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Abstract
This paper addresses the problem of generat-
ing questions from a given context and an an-
swer, specifically focusing on questions that
require multi-hop reasoning across an extended
context. Previous studies have suggested that
key phrase selection is essential for question
generation (QG), yet it is still challenging to
connect such disjointed phrases into meaning-
ful questions, particularly for long context. To
mitigate this issue, we propose MultiFactor,
a novel QG framework based on multi-level
content planning. Specifically, MultiFactor in-
cludes two components: FA-model, which si-
multaneously selects key phrases and gener-
ates full answers, and Q-model which takes
the generated full answer as an additional in-
put to generate questions. Here, full answer
generation is introduced to connect the short
answer with the selected key phrases, thus
forming an answer-aware summary to facilitate
QG. Both FA-model and Q-model are formal-
ized as simple-yet-effective Phrase-Enhanced
Transformers, our joint model for phrase selec-
tion and text generation. Experimental results
show that our method outperforms strong base-
lines on two popular QG datasets. Our code
is available at https://github.com/zeaver/
MultiFactor.

1 Introduction

Question Generation (QG) is a crucial task in the
field of Natural Language Processing (NLP) which
focuses on creating human-like questions based
on a given source context and a specific answer.
In recent years, QG has gained considerable atten-
tion from both academic and industrial commu-
nities due to its potential applications in question
answering (Duan et al., 2017), machine reading
comprehension (Du et al., 2017), and automatic
conversation (Pan et al., 2019; Ling et al., 2020).

Effective content planning is essential for QG sys-
∗Corresponding authors.

Source Paragraph 1: Richard Hornsby & Sons
Richard Hornsby & Sons was an engine and machinery manufacturer in
Lincolnshire, England from 1828 until 1918. The company was a pioneer in the
manufacture of the oil engine developed by Herbert Akroyd Stuart, which was
marketed under the "Hornsby-Akroyd" name. The company developed an early
track system for vehicles, selling the patent to Holt & Co. (predecessor to
Caterpillar Inc.) in America. In 1918, Richard Hornsby & Sons became a
subsidiary of the neighbouring engineering firm Rustons of Lincoln, to create
"Ruston & Hornsby".

Source Paragraph 2: Herbert Akroyd Stuart
Herbert Akroyd-Stuart (28 January 1864, Halifax, Yorkshire, England – 19
February 1927, Halifax) was an English inventor who is noted for his invention of
the hot bulb engine, or heavy oil engine. Akroyd-Stuart was born in Halifax,
Yorkshire, but lived in Australia for a period in his early years. He was educated
at Newbury Grammar School (now St. Bartholomew's School) and Finsbury
Technical College in London.

Gold Question: What is the date of birth of the English inventor that
developed the Richard Hornsby & Sons oil engine?
Answer: 28 January 1864

Vanilla QG: When was the English inventor Herbert Akroyd Stuart born?
Phrase-level QG: When was the English inventor who developed the oil
engine born?
MultiFactor: When was the English inventor who developed the oil engine
pioneered by Richard Hornsby & Sons born?
Generated Full Answer: The English inventor who developed the oil engine
pioneered by Richard Hornsby & Sons born in 28 January 1864.

Figure 1: An example from HotpotQA in which the
question generated by MultiFactor requires reasoning
over disjointed facts across documents.

tems to enhance the quality of the output ques-
tions. This task is particularly important for gen-
erating complex questions, that require reasoning
over long context. Based on the content granu-
larity, prior research (Zhang et al., 2021) can be
broadly categorized into two groups: phrase-level
and sentence-level content planning. On one hand,
the majority of prior work (Sun et al., 2018; Liu
et al., 2019; Pan et al., 2020; Cao and Wang, 2021;
Fei et al., 2022; Subramanian et al., 2018) has fo-
cused on phrase-level planning, where the system
identifies key phrases in the context and generates
questions based on them. For instance, given the
answer “28 January 1864” and a two-paragraphs
context in Figure 1, we can recognize “English
Inventor,” “the oil engine,” “Herbert Akroyd Stu-
art” as important text for generating questions. For
long context, however, it is still challenging for
machines to connect such disjointed facts to form
meaningful questions. On the other hand, sentence-
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level content planning, as demonstrated by Du and
Cardie (2017), aims at automatic sentence selec-
tion to reduce the context length. For instance,
given the sample in Figure 1, one can choose the
underscored sentences to facilitate QG. Unfortu-
nately, it is observable that the selected sentences
still contain redundant information that may nega-
tively impact question generation. Therefore, we
believe that an effective automatic content planning
at both the phrase and the sentence levels is crucial
for generating questions.

In this paper, we investigate a novel framework,
MultiFactor, based on multi-level content planning
for QG. At the fine-grained level, answer-aware
phrases are selected as the focus for downstream
QG. At the coarse-grained level, a full answer
generation is trained to connect such (disjointed)
phrases and form a complete sentence. Intuitively,
a full answer can be regarded as an answer-aware
summary of the context, from which complex ques-
tions are more conveniently generated. As shown
in Figure 1, MultiFactor is able to connect the short
answer with the selected phrases, and thus create
a question that requires more hops of reasoning
compared to Vanilla QG. It is also notable that we
follow a generative approach instead of a selection
approach (Du and Cardie, 2017) to sentence-level
content planning. Figure 1 demonstrates that our
generated full answer contains more focused infor-
mation than the selected (underscored) sentences.

Specifically, MultiFactor includes two components:
1) A FA-model that simultaneously selects key
phrases and generate full answers; and 2) A Q-
model that takes the generated full answer as an
additional input for QG. To realize these compo-
nents, we propose Phrase-Enhanced Transformer
(PET), where the phrase selection is regarded as a
joint task with the generation task both in FA-model
and Q-model. Here, the phrase selection model and
the generation model share the Transformer en-
coder, enabling better representation learning for
both tasks. The selected phrase probabilities are
then used to bias to the Transformer Decoder to fo-
cus more on the answer-aware phrases. In general,
PET is simple yet effective as we can leverage the
power of pretrained language models for both the
phrase selection and the generation tasks.

Our main contributions are summarized as follows:

• To our knowledge, we are the first to introduce

the concept of full answers in an attempt of
multi-level content planning for QG. As such,
our study helps shed light on the influence of
the answer-aware summary on QG.

