manu-
ally annotated. Based on the top-down approach,
some methods (Anne Hendricks et al., 2017; Chen
et al., 2018; Zhang et al., 2020b) first pre-define
multiple segment proposals and then align these
proposals with the query for cross-modal seman-
tic matching based on the similarity. Finally, the
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Figure 2: Overview of our CMKT framework for unsupervised TSG. We design two knowledge modules to extract
both appearance and action knowledge from other simple yet cheap cross-modal tasks. (i) In appearance branch, we
learn the region-word pair information and the appearance information can be viewed as the visual semantic of a
given noun. (ii) The action knowledge module contains two branch: single-action branch and multi-action branch.
For the single-action branch, we extract the pure action information based a set of labeled action video. Specifically,
based on the branch, we can obtain the visual represent of the verbs. As for multi-action branch, since many video
often contain multiple action, we introduce the clip-level copy-paste method to construct the action-hybrid videos.
The global information in these videos contain the action features. (iii) Finally, we introduce the appearance and
action knowledge into our TSG task by knowledge searching. Best viewed in color.

best-matched proposal is selected as the predicted
segment. Recently, some works utilize the bottom-
up strategy (Chen et al., 2020a; Mun et al., 2020;
Zhang et al., 2020a), which directly regresses the
boundary of the target segment or predicts bound-
ary probabilities frame-wisely. To alleviate the re-
liance to a certain extent, some state-of-the-art turn
to the weakly-supervised setting (Tan et al., 2021;
Chen et al., 2019; Mithun et al., 2019; Ma et al.,
2020; Lin et al., 2020; Song et al., 2020; Zhang
et al., 2020d), where only video-query pairs are
annotated without precise segment boundaries. To
further mitigate the reliance, an unsupervised work
(Liu et al., 2022c) clusters the semantic informa-
tion of the whole query set by a complex training
process for grounding. Different from the above
methods, we address the challenging unsupervised
TSG task from a novel perspective: collecting and
transferring the general cross-modal knowledge
from other simple yet cheap tasks.

3 Our Method

3.1 Overview

Problem definition. Given a set of untrimmed
videos V = {Vh}N

V

h=1 and sentence queries Q =

{Qg}NQ

g=1, we denote Vh and Qg as the h-th video

and the g-th query, NV and NQ as the number of
videos and queries, respectively. For each query,
unsupervised TSG has no annotation information
about its corresponding related video and detailed
activity location. Obviously, our unsupervised TSG
is more challenging than previous supervised TSG,
since we drop all annotated information between
V and Q including their correspondence and anno-
tated segment boundaries.

Overall pipeline. To tackle the challenging unsu-
pervised setting, we propose a novel Cross-Modal
Knowledge Transfer (CMKT) network shown in
Figure 2, which first designs two task-agnostic
knowledge collection modules to learn both appear-
ance and action knowledge from other labeled but
cheap cross-modal tasks, then refine and transfer
their knowledge into our complicated TSG task.

For the appearance knowledge module, we first
collect a set of conceptual nouns and their corre-
sponding image regions from public Image-Noun
datasets (e.g., Visual Genome (VG) (Krishna et al.,
2017)), where a noun corresponds to multiple rel-
evant regions. We denote these region-level im-
ages as V a = {va

i }N
a

i=1 and their corresponding
words (object nouns) as Wn = {wn

j }N
n

j=1, where
Na and Nn are the number of regions and nouns,
respectively. Then, we explore the region-level
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appearance knowledge by the region-word pair in-
formation (wn

j , v̄
a
j ), where v̄a

j is the consensus of
all the regions corresponding to wn

j . For noun wn
j ,

we compute v̄a
j by averaging the representations of

all relevant regions. With pairwise nouns and their
consensus region representations, we can obtain
general cross-modal appearance knowledge.

