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Abstract

Pronunciation assessment and its application in
computer-aided pronunciation training (CAPT)
have seen impressive progress in recent years.
With the rapid growth in language processing
and deep learning over the past few years, there
is a need for an updated review. In this paper,
we review methods employed in pronunciation
assessment for both phonemic and prosodic.
We categorize the main challenges observed in
prominent research trends, and highlight exist-
ing limitations, and available resources. This
is followed by a discussion of the remaining
challenges and possible directions for future
work.

1 Introduction

Computer-aided Pronunciation Training (CAPT)
technologies are pivotal in promoting self-directed
language learning, offering constant, and tailored
feedback for secondary language learners. The ris-
ing demand for foreign language learning, with the
tide of globalization, fuels the increment in the de-
velopment of CAPT systems. This surge has led to
extensive research and development efforts in the
field (Neri et al., 2008; Kang et al., 2018; Rogerson-
Revell, 2021). CAPT systems have two main us-
ages: (i) pronunciation assessment, where the sys-
tem is concerned with the errors in the speech seg-
ment; (if) pronunciation teaching, where the sys-
tem is concerned with correcting and guiding the

learner to fix mistakes in their pronunciation.
This paper addresses the former — focusing on

pronunciation assessment, which aims to automat-
ically score non-native speech-segment and give
meaningful feedback. To build such a robust pro-
nunciation assessment system, the following design
aspects should be addressed.

Modelling Mispronunciation detection and diag-
nosis (MDD), in many cases, are more challenging
to model compared to the vanilla automatic speech
recognition (ASR) system, which converts speech

into text regardless of pronunciation mistakes. Ro-
bust ASR should perform well with all variation
including dialects and non-native speakers. How-
ever, MDD should mark phonetic variations from
the learner, which may sometimes be subtle differ-
ences (Li et al., 2016a).

Training Resources Recent success in deep learn-
ing methods emphasized the need for in-domain
training data. Language learners can be divided
into two groups: adult secondary (L2) language
learners and children language learners — the for-
mer depends on whether to build a system that is na-
tive language dependant (L1). At the same time, the
latter identifies the need for children’s voice, which
is a challenging corpus to build (Council III et al.,
2019; Venkatasubramaniam et al., 2023), even the
accuracy for ASR for children is still behind com-
pared to adult ASR (Liao et al., 2015). The scarcity
and imbalanced distribution of negative mispro-
nunciation classes pose a significant challenge in
training data.

Evaluation There is no clear definition of right
or wrong in pronunciation, instead an entire scale
from unintelligible to native-sounding speech (Witt,
2012). Given that error in pronunciation is difficult
to quantify, it can be split into (a) Objective evalu-
ations — (i): phonetic or segmental; (ii): prosodic
or supra-segmental; and (ii7) place or articulation,
manner of speech or sub-segmental; (b) Subjective
evaluations; in many cases measured through lis-
tening tasks followed by human judgment, and can
be split into three main classes: (i) intelligibility;
(if) comprehensibility and (iii) accentedness (or lin-
guistic native-likeness). See Figure 1 for common
pronunciation assessment factors.

Several studies have summarized advances in
pronunciation error detection (Eskenazi, 1999,
2009; Witt, 2012; Li et al., 2016a; Chen and Li,
2016; Zhang et al., 2020; Caro Anzola and Men-
doza Moreno, 2023). Eskenazi (1999) investigated
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Figure 1: Types of Pronunciation Errors for Assessment

the potentials and limitations of ASR for L2 pro-
nunciation assessment, showcasing its practical im-
plementation using an interface developed at CMU.
Furthermore, the study reports different automatic
scoring techniques, emphasizing modalities of in-
teraction, associated algorithms, and the challenges.
Witt (2012) presented an overview of pronuncia-
tion error detection, encompassing various scoring
methodologies and assessing commercial CAPT
systems. Chen and Li (2016) provided a research
summary, focusing on phoneme errors and prosodic
error detection. More recently, Zhang et al. (2020)
provided a summary of two automatic scoring ap-
proaches (a) ASR-based scoring to calculate confi-
dence measures; and (b) acoustic phonetics scoring
focusing on comparing or classifying phonetic seg-

ments using various acoustic features.
With large transformer-based pre-trained models