• We design our MultiFactor framework follow-
ing a simple yet effective pipeline of Phrase-
enhanced Transformers (PET), which jointly
model the phrase selection task and the text
generation task. Leveraging the power of
pretrained language models, PET achieves
high effectiveness while keeping the addi-
tional number of parameters fairly low in com-
parison to the base model.

• Experimental results validate the effectiveness
of MultiFactor on two settings of HotpotQA,
a popular benchmark on multi-hop QG, and
SQuAD 1.1, a dataset with shorter context.

2 Related Work

Early Question Generation (QG) systems (Mostow
and Chen, 2009; Chali and Hasan, 2012; Heilman,
2011) followed a rule-based approach. This ap-
proach, however, suffers from a number of issues,
such as poor generalization and high-maintenance
costs. With the introduction of large QA datasets
such as SQuAD (Rajpurkar et al., 2016) and Hot-
potQA (Yang et al., 2018), the neural-based ap-
proach has become the mainstream in recent years.
In general, these methods formalize QG as a
sequence-to-sequence problem (Du et al., 2017),
on which a number of innovations have been made
from the following perspectives.

Enhanced Input Representation Recent ques-
tion generation (QG) systems have used auxiliary
information to improve the representation of the
input sequence. For example, Du et al. (2017) used
paragraph embeddings to enhance the input sen-
tence embedding. Du and Cardie (2018) further
improved input sentence encoding by incorporating
co-reference chain information within preceding
sentences. Other studies (Su et al., 2020; Pan et al.,
2020; Fei et al., 2021; Sachan et al., 2020a) en-
hanced input encoding by incorporating semantic
relationships, which are obtained by extracting a se-
mantic or entity graph from the corresponding pas-
sage, and then applying graph attention networks
(GATs) (Veličković et al., 2018).

One of the challenges in QG is that the model might
generate answer-irrelevant questions, such as pro-
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ducing inappropriate question words for a given
answer. To overcome this issue, different strategies
have been proposed to effectively exploit answer
information for input representation. For example,
Zhou et al. (2017); Zhao et al. (2018); Liu et al.
(2019) marked the answer location in the input pas-
sage. Meanwhile, Song et al. (2018); Chen et al.
(2020) exploited complex passage-answer interac-
tion strategies. Kim et al. (2019); Sun et al. (2018),
on the other hand, sought to avoid answer-included
questions by using separating encoders for answers
and passages. Compared to these works, we also
aim to make better use of answer information but
we do so from the new perspective of full answers.

Content Planning The purpose of content plan-
ning is to identify essential information from con-
text. Content planning is widely used in in text
generation tasks such as QA/QG, dialogue system
(Fu et al., 2022; Zhang et al., 2023; Gou et al.,
2023), and summarization (Chen et al., 2022). Pre-
vious studies (Sun et al., 2018; Liu et al., 2019)
predicted “clue” words based on their proximity
to the answer. This approach works well for sim-
ple QG from short contexts. For more complex
questions that require reasoning from multiple sen-
tences, researchers selected entire sentences from
the input (documents, paragraphs) as the focus for
QG, as in the study conducted by Du and Cardie
(2017). Nevertheless, coarse-grained content plan-
ning at the sentence level may include irrelevant
information. Therefore, recent studies (Pan et al.,
2020; Fei et al., 2021, 2022) have focused on ob-
taining finer-grained information at the phrase level
for question generation. In these studies, semantic
graphs are first constructed through dependency
parsing or information extraction tools. Then, a
node classification module is leveraged to choose
essential nodes (phrases) for question generation.

Our study focuses on content planning for Question
Generation (QG) but differs from previous stud-
ies in several ways. Firstly, we target automatic
content-planning at both the fine-grained level of
phrases and the coarse-grained level of sentences.
As far as we know, we are the first that consider
multiple levels of granularity for automatic content
planning. Secondly, we propose a novel phrase-
enhanced transformer (PET) which is a simple yet
effective for phrase-level content planning. Com-
pared to Graph-based methods, PET is relatively
simpler as it eliminates the need for semantic graph

construction. In addition, PET is able to leverage
the power of pre-trained language models for its ef-
fectiveness. Thirdly, we perform content planning
at the sentence level by following the generative
approach instead of the extraction approach as pre-
sented in the study by Du and Cardie (2017). The
example in Figure 1 shows that our generated full
answer contains less redundant information than
selecting entire sentences of supported facts.

Diversity While the majority of previous studies
focus on generating context-relevant questions, re-
cent studies (Cho et al., 2019; Wang et al., 2020b;
Fan et al., 2018; Narayan et al., 2022) have sought
to improve diversity of QG. Although we not yet
consider the diversity issue, our framework pro-
vides a convenient way to improve diversity while
maintaining consistency. For example, one can per-
form diverse phrase selection or look for diverse
ways to turn full answers into questions. At the
same time, different strategies can be used to make
sure that the full answer is faithful to the given
context, thus improving the consistency.

3 Methodology

3.1 MultiFactor Question Generation
Given a source context c = [w1, w2, . . . , wTc ] and
an answer a = [a1, a2, . . . , aTa ], the objective is to
generate a relevant question q = [q1, q2, . . . , qTq ];
where Tc, Ta, and Tq denote the number of tokens
in c, a and q, respectively. It is presumed that
we can generate full answers s = [s1, s2, . . . , aTs ]
of Ts tokens, thus obtaining answer-relevant sum-
maries of the context. The full answers are subse-
quently used for generating questions as follows:

p(q|c, a) = Es[p(q|s, c, a)︸ ︷︷ ︸
Q model

p(s|c, a)︸ ︷︷ ︸
FA model

] (1)

where Q model and FA model refer to the question
generation and the full answer generation mod-
els, respectively. Each Q-model and FA-model
is formalized as a Phrase-enhanced Transformer
(PET), our proposal for text generation with phrase
planning. In the following, we denote a PET as
ϕ : x → y, where x is the input sequence and y is
the output sequence. For the FA-model, the input
sequence is x = c ⊕ a and the output is the full
answer s, where ⊕ indicates string concatenation.
As for the Q-model, the input is x = c ⊕ a ⊕ s
with s being the best full answer from FA-model,
and the output is the question q. The PET model ϕ
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Figure 2: Overview of our MultiFactor is shown on the left. Here, FA-model and Q-model share the same architecture
of Phrase-Enhanced Transformer demonstrated on the right.

firsts select phrases that can consistently be used
to generate the output, then integrates the phrase
probabilities as soft constraints for the decoder to
do generation. The overview of MultiFactor is
demonstrated in Figure 2. The Phrase-Enhanced
Transformer is detailed in the following section.