In the action knowledge module, we are given a
massive number of conceptual verbs and their cor-
responding action-pure clips from popular Video-
Verb datasets (e.g., Kinetics (Carreira and Zisser-
man, 2017)), where a verb corresponds to many
labeled clips. These clips and corresponding verbs
are denoted as V m = {vm

i }Nm

i=1 and W v =
{wv

j }N
v

j=1 respectively, and Nm and Nv are the
number of clips and verbs. We tend to learn the
clip-level action knowledge (wv

j , v̄
m
j ), where v̄m

j

is the consensus of all the regions corresponding to
wv

j . Besides obtaining the basic action feature via
averaging over all relevant single-action clips, we
synthesize the multi-action clips by the copy-paste
approach (Dvornik et al., 2018; Xu et al., 2021;
Rong et al., 2021) for simulating more complicated
scenes. By refining both single- and multi-action
representations, we obtain the final action knowl-
edge. Finally, a knowledge transfer module is de-
signed to transfer appearance and action knowledge
into our unsupervised TSG.

3.2 Appearance Knowledge Collection

Since the cheap Image-Word datasets provide suffi-
cient known image-noun pairs, we can leverage
them to extract the simple cross-modal appear-
ance knowledge. However, our desired appear-
ance knowledge has two key properties: 1) Region-
aware: Rather than extract visual backgrounds, ap-
pearance knowledge is required to accurately align
the region-level foreground objects and correspond-
ing nouns. It is more fine-grained than other meth-
ods that roughly link the whole image to words. 2)
One-to-one matching: Instead of aligning a noun to
multiple related images in a one-to-many manner,
we focus on cross-modal one-to-one matching to
alleviate the appearance variations of objects by
aligning the noun and its corresponding consensus
region. Therefore, we collect all the nouns and
their related regions on the VG dataset, which con-
tains diverse contents that are useful to improve
knowledge generalization.
Noun-aware textual encoder. Given Nn nouns as
the label set of Na region-level images, we utilize

Glove (Pennington et al., 2014) to embed each noun
into a dense vector {wn

j }N
n

j=1, where wn
j ∈ Rd is

the j-th noun feature and d is the feature dimension.
Appearance-aware visual encoder. Given Na

region-level images, we use Faster-RCNN (Ren
et al., 2015) to extract their features {va

i }N
a

i=1,
where va

i ∈ Rd is the i-th appearance feature.
Appearance knowledge acquisition. For the j-
th noun wn

j , we can obtain its prototypical region
representation va

j by averaging all relevant region

features {va
j,k}

Kn
j

k=1:

va
j = AV P (va

j,1, · · · ,va
j,Kn

j
), (1)

where va
j is the consensus appearance feature and

AV P (·) denotes the average pooling, Kn
j is the to-

tal related region number. To ensure that va
j shares

the same semantics with its corresponding noun-
aware features, we learn two parametric transforma-
tion matrices Ba and Bn via a regularization loss
(Lin et al., 2017) Lapp to enforce consensus region
feature va

j as close as possible to corresponding
noun feature wn

j :

Lapp = ||BaV
a −BnW n||2F , (2)

where || · ||F is Frobenius norm, V a
= {va

j}N
n

j=1 ∈
Rd×Nn

and W n = {wn
j }N

n

j=1 ∈ Rd×Nn
.

3.3 Action Knowledge Collection

Similarly, we can utilize cheap Video-Verb datasets
to extract cross-modal action knowledge by learn-
ing the video-verb pairs. To meet the requirement
of diverse actions in the TSG task, we collect the
verbs and their paired trimmed videos from a highly
diverse video dataset Kinetics (Carreira and Zis-
serman, 2017). In the TSG task, it is difficult to
obtain the specific feature of every single action
from multi-action videos. Thus, we simulate var-
ious action videos to better generalize the mixed
action features. To collect different types of action
knowledge, we design two branches: single- and
multi-action branches. In the single-action branch,
since all the clips share the same-class action infor-
mation, we aim to obtain the pure average action
feature of a given verb. For the multi-action branch,
we refine the consensus action feature by merg-
ing multiple action clips into a hybrid one with a
copy-paste strategy.
Verb-aware textual encoder. Given Nv verbs, we
use the Glove network (Pennington et al., 2014)
to embed each verb into a dense vector W v =
{wv