gaining popularity, re-visiting the existing litera-
ture and presenting a comprehensive study of the
field is timely. We provide an overview of tech-
niques adapted for detecting mispronunciation in
(a) segmental space, (b) assessing pronunciation
with supra-segmal measures, along with (c¢) dif-
ferent data generation/augmentation approaches.
Unlike previous overview studies, we also cover
a handful of (d) qualitative studies bringing to-
gether the notion of intelligibility, comprehensive-
ness, and accentedness. We note the resources and
evaluation measures available to the speech com-
munity and discuss the main challenges observed
within prominent research trends, shedding light on
existing limitations. Additionally, we also explore
potential directions for future work.

2 Nuances of Pronunciation

Pronunciation can be defined as “the way in which
a word or letter is said, or said correctly, or the
way in which a language is spoken” .! Compared

"https://dictionary.cambridge.org/dictionary/
english/pronunciation, Accessed: 2023-06-21

to other language skills, learning pronunciation is
difficult. Yet, for learners, mastering L2 pronun-
ciation is most crucial for better communication.
Historically, pronunciation errors (mispronuncia-
tions) are characterized by phonetic (segmental)
errors and prosodic (supra-segmental) errors (Witt,
2012; Chen and Li, 2016), as represented in Fig-
ure 1. This characterization provides some clear
distinctions for pronunciation assessment.

2.1 Pronunciation Errors
Phonetic Errors

Phonetic (segmental) errors involve the production
of individual sounds, such as vowels, and conso-
nants, and it includes three errors: insertion, dele-
tion, and substitution. This can be attributed to sev-
eral factors, including negative language transfer,
incorrect letter-to-sound conversion, and misread-
ing of text prompts (Meng et al., 2007b; Qian et al.,
2010; Kartushina and Frauenfelder, 2014; Li et al.,
2016a). For example, Arabic L1 speakers may find
it difficult to differentiate between /p/ and /b/ as the
phoneme /p/ is non-existent in Arabic, so verbs like
/park/ and /bark/ might sound similar to Arabic L1
speakers. Similarly, in Spanish, there are no short
vowels, so words like /eat/ and /it/ might sound
similar to Spanish L1 speakers.

Prosodic Errors

Prosodic features encompass elements that influ-
ence the pronunciation of an entire word or sen-
tence, including stress, rhythm, and intonation. Er-
rors related to prosodic features involve the pro-
duction of larger sound units. For intelligibility,
prosodic features particularly play a significant role
(Raux and Kawahara, 2002). This is especially true
for tonal languages (Dahmen et al., 2023) where
variation in the pitch can lead to words with differ-
ent meanings. Prosodic errors are often language-
dependent and categorized by: stress (lexical and
sentence), rhythm, and intonation.
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Corpus Languages Native Language (L1) Dur/Utt #Speakers Reported SOTA Results / Relevant Stud-
(L2) ies

ISLE (Menzel et al., English German and Italian 18/ 46 # PER:(Hosseini-Kivanani et al., 2021).

2000) = Accent PCC: 68% (Rasipuram et al.,
2015)

ERJ (Minematsu et al., English Japanese /68,000 200 # Utterance PCC (Luan et al., 2012).

2004) * Word Intelligibility (Minematsu et al.,
2011). Phoneme Errors (Ito et al., 2005)

CU-CHLOE (Meng English Cantonese and Mandarin ~ 34.6/18,139 210 Phoneme Fl-measure: 80.98% (Wu

et al., 2007a) etal., 2021)

EURONOUNCE (Cyl- Polish German /721 18 # Utterance rythm (Wagner, 2014)

wik et al., 2009)

iCALL (Chen et al., Mandarin 24 countries 142/90,841 305 FAR: 8.65%, FRR: 3.09%: (Li et al.,

2015) + 2017). Tone Recognition: (Tong et al.,
2015)

SingaKids-Mandarin ~ Mandarin Singaporean (English) 125/79,843 255 PER: 28.51%. Tone Recognition (Tong

M+ etal., 2017)

SHEFCE (Ng et al., English, Can- English, Cantonese 25/ 31 Madarin syllabe error rate: 17.3%, En-

2017b) * tonese glish PER: 34.5% (Ng et al., 2017a)