3.2 Phrase Enhanced Transformer
We propose Phrase-enhanced Transformer (PET),
a simple yet effective Transformer-based model to
infuse phrase selection probability from encoder
into decoder to improve question generation.

Formally, given the input sequence x, and L phrase
candidates, the i-th phrase wz

i (i ∈ {1, ..., L}) is
a sequence of Li tokens {wz

li1
, wz

li2
, . . . , wz

liLi

} ex-

tracted from the context x, where lij indicates the
index of token j of the i-th phrase in x. The phrase-
level content planning is formalized as assigning
a label zi ∈ [0, 1] to each phrase in the candidate
pool, where zi is 1 if the phrase should be selected
and 0 otherwise. The phrase information is then
integrated to generate y auto-regressively:

p(y|x, z) =
Ty∏

t=1

p(yt|x, z, y0:t−1)

Encoder and Phrase Selection Recall that the
input x contains the context c and the answer a in
both Q-model and FA-model, and thus we select
the candidate phrases only from the context c by
extracting entities, verbs and noun phrases using
SpaCy1. The phrase selection is formalized as a bi-
nary classification task, where the input is a phrase

1https://spacy.io/

encoding obtained from the transformer encoder:

H = Encoder(x)

hz
i = MeanMaxPooling({Hj}

liLi

j=li1
)

zi = Softmax {Linear [hz
i ]}

where H ∈ RTx×d with Tx and d being the length
of input sequence and dimensions of hidden states,
respectively. Here, Encoder indicates the Trans-
former encoder, of which the details can be found in
(Devlin et al., 2019). The phrase representation hz

i

is obtained by concatenating MaxPooling(·) and
MeanPooling(·) of the hidden states {Hj} corre-
sponding to i-th phrase. We then employ a linear
network with Softmax(·) as the phrase selection
probability estimator (Galke and Scherp, 2022).

Probabilistic Fusion in Decoder Decoder con-
sumes previously generated tokens y1...t−1 then
generates the next one as follows:

yt =Softmax[Linear[DecLayers(y1...t−1, H)]]

where H is the Encoder output, and DecLayers
indicates a stack of N decoder layers. Like Trans-
former, each PET decoder layer contains three sub-
layers: 1) the masked multi-head attention layer;
2) the multi-head cross-attention layer; 3) the fully
connected feed-forward network. Considering the
multi-head cross-attention sublayer is the interac-
tion module between the encoder and decoder, we
modify it to take into account the phrase selection
probability zi as shown in Figure 2.

Here, we detail the underlying mechanism of each
cross-attention head and how we modify it to en-
code phrase information. Let us recall that the
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input for a cross-attention layer includes a query
state, a key state, and a value state. The query
state Qy is the (linear) projection of the output of
the first sublayer (the masked multi-head attention
layer). Intuitively, Qy encapsulates the information
about the previously generated tokens. The key
state Kh = HW k and the value state V h = HW v

are two linear projections of the Encoder output
H . W k ∈ Rd×dk and W v ∈ Rd×dv are the layer
parameters, where dk and dv are the dimensions of
the key and value states. The output of the cross-
attention layer is then calculated as follows:

CrossAtten(Q,K, V ) = Softmax(
QK⊤)√

dk
)V

Here, we drop the superscripts for simplicity, but
the notations should be clear from the context. The-
oretically, one can inject the phrase information
to either V h or Kh. In practice, however, updat-
ing the value state introduces noises that counter
the effect of pretraining Transformer-based models,
which are commonly used for generation. As a
result, we integrate phrase probabilities to the key
state, thus replacing Kh by a new key state K̃h:

K̃h = δW δ +HW k

δj =

{
[1− zi, zi], if j in i−th phrase

[1, 0], j not in any phrase

where W δ ∈ R2×dk is the probabilistic fusion
layer. Here, zi is the groundtruth phrase label for
phrase i during training (zi ∈ {0, 1}), and the pre-
dicted probabilities to select the i-th phrase during
inference (zi ∈ [0, 1]). In Q-model, we choose all
tokens wi in the full answer s as important tokens.

Training Given the training data set of triples
(x, z, y), where x is the input, y is the groundtruth
output sequence and z indicates the labels for
phrases that can be found in y, we can simulta-
neously train the phrase selection and the text gen-
eration model by optimizing the following loss:

L =CrossEntropy[ŷ, y] + λCrossEntropy[ẑ, z]

where ẑ is the predicted labels for phrase selection,
ŷ is the predicted output, λ is a hyper-parameter.

4 Experiments

4.1 Experimental Setup
Datasets We evaluate our method on two differ-
ent QG tasks: a complex task on HotpotQA and

Dataset
HotpotQA

SQuAD 1.1
Sup. Full

Context Len. 49.3 210.7 26.8
Question Len. 18.0 18.0 10.9
Train/Dev/Test 89947/500/7405 86635/8965/8964

Table 1: The statistics of HotpotQA and SQuAD 1.1,
where Supp. and Full indicate the supporting facts set-
ting and the full setting of HotpotQA.

a simpler task on SQuAD 1.1. There are two set-
tings for HotpotQA (see Table 1): 1) HotpotQA
(sup. facts) where the sentences that contain sup-
porting facts for answers are known in advance; 2)
HotpotQA (full) where the context is longer and
contains several paragraphs from different docu-
ments. For SQuAD 1.1, we use the split proposed
in Zhou et al. (2017). Although our MultiFactor
is expected to work best on HotpotQA (full), we
consider HotpotQA (sup. facts) and SQuAD 1.1
to investigate the benefits of multi-level content
planning for short contexts.

Metrics Following previous studies, we exploit
commonly-used metrics for evaluation, including
BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005) and ROUGE-L (Lin, 2004).
We also report the recently proposed BERTScore
(Zhang et al., 2020) in the ablation study.

Implementation Details We exploit two base
models for MultiFactor: T5-base 2 and MixQG-
base 3. To train FA-model, we apply QA2D (Dem-
szky et al., 2018) to convert question and answer
pairs to obtain pseudo (gold) full answers. Both
Q-model and FA-model are trained with λ of 1. Our
code is implemented on Huggingface (Wolf et al.,
2020), whereas AdamW (Loshchilov and Hutter,
2019) is used for optimization. More training de-
tails and data format are provided in Appendix B.