j }N
v

j=1 ∈ Rd×Nv
.
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Action-aware visual encoder. Given Nm la-
beled trimmed videos, we first extract their clip-
wise features by a pre-trained C3D network (Tran
et al., 2015), and then employ a multi-head self-
attention (Vaswani et al., 2017) module to cap-
ture the long-range dependencies among video
frames. We denote the extracted video features
as V m = {vm

i }Nm

i=1 ∈ Rd×Nm
.

Action knowledge acquisition. In the single-
action branch, we are given a set of verbs {wv

j }N
v

j=1

and each verb wv
j corresponds to multiple action-

pure videos {vm
j,p}

Nm
j

p=1, where Nm
j is the num-

ber of action videos corresponding to wv
j . For

verb wv
j , we directly utilize the average pooling

to obtain its average action feature: (vm
j )′ =

AV P (vm
j,1, . . . ,v

m
j,Nm

j
).

Since real-world videos often contains multi-
ple actions, in the multi-action branch, we intro-
duce a copy-paste strategy to augment the multi-
action videos. As shown in Figure 2, given any
two trimmed action videos, we randomly copy
some clips from a video, and paste them onto
the other video by replacing the same number of
clips. For action-pure video vm

j,p with Nm
j,p clips

(corresponding to verb wv
j ) and another action-

pure video vm
x,z (irrelevant to verb wv

j ), we ran-
domly replace Pm

j,p clips of vm
j,p with Pm

j,p clips
from vm

x,z . The augmented multi-action video is
denoted as (vm

j,p)
∗. For convenience, we design

a metric to denote the copy-paste amount: paste
rate µ = Pm

j,p/N
v
j,p ∈ (0, 1), i.e., the percent of

replaced clips in the original video vm
j,p. After

the copy-paste process, since the augmented video
(vm

j,p)
∗ still contains verb-related action informa-

tion (related to verb wv
j ), we obtain the correspond-

ing average action feature by the average pooling:
(vm

j )′′ = AV P ((vm
j,1)

∗, . . . , (vm
j,Nv

j
)∗). (vm

j )′′ de-
notes the generated action feature of vm

j after the
copy-paste operation. By combining single-action
(vm

j )′ and multi-action (vm
j )′′, the final consensus

action feature is obtained by:

v̄m
j = (1 + µ)(vm

j )′ + (1− µ)(vm
j )′′, (3)

where µc is used to adaptively control the balance
between the action-pure information and hybrid
action information.

To generalize the above action knowledge, we
design an inter-action loss Linter and an intra-
action loss Lintra for constraint. For the inter-
action loss, in different augmented videos, we take
the matched action-verb pairs as positive samples
and the unmatched action-verb pairs as negative
samples, and use the weighted binary cross-entropy
loss to supervise the verb-relevance {rwv

j }Nv

j=1:

Linter =
∑Nv

j=1
(−yj log(r

wv
j )− (1− yj) log(1− rwv

j )),

where yj the label of the j-th sample that equals
1 for the matched action-verb pairs and 0 for the
unmatched action-verb pairs; rwv

j is obtained by

rwv
j =

vm
j (wv

j )
T

||vm
j ||22||wv

j ||22
. (4)

For the intra-action loss, in each multi-action video,
we take verb-related video clips as positive samples
and define verb-irrelevant video clips as negative
samples. We adopt a hinge loss for supervision:

Lintra =
∑Nv

j=1
max(0, β − rwv

j + r̂wv
j ),

where β is a parameter and r̂wv
j denotes the verb-

relevance of negative clips. Thus, the final action
knowledge loss is:

Laction = Linter + Lintra. (5)

Eq. (5) tries to align the same-class action features
and push the diff-class action features away.