VoisTUTOR  (Yarra English Kannada, Malayalam, Tel-  14/26,529 16 Word Intelligibility Accuracy: 96.58%

et al., 2019; Pal et al., ugu, Tamil, Hindi and Gu- (Anand et al., 2023)

2022) jarati

EpaDB (Vidal et al., English Spanish /3,200 50 (Sancinetti et al., 2022) reported Min-

2019a) * Cost per phoneme

SELL-CORPUS (Chen English Chinese 31.6/ 389 Fl-score Accent Detection: Word-level

etal., 2019) % 35%, Sentence-level 45% (Kyriakopou-
los et al., 2020)

L2-ARCTIC (Zhao English Hindi, Korean, Mandarin, 3.6/ 24 Fl-score: 63.04% (Lin and Wang,

etal.,, 2018a) * Spanish, and Arabic 2022a)

Speechocean762 English Chinese /5,000 250 Phone PCC: 65.60% (Chao et al., 2022).

(Zhang et al., 2021b) * Word Accuracy PCC: 59.80% (Chao
et al., 2022). Word Stress PCC: 32.30%
(Do et al., 2023). Sentence total score
PCC: 79.60% (Chao et al., 2022)

LATIC (ZHANG, Mandarin Russian, Korean, French, 4/2,579 4 Sentence Accuracy PCC: 69.80% (Lin

2021) = and Arabic and Wang, 2023b)

Arabic-CAPT (Algabri  Arabic India, Pakistan, Indonesia,  2.3/1,611 62 F1-score 70.53% (Algabri et al., 2022)

et al., 2022) Nepal, Afghanistan,

Bangladesh, Nigeria,
Uganda
AraVoiceL2 (EL Kheir Arabic Turkey, Nigeria, 5.5/7,062 11 Fl-score 60.00% (EL Kheir et al.,
et al., 2023b) Bangladesh, Indone- 2023b)

sia, Malaysia

Table 1: Widely used datasets. * represent publicly available dataset, + is available on request, # relevant study,
Dur: total duration in hours, Utt: total number of utterances, SOTA: is the notable reported state-of-the-art for each
corpus. FAR: false acceptance rate, FRR: false rejection rate, PCC: pearson correlation coefficient with human

SCOres

Stress is the emphasis placed on certain sylla-
bles in a word or sentence. It is articulated by
increasing the loudness, duration, and pitch of the
stressed syllable. It can be categorized as lexical
stress, if the stress is placed on syllables within
the word, or sentence stress if the stress is placed
on words within sentences. Mandarin learners of
English have contrastive stress at the word-level
that is absent in Korean, Mandarin speakers can
have an advantage over Korean speakers in stress

processing of English words (Wang, 2022).
Rythm is the pattern of stressed and unstressed

syllables in a word or sentence. A language can be
classified as either stress-timed or syllable-timed
(Ohata, 2004; Matthews, 2014). In stress-timed
languages, the duration of stressed syllables tends
to dominate the overall time required to complete a
sentence. Conversely, in syllable-timed languages,
each syllable receives an equal amount of time
during production.
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Intonation refers to the melodic pattern and pitch
variations in speech. L2 learners of Vietnamese and
Mandarin Chinese encounter significant difficulty
in acquiring distinct tones, particularly if their na-
tive language lacks tonality. Such tonal languages
rely on different pitch patterns to convey distinct
meanings, making it challenging for learners to ac-
curately grasp and reproduce these tonal variations
(Nguyen et al., 2014; Chen et al., 2015).

2.2 Pronunciation Constructs

The motivation behind mastering L2 pronunciation
is to communicate properly in the target language.
Most of the time, these successes are measured us-
ing three pronunciation constructs (Uchihara, 2022)
— Intelligibility, Comprehensibility, and Accent-
edness. These are perceived measures, that are

partially independent with overlapping features.
Intelligibility can be defined using the accuracy

of the sound, word, and utterance itself along with
utterance-level completeness (Abercrombie, 1949;
Gooch et al., 2016). Accuracy refers where the
learner pronounces each phoneme, or word in the
utterance correctly. In contrast, completeness mea-
sures the percentage of words pronounced com-