Baselines The baselines (in Table 2) can be
grouped into several categories: 1) Early seq2seq
methods that use GRU/LSTM and attention for
the input representation, such as SemQG, NGQ++,
and s2sa-at-mcp-gsa; 2) Graph-based methods for
content planning like ADDQG, DP-Graph, IGND,
CQG, MulQG, GATENLL+CT, Graph2seq+RL; 3)
Pretrained-language models based methods, includ-
ing T5-base, CQG, MixQG, and QA4QG. Among
these baselines, MixQG and QA4QG are strong

2https://huggingface.co/t5-base
3https://huggingface.co/Salesforce/mixqg-base

804

https://huggingface.co/t5-base
https://huggingface.co/Salesforce/mixqg-base


Model B-1 B-2 B-3 B-4 MTR R-L
H

ot
po

tQ
A

Encoder Input: Supporting Facts Sentences
SemQG (Zhang and Bansal, 2019) 39.92 26.73 18.73 14.71 19.29 35.63
ADDQG (Wang et al., 2020a) 44.34 31.32 22.68 17.54 20.56 38.09
F+R+A (Xie et al., 2020) 37.97 - - 15.41 19.61 35.12
DP-Graph (Pan et al., 2020) 40.55 27.21 20.13 15.53 20.15 36.94
IGND (Fei et al., 2021) 41.22 24.71 18.99 16.36 24.19 38.34
T5-base (Raffel et al., 2020) 47.78 36.39 29.44 24.48 25.59 43.17
CQG (Fei et al., 2022) 49.71 37.04 29.93 25.09 27.45 41.83
MixQG-base (Murakhovs’ka et al., 2022)† 49.60 37.78 30.58 25.45 26.36 43.21
QA4QG-large (Su et al., 2022) 49.55 37.91 30.79 25.70 27.44 46.48
MultiFactor (T5-base) 53.46 40.95 33.29 27.80 28.26 43.80
MultiFactor (MixQG-base) 54.17 41.50 33.74 28.22 28.60 44.17

Encoder Input: Full Document Context
MulQG (Su et al., 2020) 40.15 26.71 19.73 15.20 20.51 35.30
GATENLL+CT (Sachan et al., 2020b) - - - 20.02 22.40 39.49
T5-base (Raffel et al., 2020) 42.68 31.67 25.21 20.70 22.57 40.25
MixQG-base (Murakhovs’ka et al., 2022) † 45.28 33.72 26.90 22.13 23.78 41.21
QA4QG-large (Su et al., 2022) 46.45 33.83 26.35 21.21 25.53 42.44
MultiFactor (T5-base) 51.41 39.31 31.90 26.66 29.66 43.37
MultiFactor (MixQG-base) 54.84 42.41 34.69 29.12 30.01 45.20

SQ
uA

D
1.

1

NQG++ (Zhou et al., 2017) 42.46 26.33 18.46 13.51 - -
s2sa-at-mcp-gsa (Zhao et al., 2018) 44.51 29.07 21.06 15.82 19.67 44.24
APM (Sun et al., 2018) 43.02 28.14 20.51 15.64 - -
Graph2seq+RL (Chen et al., 2020) - - - 18.30 21.70 45.98
T5-base (Raffel et al., 2020) 47.96 33.58 25.54 20.15 24.21 40.33
IGND (Fei et al., 2021) 50.82 34.73 25.64 20.33 - 48.94
MixQG-base (Murakhovs’ka et al., 2022)† 49.69 35.19 26.70 21.44 25.48 41.22
MultiFactor (T5-base) 49.56 35.00 26.78 21.24 25.63 41.22
MultiFactor (MixQG-base) 50.51 35.78 27.42 21.75 25.55 41.62

Table 2: Automatic evaluation results on HotpotQA (Yang et al., 2018) and SQuAD 1.1 (Rajpurkar et al., 2016).
The Bold and underline mark the best and second-best results. The B-x, MTR, and R-L mean BLEU-x, METEOR,
and ROUGE-L, respectively. We mark the results reproduced by ourselves with † , other results are from Fei et al.
(2022), Su et al. (2022) and Fei et al. (2021).

ones with QA4QG being the state-of-the-art model
on HotpotQA. Here, MixQG is a pretrained model
tailored for the QG task whereas QA4QG exploits
a Question Answering (QA) model to enhance QG.

4.2 Main Results

The performance MultiFactor and baselines are
shown in Table 2 with the following main insights.

On HotpotQA, it is observable that our method
obtains superior results on nearly all evaluation
metrics. Specifically, MultiFactor outperforms the
current state-of-the-art model QA4QG by about 8
and 2.5 BLEU-4 points in the full and the support-
ing facts setting, respectively. Note that we achieve
such results with a smaller number of model param-
eters compared to QA4QG-large. Specifically, the
current state-of-the-art model exploits two BART-

large models (for QA and QG) with a total number
of parameters of 800M, whereas MultiFactor has a
total number of parameters of around 440M corre-
sponding to two T5/MixQG-base models. Here, the
extra parameters associated with phrase selection
in PET (T5/MixQG-base) is only 0.02M, which is
relatively small compared to the number of param-
eters in T5/MixQG-base.

By cross-referencing the performance of common
baselines (MixQG or QA4QG) on HotpotQA (full)
and HotpotQA (supp. facts), it is evident that these
baselines are more effective on HotpotQA (supp.
facts). This is intuitive since the provided support-
ing sentences can be regarded as sentence-level
content planning that benefits those on HotpotQA
(supp. facts). However, even without this advan-
tage, MultiFactor on HotpotQA (full.) outperforms
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Model B-4 MTR R-L BSc

HotpotQA ( Supporting Facts)

Fine-tuned 25.45 26.36 43.21 51.49
Cls+Gen 25.90 26.73 43.55 52.04
One-hot PET-Q 27.48 28.28 43.46 52.63
PET-Q 27.79 28.46 43.94 53.05
MultiFactor 28.22 28.60 44.17 53.44

HotpotQA (Full Document)

Fine-tuned 22.13 23.78 41.21 48.76
Cls+Gen 22.39 23.95 41.40 48.95
One-hot PET-Q 26.61 28.94 43.11 52.21
PET-Q 26.82 29.04 43.53 52.58
MultiFactor 29.12 30.01 45.20 54.49

SQuAD 1.1

Fine-tuned 19.96 24.39 39.77 55.31
Cls+Gen 20.14 24.45 39.83 55.34
One-hot PET-Q 21.10 25.35 41.10 56.52
PET-Q 21.33 25.38 41.58 56.89
MultiFactor 21.75 25.55 41.62 56.93

Table 3: The ablation study for MultiFactor (MixQG-
base), MultiFactor (T5-base) is shown in Appendix C.

these baselines on HotpotQA (supp. facts), show-
ing the advantages of MultiFactor for long context.