3.4 Knowledge Transfer to Unsupervised TSG
In previous sections, we can obtain consensus ap-
pearance knowledge and consensus action knowl-
edge, which are important for comprehending the
target moments in our TSG task. However, we
cannot directly utilize the collected knowledge in
our TSG task due to (i) the domain gap between
Image-Noun/Video-Verb task and the TSG task,
and (ii) more complicated scenes in the TSG task.
Thus, we aim to fine-tune collected knowledge to
fit the TSG domain by knowledge transfer. In the
following, we will illustrate how we transfer the
collected knowledge into the TSG task.
TSG query encoder. Given a set of queries
Q = {Qg}NQ

g=1, to keep the query features same
as the knowledge-based one, we utilize the Glove
network to embed each word into a dense vector.
For Qg with N q

g words, its word-level features are

denoted as Qg = {f q
g,j}

Nq
g

j=1 ∈ Rd×Nq
g . We uti-

lize the NLP tool spaCy (Honnibal and Montani,
2017) to parse nouns from the given query, then
remove duplicate nouns. The textual features of the
reserved nouns are denoted as {fn

g,j}
Nn

g

j=1, where
fn
g,j ∈ Rd is the j-th noun feature and Nn

g is the
reserved noun number. Similarly, we parse verbs
and obtain the reserved verb feature set {fv

g,j}
Nv

g

j=1,
where fv

g,j ∈ Rd is the j-th reserved verb feature
and Nv

g is the reserved verb number.
TSG video encoder. Given NV videos V =
{Vh}N

V

h=1, we denote Vh as the h-th video and Th

as its frame number. For the appearance feature,
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we utilize Faster-RCNN (Ren et al., 2015) built on
a ResNet50 (He et al., 2016) backbone to detect K
objects on each video to obtain a set of appearance
features V a

h = {fa
h,i,k}

i=Th,k=K
i=1,k=1 . For the action

feature, we first divide video Vh into Th/8 clips.
Then, we utilize a pre-trained C3D network (Tran
et al., 2015) and a multi-head self-attention to ex-
tract the clip-aware features V m

h = {fm
h,i}

Th/8
i=1 .

Fitting the TSG domain via knowledge trans-
fer. To transfer the pre-trained knowledge into
the TSG task, we fine-tune the collected appear-
ance and action knowledge based on the prin-
ciple of cross-modal cycle consistency. Given
the nouns features {fn

g,j}
Nn

g

j=1 and verbs features

{fv
g,j}

Nv
g

j=1, we search each fn
g,j in the appearance

knowledge and each fv
g,j in the action knowledge

with the cosine similarity, then re-represent them
with the collected consensus appearance features
va
j and action features vm

j , respectively. For con-

venience, we denote Ag = {va
j}

Nn
g

j=1 ∈ Rd×Nn
g

and Mg = {vm
j }N

v
g

j=1 ∈ Rd×Nv
g . As for the visual

appearance and action features, we also enhance
them via the collected knowledge, respectively.

To fine-tune consensus features (Ag and Mg),
we design a cross-modal cycle-consistent loss to
make collected knowledge more applicable to the
TSG task. For appearance knowledge, we first com-
pute the cosine similarity matrix Sn

g ∈ RNn
g ×NV

between noun-guided consensus appearance fea-
tures and video appearance features. Then, we
combine all appearance features by treating sim-
ilarities as weights to obtain reconstructed nouns
features:

Q̃n
g = W n

g Caσc(S
n
g )

T ,

Sn
g = (W n

g Ag)
TW n

g Ca, (6)

where Ca = {V a
h }N

V

h=1, W n
g is a learnable transfor-

mation matrix, σc(·) is the softmax operation along
the column dimension, and Q̃n

g is the reconstructed
noun representation. Similarly, we combine all
action features to obtain the reconstructed verbs
features:

Q̃v
g = W v

g C
mσc(S

v
g )