On SQuAD, MultiFactor is better than most base-
lines on multiple evaluation metrics, demonstrating
the benefits of multi-level content planning even for
short-contexts. However, the margin of improve-
ment is not as significant as that seen on HotpotQA.
MultiFactor falls behind some baselines, such as
IGND, in terms of ROUGE-L. This could be due
to the fact that generating questions on SQuAD
requires information mainly from a single sentence.
Therefore, a simple copy mechanism like that used
in IGND may lead to higher ROUGE-L.

4.3 Ablation Study
We study the impact of different components in
MultiFactor and show the results with MixQG-
base in Table 3 and more details in Appendix
C. Here, “Fine-tuned” indicates the MixQG-base
model, which is finetuned for our QG tasks. For
Cls+Gen, the phrase selection task and the genera-
tion task share the encoder and jointly trained like
in PET. The phrase information, however, is not
integrated into the decoder for generation, just to
enhance the encoder. One-hot PET-Q indicates
that instead of using the soft labels (probabilities
of a phrase to be selected), we use the predicted
hard labels (0 or 1) to inject into PET. And finally,

Model B-4 MTR R-L BSc

PET-Q 27.45 28.28 43.46 52.41
MultiFactor 27.80 28.26 43.80 52.86
Q-model

w/o Context 27.63 28.13 43.66 52.69
w Oracle-FA 31.61 29.66 48.84 56.15
w Gold-FA 91.08 64.10 93.00 93.77

Table 4: Results on MultiFactor (T5-base) and its vari-
ants on HotpotQA (supp. facts).

PET-Q denotes MultiFactor without the full an-
swer information.

Phrase-level Content Planning By comparing
PET-Q, one-hot PET-Q and Cls+Gen to the fine-
tuned MixQG-base in Table 3, we can draw several
observations. First, adding the phrase selection
task helps improve QG performance. Second, inte-
grating phrase selection to the decoder (in One-hot
PET-Q and PET-Q) is more effective than just ex-
ploiting phrase classification as an additional task
(as in Cls+Gen). Finally, it is recommended to uti-
lize soft labels (as in PET-Q) instead of hard labels
(as in One-hot PET-Q) to bias the decoder.

Sentence-level Content Planning By compar-
ing MultiFactor to other variants in Table 3, it be-
comes apparent that using the full answer predic-
tion helps improve the performance of QG in most
cases. The contribution of the FA-model is particu-
larly evident in HotpotQA (full), where the context
is longer. In this instance, the FA-model provides
an answer-aware summary of the context, which
benefits downstream QG. In contrast, for SQuaD
where the context is shorter, the FA-model still
helps but its impact appears to be less notable.

4.4 The Roles of Q-model and FA-model

We investigate two possible causes that may impact
the effectiveness of MultiFactor, including poten-
tial errors in converting full answers to questions in
Q-model, and error propagation from the FA-model
to the Q-model. For the first cause, we evaluate Q-
model (w/ Gold-FA), which takes as input the gold
full answers, rather than FA-model outputs. For
the second cause, we assess Q-model (w/o Con-
text) and Q-model (w/ Oracle-FA). Here, Q-model
(w/ Oracle-FA) is provided with the oracle answer,
which is the output with the highest BLEU among
the top five outputs of FA-model.

Table 4 reveals several observations on HotpotQA
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(supp. facts) with MultiFactor (T5-base). Firstly,
the high effectiveness of Q-model (with Gold-FA)
indicates that the difficulty of QG largely lies in
the full answer generation. Nevertheless, we can
still improve Q-model further, by, e.g., predicting
the question type based on the grammatical role of
the short answer in FA-model outputs. Secondly,
Q-model (w/o Context) outperforms PET-Q but not
MultiFactor. This might be because context pro-
vides useful information to mitigate the error prop-
agation from FA-model. Finally, the superior of
Q-model (with Oracle-FA) over MultiFactor shows
that the greedy output of FA-model is suboptimal,
and thus being able to evaluate the top FA-model
outputs can help improve overall effectiveness.

4.5 Human Evaluation

Automatic evaluation with respect to one gold ques-
tion cannot account for multiple valid variations
that can be generated from the same input contex-
t/answer. As a result, three people were recruited to
evaluate four models (T5-base, PET-Q, MultiFac-
tor and its variant with Oracle-FA) on 200 random
test samples from HotpotQA (supp. facts). Note
that the evaluators independently judged whether
each generated question is correct or erroneous. In
addition, they were not aware of the identity of the
models in advance. In the case of an error, evalua-
tors are requested to choose between two types of
errors: hop errors and semantic errors. Hop errors
refer to questions that miss key information needed
to reason the answer, while semantic errors indicate
questions that disclose answers or is nonsensical.
Additionally, we analyse the ratio of errors in two
types of questions on HotpotQA: bridge, which
requires multiple hops of information across doc-
uments, and comparison, which often starts with
“which one” or the answer is of yes/no type. Hu-
man evaluation results are shown in Table 5, and
we also present some examples in Appendix E.

MultiFactor vs Others Comparing MultiFactor
to other models (T5, PET-Q) in Table 5, we ob-
serve an increase in the number of correct ques-
tions, showing that multi-level content planning is
effective. The improvement of MultiFactor over
PET-Q is more noticeable in contrast with that in
Table 4 with automatic metrics. This partially vali-
dates the role of full answers even with short con-
texts. In such instances, full answers can be seen as
an answer-aware paraphrase of the context that is
more convenient for downstream QG. In addition,

Model T5 PET-Q Multi Ocl-FA

Correct 83.5 86.0 87.5 89.5
Hop Error 11.5 9.5 9.0 7.5
Semantic Error 5.0 4.5 3.5 3.0
Error (Bridge) 13.5 11.0 9.0 7.0
Error (Comparison) 3.0 3.0 3.5 3.5

Table 5: Human evaluation results on HotpotQA (supp.
facts), where Multi and Ocl-FA indicates MultiFactor
(T5-base) and its variant where Q-model is given the
oracle full answer (w/ Oracle-FA). The last two lines
show the error rates where questions are of bridge or
comparison types.

one can see a significant reduction of semantic error
in MultiFactor compared to PET-Q. This is because
the model better understands how a short answer
is positioned in a full answer context, as such we
can reduce the disclosure of (short) answers or the
wrong choice of question types. However, there
is still room for improvement as MultiFactor (w/
Oracle-FA) is still much better than the one with
the greedy full answer from FA-model (referred to
as Multi in Table 5). Particularly, there should be a
significant reduction in hop error if one can choose
better outputs from FA-model.

Error Analysis on Question Types It is observ-
able that multi-level content planning plays im-
portant roles in reducing errors associated with
“bridge” type questions, which is intuitive given the
nature of this type. However, we do not observe
any significant improvement with comparison type.
Further examination reveals two possible reasons:
1) the number of this type of questions is compara-
bly limit; 2) QA2D performs poorly in reconstruct-
ing the full answers for this type. Further studies
are expected to mitigate these issues.

4.6 Comparison with LLM-based QG
As Large Language Model (LLM) performs out-
standingly in various text generation tasks, we
evaluate the performance of GPT-3.5 zero-shot4

(Brown et al., 2020) and LoRA fine-tuned Llama2-
7B (Hu et al., 2022; Touvron et al., 2023) on Hot-
potQA (full document). Implementation details
regarding instructions and LoRA hyper-parameters
are provided in Appendix B.

Automatic Evaluation The performance of
Llama2-7B and GPT-3.5-Turbo (zero-shot) in com-
parison with MultiFactor, T5-base (finetuned) and

4Via the Azure OpenAI Service.

807



Model B-4 MTR R-L BSc

MultiFactor
w. T5-base 26.66 29.66 43.37 52.76
w. MixQG-base 29.12 30.01 45.20 54.49

T5-base 20.70 22.57 40.25 44.06
MixQG-base 22.13 23.78 41.21 48.76
Llama2-7B-LoRA 16.53 21.35 33.03 37.44
GPT-3.5-Turbo

w. zero-shot 8.78 14.84 22.48 28.38

Table 6: The automatic scores of GPT-3.5 zero-shot,
LoRA fine-tuned Llama2-7B on HotpotQA full docu-
ment setting.

MixQG-base (finetuned) are given in Table 6,
where several observations can be made. Firstly,
MultiFactor outperforms other methods on auto-
matic scores by a large margin. Secondly, finetun-
ing results in better automatic scores comparing to
zero-shot in-context learning with GPT-3.5-Turbo.
Finally, Llama2-7B-LoRA is inferior to methods
that are based on finetuning moderate models (T5-
base/MixQG-base) across all of these metrics.

Human Evaluation As LLM tend to use a wider
variety of words, automatic scores based on one
gold question do not precisely reflect the quality
of these models. As a result, we conducted human
evaluation and showed the results on Table 7. Since
OpenAI service may regard some prompts as in-
valid (i.e. non-safe for work), the evaluation was
conducted on 100 valid samples from the sample
pool that we considered in Section 4.5. The human
annotators were asked to compare a pair of meth-
ods on two dimensions, the factual consistency and
complexity. The first dimension is to ensure that
the generated questions are correct, and the second
dimension is to prioritize complicated questions as
it is the objective of multi-hop QG.

Human evaluation results from Table 7 show that
human annotators prefer MultiFactor (T5-base) to
Llama2-7B-LoRA and GPT-3.5-Turbo (zero-shot).
Additionally, Llama2-7b-LoRA outperforms GPT-
3.5-Turbo (zero-shot), which is consistent with the
automatic evaluation results in Table 6. Interest-
ingly, although T5-base (finetuning) outperforms
Llama2-7B-LoRA in Table 6, human evaluation
shows that these two methods perform comparably.
The low automatic scores for Llama2-7B-LoRA
are due to its tendency to rephrase outputs instead
of copying the original context. Last but not least,

Model Win Tie Lose

Llama2-7B-LoRA
v.s. T5-base 20 60 20
v.s. MultiFactor (T5-base) 13 65 22

GPT-3.5-Turbo w. zero-shot
v.s. MultiFactor (T5-base) 20 29 51

Table 7: Human evaluation on GPT-3.5 zero-shot and
LoRA fine-tuned Llama2-7B in comparison with Multi-
Factor (T5-base).

in-depth analysis also reveals a common issue with
GPT-3.5-Turbo (zero-shot): its output questions of-
ten reveal the given answers. Therefore, multi-level
content planning in instruction or demonstration
for GPT-3.5-Turbo could be used to address this
issue in LLM-based QG, potentially resulting in
better performance.

5 Conclusion and Future Works

This paper presents MultiFactor, a novel QG
method with multi-level content planning. Specif-
ically, MultiFactor consists of a FA-model, which
simultaneously select important phrases and gen-
erate an answer-aware summary (a full answer),
and Q-model, which takes the generated full an-
swer into account for question generation. Both
FA-model and Q-model are formalized as our sim-
ple yet effective PET. Experiments on HotpotQA
and SQuAD 1.1 demonstrate the effectiveness of
our method.

Our in-depth analysis shows that there is a lot of
room for improvement following this line of work.
On one hand, we can improve the full answer gen-
eration model. On the other hand, we can enhance
the Q-model in MultiFactor either by exploiting
multiple generated full answers or reducing the
error propagation.

6 Limitations

Our work may have some limitations. First, the
experiments are only on English corpus. The ef-
fectiveness of MultiFactor is not verified on the
datasets of other languages. Second, the context
length in sentence-level QG task is not very long
as shown in Table 8. For particularly long contexts
(> 500 or 1000), it needs more explorations.
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7 Ethics Statement

MultiFactor aims to improve the performance of
the answer-aware QG task, especially the complex
QG. During our research, we did not collect any
other datasets, instead conduct our experiments and
construct the corresponding full answer on these
previously works. Our generation is completely
within the scope of the datasets. Even the result is
incorrect, it is still controllable and harmless, no
potential risk. The model is currently English lan-
guage only, whose practical applications is limited
in the real world.
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A Statistic of Datasets

Here, we list the length of context, question and
answer of the HotpotQA and SQuAD 1.1 datasets
in Table 8. HotpotQA supporting facts and full
document settings share the same output and semi-
gold full answers.