T ,

Sv
g = (W v

g Mg)
TW v

g C
m, (7)

where Cm = {V m
h }NV

h=1, W v
g is a learnable trans-

formation matrix, Q̃v
g is the reconstructed verb fea-

tures, and Sv
g ∈ RNv

g×NV
is the similarity matrix

between transformed verb and action features.
Our cycle-consistent loss aims to (i) align the

semantics of original nouns and their reconstructed
ones, (ii) pull verbs and their reconstructed ones
together. Thus, we construct two indicator matrices

Ỹ a
g ∈ RNn

g ×Nn
g and Ỹ m

g ∈ RNv
g×Nv

g to evaluate if
each noun/verb and its reconstructed one are the
same or not as:

Ỹ a
g = σ((Q̃n

g )
T (W n

g A))T ,

Ỹ m
g = σ((Q̃v

g)
T (W v

g M))T . (8)

With Ỹ a
g and Ỹ m

g , we optimize W n
g and W v

g by
minimizing the cross-entropy loss:

Lclc =−
NQ∑

g=1

(

Nn
g∑

z=1

(ya
g,z)

T log(Ỹ a
g,z)

+

Nv
g∑

x=1

(ym
g,x)

T log(Ỹ m
g,x)),

ya
g,z and ym

g,x are one-hot ground-truth vectors,
where the z-th and x-th value are one, and rest
values are zeros. By Lclc, we use W n

g and W v
g to

transfer all consensus appearance and action knowl-
edge into TSG.

3.5 Knowledge-based Grounding

By pre-training the appearance knowledge by Lapp

and the action knowledge by Laction with the
knowledge transfer by Lclc, we can directly uti-
lize the suitable transferred appearance knowledge
(wn

j , v̄
a
j ) and action knowledge (wn

j , v̄
a
j ) to local-

ize the target segment boundary without any further
training. Specifically, during the inference, given
some videos {Vh}N

V

h=1 and a query set {Qg}NQ

g=1,
we first extract their appearance feature fa

h,i,k, ac-
tion feature fm

h,i, noun feature fn
g,j , verb feature

fv
g,j , respectively. Then, based on the collected

appearance knowledge and action knowledge mod-
ules, we can obtain the corresponding consensus
appearance and action features. We compute the
cosine similarity matrix between consensus appear-
ance features and video appearance features, and
also calculate the cosine similarity matrix between
consensus action features and video action features.
After that, following (Liu et al., 2022c), we select
the best-matched clip with the highest scores (sum
of appearance similarity and action similarity) in
the target video as the target segment center. We
add the left/right frames into the segment if the ra-
tio of their scores to the frame score of the closest
segment boundary is less than a threshold γ. We
repeat this step until no frame can be added. In this
way, we can generate the final segment boundary.
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Table 1: Performance comparison with state-of-the-art methods. ‘Type’ refers to supervision level, FS: fully-
supervised setting, WS: weakly-supervised setting, US: unsupervised setting.

Method Type ActivityNet Captions Charades-STA
IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.7 mIoU IoU=0.3 IoU=0.5 IoU=0.7 mIoU

CTRL (Gao et al., 2017) FS 49.10 28.70 14.00 - 20.54 - 21.42 7.15 -
2D-TAN (Zhang et al., 2020b) FS - 58.75 44.05 27.38 - - 42.80 23.25 -
LGI (Mun et al., 2020) FS - 58.52 41.51 23.07 41.13 72.96 59.46 35.48 51.38
VSLNet (Zhang et al., 2020a) FS - 63.16 43.22 26.16 43.19 70.46 54.19 35.22 50.02
VCA (Wang et al., 2021c) WS 67.96 50.45 31.00 - 33.15 58.58 38.13 19.57 38.49
RTBPN (Zhang et al., 2020c) WS 73.73 49.77 29.63 - - 60.04 32.36 13.24 -
CTF (Chen et al., 2020b) WS 74.20 44.30 23.60 - 32.20 39.80 27.30 12.90 27.30
MARN (Song et al., 2020) WS - 47.01 29.95 - - 48.55 31.94 14.81 -
SCN (Lin et al., 2020) WS 74.48 47.23 29.22 - - 42.96 23.58 9.97 -
BAR (Wu et al., 2020) WS - 49.03 30.73 - - 44.97 27.04 12.23 -
CCL (Zhang et al., 2020d) WS - 50.12 31.07 - - - 33.21 15.68 -
LCNet (Yang et al., 2021) WS 78.58 48.49 26.33 - 34.29 59.60 39.19 18.87 38.94
CNM (Zheng et al., 2022) WS 78.13 55.68 33.33 - - 60.39 35.43 15.45 -
WSTAN (Wang et al., 2021b) WS 79.78 52.45 30.01 - - 43.39 29.35 12.28 -
DSCNet (Liu et al., 2022c) US - 47.29 28.16 - - 44.15 28.73 14.67 -
Our CMKT US 73.35 50.69 31.28 16.42 38.79 47.80 30.96 18.87 30.42