Train Valid Test

HotpotQA (Supporting Facts Sentence)

Context 221/12/49.31 107/16/48.67 170/13/50.24
Question 89/4/18.07 80/6/17.58 43/7/16.30
Answer 69/1/2.35 15/1/2.39 30/1/2.62
Phrase 1.86/8.66 1.73/8.61 1.57/9.14
FA 82579/89947 459/500 6763/7405

HotpotQA (Full Document)

Context 2331/29/210.72 690/41/205.15 1371/35/216.68
Question 89/4/18.07 80/6/17.58 43/7/16.30
Answer 69/1/2.35 15/1/2.39 30/1/2.62
Phrase 7.46/36.49 7.35/35.43 6.63/37.27
FA 82579/89947 459/500 6763/7405

SQuAD 1.1

Context 285/2/26.83 150/2/27.61 150/4/27.47
Question 38/1/10.94 31/1/11.01 28/3/11.05
Answer 34/1/3.24 27/1/3.43 30/1/3.44
Phrase 2.34/6.80 3.75/7.06 3.75/7.05
FA 84976/86635 8864/8965 8840/8964

Table 8: The statistic of max/min/mean token length
from NLTK tokenizer, the number of positive/negative
phrases and the number of valid/total full answer(FA)
examples in HotpotQA and SQuAD 1.1 datasets.

B Implementation Details

Model Details MixQG pre-trained series models
are fine-tuned from T5, having the same architec-
ture and number of parameters. In addition to basic
modules, MultiFactor adds a classifier (2d×2) and
Ld probability infusion layers (2 × d), where d,
Ld donate the model dimensions and the number
of decoder layers. Specifically, when initializing
with T5-base (220M, d = 768, Ld = 12), Multi-
Factor only increases the number of parameters by
1536× 2 + 12× 2× 768 ≈ 0.02M (~0.01%).

Training Details Because we train the model
with fixed epochs on HotpotQA and the dev size
is too small (500), we select the best result on test
dataset directly following the previous work (Pan
et al., 2020; Su et al., 2022) on HotpotQA. On
SQuAD 1.1, we select the result based on the dev
set. Max length of HotpotQA-full is 512, two oth-
ers is 256. Moreover, the learning rate for MixQG-
base is lower than that of the normal T5-base, as
stated in (Murakhovs’ka et al., 2022). As a result,
we have opted to employ learning rates of 5e-5 and
2e-5 for MixQG-base on HotpotQA and SQuAD
1.1, respectively, while T5-base are 1e-4 and 5e-5.
All the batchsize is 32, except that HotpotQA-full
is 16, where the training epoch is 5 instead of 10.
We turn off the sampling, and beam size are 1 and 5
on HotpotQA and SQuAD 1.1, respectively. Others
parameters are default value in Huggingface trainer
and generator configuration files. More parameters
and time cost of training and inference are in Table
9.

Data Format We list the input formats of these
experiments mentioned before in Table 10. And
we use special tokens: <ans>, <passage>, <fa> to
present the answer, context, and full answer start
tokens.

Instructions and LoRA hyper-parameters The
instruction of zero-shot/Flan-T5-base/Llama2-7B
is shown in Figure 3. As for LoRA fine-tuned
hyper-parameters, we follow the llama-recipes5 de-
fault settings, where r = 28, α = 32.

C Ablation Study on T5

Considering T5 is a more general Text2Text Pre-
trained Lanuague Model, we also conduct ablation

5https://github.com/facebookresearch/llama-re
cipes

812

https://doi.org/10.1109/ICASSP49357.2023.10094297
https://doi.org/10.1109/ICASSP49357.2023.10094297
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.1007/978-3-319-73618-1_56
https://doi.org/10.1007/978-3-319-73618-1_56
https://github.com/facebookresearch/llama-recipes
https://github.com/facebookresearch/llama-recipes


zero_shot_instrcution = f"Given the context and
answer, please help me generate a multi-hop
question.\\nAnswer: {{answer}}\\nContext: {{
context}}\\nQuestion:"

Figure 3: The zero-shot instruction shown in python
code.

Dataset HotpotQA SQuAD 1.1Sup. Full

Learning rate 5e-5/1e-4 5e-5 /1e-4 2e-5/5e-5
Batch size 16 32 32
Warm-up ratio 0.1 0.1 0.1
Epochs 5 10 15
Training time 20 20 18
Inference time 16 15 15
Beam size 1 1 5

Table 9: Details of training and inference. Data in
learning rate is (MixQG-base/T5-base). The unit of
training and inference time is min/(epoch·GPU_num).

studies on T5-base, and the results are shown in
Table 11.

D Ablation Study on Flan-T5

We conducted experiments initialized with Flan-T5-
base to evaluate the performance of instruaction-
finetuning model on HotpotQA full document set-
ting. Results are shown in Table 12. Instruction is
shown in Figure 3. Corss compared with these re-
sults in Table 3 and 11, Flan-T5-base outperforms
T5-base significantly but still worse than MixQG-
base. MixQG is a QG-specific pre-trained model
and fine-tuned on nine various answer-type QA
datasets from the T5-base. These results are line
with our expectations.

E Error Examples

We list some error examples shown in Figure 4. In
hop error, we show three types of hop errors: wrong
hop, missing hop, and fabricating information, re-
spectively. In semantic error, we list a declarative
generation instead of a question and a nonsensi-
cal case in which the output is longer than the in-
put. Lastly, we present a comparison type where
both the pseudo gold and generated full answer are
wrong, although almost comparison-type QA has
no pseudo gold full answer.

Type Input

FA-model <ans> {answer} <passage> {context}
Q-model

T5 <ans> {answer} <fa> {fa} <passage> {context}
w/o Context <ans> {answer} <fa> {full_answer}
MixQG {answer} /n <fa> {fa} <passage> {context}

PET
T5 <ans> {answer} <passage> {context}
MixQG {answer} /n <passage> {context}

Table 10: Input formats in our experiments.

Model B-4 MTR R-L BSc

HotpotQA (Supporting Facts)

Fine-tuned 24.48 25.59 43.17 50.93
Cls+Gen 25.36 26.33 43.38 51.49
One-hot PET-Q 27.01 28.11 42.91 52.31
PET-Q 27.45 28.28 43.46 52.41
MultiFactor 27.80 28.26 43.80 52.86

HotpotQA (Full Document)

Fine-tuned 20.70 22.57 40.25 44.06
Cls+Gen 20.81 22.61 40.58 44.24
One-hot PET-Q 25.94 28.75 43.10 51.63
PET-Q 26.35 29.54 43.08 52.33
MultiFactor 26.66 29.66 43.37 52.76

SQuAD 1.1

Fine-tuned 20.15 24.21 40.33 55.18
Cls+Gen 20.29 24.27 40.34 55.22
One-hot PET-Q 20.31 25.49 40.43 56.06
PET-Q 21.13 25.34 41.03 56.21
MultiFactor 21.24 25.63 41.22 56.55

Table 11: The ablation study for MultiFactor, where the
B-4, MTR, R-L and BSc means BLEU-4, METEOR,
ROUGE-L and BERTScore, respectively.