4 Experiment

4.1 Datasets and Evaluation Metrics

ActivityNet Captions. From ActivityNet v1.3
(Heilbron et al., 2015; Lan et al., 2022), Activi-
tyNet Captions contains 20,000 YouTube videos
and 100,000 language queries. On average, a video
is 2 minutes and a query has about 13.5 words. Fol-
lowing the public split (Gao et al., 2017), we utilize
17,031 video-query pairs for testing.
Charades-STA. Built upon the Charades dataset
(Sigurdsson et al., 2016), Charades-STA contains
16,128 video-sentence pairs. The average video
length is 0.5 minutes. The language annotations are
generated by sentence decomposition and keyword
matching with manual checks. Following (Gao
et al., 2017), we remove 12,408 training pairs and
utilize the others for testing.
Evaluation metrics. Following previous works
(Mun et al., 2020; Zhang et al., 2020a), we use
“IoU=m” for evaluation, which denotes the percent-
age of queries having at least one result whose Inter-
section over Union (IoU) with ground truth is larger
than m. In our experiments, m ∈ {0.3, 0.5, 0.7}
for Charades-STA and m ∈ {0.1, 0.3, 0.5, 0.7} for
ActivityNet Captions. Also, we utilize mean IoU
(mIoU) as the averaged temporal IoU between the
predicted boundary and the ground-truth one.

4.2 Implementation details

For the appearance knowledge module, we utilize
all the words on the Visual Genome dataset, so the
noun number of region-level semantics is 27,801.
The feature dimension d is set to 512 for all the

features. For the action knowledge module, we use
the pre-trained C3D (Tran et al., 2015) network
to extract the single-action and multi-action infor-
mation on the Kinetics dataset. Also, we use all
the verbs on the Kinetics dataset. To make a fair
comparison with previous works (Gao et al., 2017;
Zhang et al., 2020b), we also utilize the pre-trained
C3D model to extract video features and employ
the Glove model to obtain word embeddings. As
some videos are too long, we set the length of
video feature sequences to 128 for Charades-STA
and 256 for ActivityNet Captions, respectively. We
fix the query length to 10 in Charades-STA and 20
in ActivityNet Captions. Threshold γ is set to 0.9
on Charades-STA and 0.8 on ActivityNet Captions.
All the experiments are implemented by PyTorch.

4.3 Comparison with State-of-the-Arts

We conduct performance comparison with three cat-
egories of state-of-the-art TSG methods: (i) Fully-
supervised (FS) setting (Gao et al., 2017; Zhang
et al., 2020b; Mun et al., 2020; Zhang et al., 2020a);
(ii) Weakly-supervised (WS) setting (Chen et al.,
2020b; Lin et al., 2020; Wang et al., 2021b; Wu
et al., 2020; Song et al., 2020; Zhang et al., 2020d;
Huang et al., 2021; Wang et al., 2021c; Yang et al.,
2021; Zhang et al., 2020c; Zheng et al., 2022); (iii)
Unsupervised (US) setting (Liu et al., 2022c).