Model B-4 MTR R-L BSc

Fine-tuned 21.69 23.31 40.82 47.68
MultiFactor 28.82 29.14 44.87 53.67

Table 12: The ablation study on Flan-T5-base on Hot-
potQA full document setting.
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Error Examples 

Facts: 

i. 2015 Accra floods. Mayor of Accra Metropolitan Assembly, Alfred Oko Vanderpuije described the flooding as critical. 

ii. 2015 Accra floods. At least 25 people have died from the flooding directly, while a petrol station explosion caused by the flooding killed at least 200 more people. 

iii. 2015 Accra explosion. On June 4, 2015, an explosion and a fire occurred at a petrol station in Ghana's capital city Accra, killing over 250 people.  

Answer: an explosion and a fire occurred at a petrol station 

Gold Question: what caused the death of over 250 people in Accra, Ghana? 

Generated Question: What happened at a petrol station in Ghana's capital city Accra on June 4, 2015, that killed over 250 people and caused a flood in the Accra 

Metropolitan Assembly, Alfred Oko Vanderpuije described the flooding as critical? 

Error Analysis: hop error. A wrong hop, the explosion and a fire did not cause a flood. 

Facts: 

i. Jacksonville station. It serves the "Silver Meteor" and "Silver Star" trains as well as the Thruway Motorcoach to Lakeland. 

ii. Silver Star (Amtrak train). The Silver Star is a 1522 mi passenger train route in the "Silver Service" brand operated by Amtrak, running from New York City south 

to Miami, Florida via the Northeast Corridor to Washington, D.C., then via Richmond, Virginia; Raleigh, North Carolina; Columbia, South Carolina; Savannah, 

Georgia; Jacksonville, Florida; Orlando, Florida; and Tampa, Florida. 

Answer: 1522 

Gold Question: How many miles does the train, which passes through the Amtrak Jacksonville station and shares the track with the Silver Meteor, run? 

Generated Question: Jacksonville station serves the train that is how many miles long?  

Error Analysis: Hop error. Missing a key information or key hop. The Jacksonville station servers at least 2 trains: "Silver Meteor" and "Silver Star". The generated 

question does not directly ask the "Silver Star", which runs 1522 miles. 

Facts: 

i. West Oaks, Houston. West Oaks is a small subdivision in Houston, Texas 

ii. George H. W. Bush. George Herbert Walker Bush (born June 12, 1924) is an American politician who was the 41st President of the United States from 1989 to  

1993 and the 43rd Vice President of the United States from 1981 to 1989. 

Answer: 41st 

Gold Question: George H. W. Bush, a resident of West Oaks Subdivision in Houston Texas, became what number President in 1989?  

Generated Question: What number president of the United States was the man who owns West Oaks, Houston? 

Error Analysis: Hop error. Fabricating the information that Bush owned West Oaks, Houston. Note, this error is caused by the insufficient input information. The 

source text does not indicate that Bush was a resident of West Oaks Subdivision in Houston Texas.   

Facts: 

i. Value premium. Other experts, such as John C. Bogle, have argued that no value premium exists, claiming that Fama and French's research is period dependent. 

ii. John C. Bogle. He is the founder and retired chief executive of The Vanguard Group. 

Answer: The Vanguard Group 

Gold Question: In regards to Value premium an expert argued that no value premium exists, what did this expert found? 

Generated Question: Value premium is a term used to describe the value of a product over other terms, other experts, such as John C. Bogle, have argued that 

no value premium exists, claiming that Fama and French's research is period dependent, Bogle is an American business executive, philanthropist, and former 

CEO, Bogle is the founder and retired chief executive of which organization?  

Error Analysis: Semantic error. The question is even longer than the input, which is considered as a nonsensical generation. Because it utilizes the knowledge 

stored in parameters and ignore the input source information, which possibly leads hallucinatio.   

Facts: 

i. The Story of Them Featuring Van Morrison. The Story of Them Featuring Van Morrison is a compilation album that includes almos t every song recorded by the 

Northern Irish band Them during the two-year history of the band when it featured Van Morrison as the vocalist for the group. 

ii. Them (band). Them were a Northern Irish band formed in Belfast in April 1964, most prominently known for the garage rock standard \"Gloria\" and launching 

singer Van Morrison's musical career. 

Answer: Them 

Gold Question: The Story of Them Featuring Van Morrison is a compilation album recorded by what Northern Irish band formed in Belfast in April 1964? 

Generated Question: The Story of Them Featuring Van Morrison is a compilation album that includes almost every song recorded by them Northern I rish band, 

most prominently known for the garage rock standard "Gloria" and launching singer Van Morrison's musical career? 

Error Analysis: Semantic error. In fact, the generation is a declarative sentence. And the The Story of Them Featuring Van Morrison did not launch singer Van 

Morrison's musical career, which is also an error hop.   

Facts: 

i. In These Times. In These Times is an American politically progressive/democratic socialist monthly magazine of news and opinion published in Chicago, Illinois. 

ii. Multinational Monitor. The Multinational Monitor was a bimonthly magazine founded by Ralph Nader in 1980.  

Answer: Multinational Monitor 

Gold Question: Which magazine has more issues each month, In These Times or Multinational Monitor?  

Pseudo-gold Full Answer: Multinational Monitor has more issues each month, In These Times or Multinational Monitor.  

Generated Question: Which magazine was founded first, In These Times or Multinational Monitor?  

Generated Full Answer: Multinational Monitor was founded first, In These Times or Multinational Monitor.  

Error Analysis: Hop error. Both input facts indicate the magazine publication frequency attribute but no established time. Only a few comparison-type QA pair was 

constructed a full answer successfully. This example is an exception, providing wrong sentence-level planning and generating a lousy question.  

 
Figure 4: We show six representative error examples, which includes three hop error, two semantic error and one
typical comparison-type error cases.
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