Table 1 reports the performance comparison.
Without any supervision, our CMKT still obtains
the competitive performance to WS and US meth-
ods on the ActivityNet Captions dataset. Com-
pared with the US method DSCNet, our CMKT
improves the performance by 3.40% and 3.12% in
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Table 2: Main ablation study, where we remove each key component to investigate its effectiveness. “AK” denotes
“appearance knowledge”, “MK” denotes “action knowledge”, “KT” denotes “knowledge transfer”.

Model AK MK KT ActivityNet Captions Charades-STA
IoU=0.3 IoU=0.5 IoU=0.7 mIoU IoU=0.3 IoU=0.5 IoU=0.7 mIoU

CMKT(a) " " % 45.81 24.79 11.52 31.36 40.81 24.72 10.88 25.24
CMKT(b) % " " 47.50 26.82 12.37 32.71 42.43 26.87 11.74 26.90
CMKT(c) " % " 48.02 27.91 13.96 34.05 44.35 27.19 12.62 27.86
CMKT(Full) " " " 50.69 31.28 16.42 38.79 47.80 30.96 18.87 30.42

Table 3: Necessity of average pooling on ActivityNet
Captions, where “MIP” means min-pooling, “MAP”
means max-pooling, and “AVP” means average pooling.

Module Changes IoU=0.3 IoU=0.5 IoU=0.7 mIoU

Appearance
knowledge

MIP 47.80 29.08 13.76 35.70
MAP 48.03 30.72 14.45 36.68
AVP 50.69 31.28 16.42 38.79

Action
knowledge

MAP 48.36 28.72 15.45 35.53
MIP 49.27 29.26 16.20 36.61
AVP 50.69 31.28 16.42 38.79

terms of “IoU=0.3” and “IoU=0.5”, demonstrating
the effectiveness of our proposed CMKT. On the
Charades-STA dataset, compared with supervised
methods (FS and WS), our CMKT in the US set-
ting reaches competitive performance. Although
our CMKT eliminates the training process, it out-
performs US method DSCNet by 3.65%, 2.23%
and 4.20% in terms of “IoU=0.3”, “IoU=0.5” and
“IoU=0.7”, which shows our effectiveness.

4.4 Ablation study

Main ablation studies. To examine the effective-
ness of each module, we conduct the main ablation
studies in Table 2. CMKT(a) is the baseline model,
which only utilizes pre-trained appearance and
action features for inference without fine-tuning
knowledge. CMKT(b) removes appearance knowl-
edge module, and directly use the action knowl-
edge to locate the target segment. In CMKT(c),
we only use the appearance information to obtain
the segment boundary by removing the action in-
formation. CMKT(Full) is our full CMKT model.
CMKT(Full) performs better than all the ablation
models, demonstrating the effectiveness of appear-
ance and action knowledge for understanding the
long yet complex sentence in TSG.
Investigation on the consensus features. To as-
sess the effectiveness of average pooling (AVP) dur-
ing the generation process of consensus appearance
features, we compare different pooling strategies.
As shown in Table 3, our AVP significantly outper-
forms both min-pooling (MIP) and max-pooling

Table 4: Effect of action knowledge on ActivityNet
Captions.

Single-
action

Multi-
action IoU=0.3 IoU=0.5 IoU=0.7 mIoU

% " 48.21 27.70 15.55 36.03
" % 49.36 29.82 15.73 37.54
" " 50.69 31.28 16.42 38.79

Table 5: Performance of different knowledge transfer
on ActivityNet Captions.

Appearance Action IoU=0.3 IoU=0.5 IoU=0.7 mIoU
% % 45.81 24.79 11.52 31.36
% " 46.07 28.30 13.15 35.08
" % 47.15 29.98 12.74 34.86
" " 50.69 31.28 16.42 38.79

Table 6: Effect of copy-paste strategy on ActivityNet
Captions.

Changes IoU=0.3 IoU=0.5 IoU=0.7 mIoU
w/o copy-paste 45.98 26.94 11.02 34.75

w/ video connection 49.22 30.76 14.54 37.82
w/ copy-paste 50.69 31.28 16.42 38.79

(MAP) on both two knowledge collection modules,
showing that AVP is suitable for integrating the in-
formation among a single modality for representing
the same semantic as the other modality.
Influence on different types of action knowledge.
To investigate the contribution of single- and multi-
action videos to our final consensus action features,
we conduct the corresponding ablations in Table
4 to evaluate the significance of single-action and
multi-action knowledge. Obviously, both single-
action and multi-action features contribute to our
action knowledge module.
Investigation on different types of knowledge
transfer. To evaluate the importance of appearance
and action knowledge, we conduct corresponding
experiments. As shown in Table 5, each knowl-
edge contributes a lot to transferring the knowledge
into our task. By jointing appearance and action
knowledge, the performance can further boost.
Effect of the copy-paste strategy. To analyze the
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Figure 3: Effect of parameters on ActivityNet Captions.

performance of our copy-paste strategy, an abla-
tion experiment is conducted in Table 6, where “w/
video connection” means that we direct connect
two videos for data synthesis. Thus, the copy-paste
strategy is more effective to synthesize the multi-
action videos for better grounding performance.
Analysis on the hyper-parameters. As shown in
Figure 3, we investigate the impact of four hyper-
parameters: object number (K); paste rate (µ);
positive parameter (β); evaluation metrics (IoU).
(i) With larger K, our proposed CMKT performs
better. To balance the performance and the compu-
tation cost of object detection, we choose K = 8.
(ii) All the variants obtain the best performance
when the paste rate µ is set to 0.8. (iii) Our CMKT
obtains the best performance when β = 0.9. (iv)
CMKT(Full) obtains the best performance on all
IoUs, demonstrating the effectiveness of each mod-
ule. Thus, we set K = 8, µ = 0.8 and β = 0.9 in
all the experiments.

4.5 Qualitative Results

As shown in Figure 4, we visualize the localiza-
tion results. Our CMKT can predict more precise
segment boundaries than fully-supervised model
2D-TAN and weakly-supervised method WSTAN.

Ground Truth

2D-TAN

5.07s 13.61s

3.42s 11.54s

WSTAN 9.72s 17.46s

Query: The boy falls off and gets back on the ball before he falls off again.

Query: Person pours water into a glass. 

Ground Truth

2D-TAN

41.85s 119.10s

38.74s 130.25s

Our CMKT 4.90s 13.48s

WSTAN 50.73s 84.07s

Our CMKT 42.89s 119.51s

Query: The person unwraps the loaf of bread.

Ground Truth

2D-TAN

9.04s 13.30s

3.48s 10.72s

WSTAN 10.06s 11.23s

Our CMKT 9.04s 12.84s

Figure 4: Qualitative results sampled from ActivityNet
Captions (top) and Charades-STA (bottom).

5 Conclusion

In this paper, we address the challenging yet practi-
cal unsupervised TSG task from a brand-new per-
spective of knowledge transfer. Without further
grounding training, we can directly utilize the gen-
eral knowledge from other cross-modal tasks to
guide to match the video and query for retrieving
the target segment. To our best knowledge, we
make the first attempt to transfer the knowledge
from other multi-modal topics to our TSG task.
Experimental results validate the effectiveness of
CMKT, outperforming the existing unsupervised
method by a large margin.
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7 Limitations

This work analyzes an interesting yet challenging
problem of how to transfer the annotation knowl-
edge from other cheap cross-modal annotations
to the complicated and challenging unsupervised
TSG task. Although we can transfer the knowl-
edge from other cheap multi-modal datasets, the
contexts of these datasets are not always helpful
for our grounding task. However, our proposed
CMKT still provides a brand-new and interesting
idea, cross-modal knowledge transfer, for promot-
ing the development of these areas. Therefore, a
more contextual and generalizable way to transfer
cross-modal knowledge between different topics is
a promising future direction.
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