pared to the total number of words.
Comprehensibility, on the other hand, is de-

fined based on the perceived ease or difficulty that
listeners experience when understanding L2 speech.
Fluency, defined by the smoothness of pronunci-
ation and correct usage of pauses (Zhang et al.,
2021Db), is observed to be one of the key factors
that determine the level of comprehensibility, along
with good linguistic-knowledge and discourse-level
organization (Trofimovich and Isaacs, 2012; Saito

etal., 2016).
Among the three constructs, accentedness,

which is defined as “listeners’ perceptions of the
degree to which L2 speech is influenced by their
native language and/or colored by other non-native
features™ (Saito et al., 2016). It is often confused
with both comprehensibility and intelligibility, in-
fluencing pronunciation assessment. The accent
is an inherent trait that defines a person’s identity
and is one of the first things that a listener notices.
It is often observed that most of the unintelligi-
ble speech is identified as highly accented whereas
highly accented speech is not always unintelligi-
ble (Derwing and Munro, 1997; Kang et al., 2018;
Munro and Derwing, 1995). Thus accents compli-
cate fine-grained pronunciation assessment as it is
harder to pinpoint (supra-)segment-level error.

3 Datasets

Obtaining datasets for pronunciation assessment
is often challenging and expensive. Most of the
available research work focused on private data,
leaving only a handful of publicly accessible data
to the research community. Table 1 provides an
overview of available datasets, indicating English
as a popular choice for the target language. Within
this handful of datasets, a few datasets include
phonetic/segmental-level transcription and even
fewer provide manually rated word and sentence-
level prosodic features, fluency along with overall
proficiency scores offering insights to learner’s L2
speech intelligibility and comprehensiveness (Ar-
vaniti and Baltazani, 2000; ?; Cole et al., 2017;
Zhang et al., 2021b). More details on datasets and
annotation are in Appendix A and B respectively.

4 Research Avenues

In this section, we will delve into diverse ap-
proaches, old, revised, and current methodologies
used for pronunciation modeling of both segmen-
tal and supra-segmental features, as illustrated in
Figure 2 and Figure 3.

4.1 Classification based on Acoustic Phonetics

Classifier-based approaches explored both segmen-
tal and prosodic aspects of pronunciation. Seg-
mental approaches involve the use of classifiers
targeting specific phoneme pair errors, utilizing
different acoustic features such as Mel-frequency
cepstral coefficients (MFCCs) along with its first
and second derivative, energy, zero-cross, and spec-
tral features (Van Doremalen et al., 2009; Huang
et al., 2020), with different techniques such as Lin-
ear Discriminant Analysis (LDA) (Truong et al.,
2004, Strik et al., 2009), decision trees (Strik et al.,
2009). Prosodic approaches focus on detecting
lexical stress and tones, utilizing features such as
energy, pitch, duration, and spectral characteris-
tics, with classifiers like Gaussian mixture models
(GMMs) (Ferrer et al., 2015), support vector ma-
chines (SVMs) (Chen and Wang, 2010; Shahin
et al., 2016), and deep neural network (DNNs)
(Shahin et al., 2016), and multi-distribution DNN5s
(Lietal., 2018a).

4.2 Extended Recognition Network (ERN)

ERNSs are neural networks used in automatic speech
recognition to capture broader contextual informa-
tion, they leverage enhanced lexicons in combina-
tion with ASR systems. They cover canonical tran-
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scriptions as well as error patterns, enabling the
detection of mispronunciations beyond standard
transcriptions (Meng et al., 2007b; Ronen et al.,
1997; Qian et al., 2010; Li et al., 2016b). However,
ERNs often depend on experts or hand-crafted er-
ror patterns, which are typically derived from non-
native speech transcriptions as illustrated in (Lo
et al., 2010) which makes it language-dependent
approach and may limit their generalizability when
dealing with unknown languages.

4.3 Likelihood-based Scoring and GOP

The initial likelihood-based MD algorithms aim to
detect errors at the phoneme level using pre-trained
HMM-GMM ASR models. Notably, Kim et al.
(1997) introduced a set of three HMM-based scores,
including likelihood scores, log posterior scores,
and segment-duration-based scores. Among these
three, the log-based posterior scores are widely
adopted due to their high correlation with human
scores, and are also used to calculate the popular
‘goodness of pronunciation’ (GOP) measure. The
GMM-HMM based GOP scores can be defined by
the Equation 1.

Olp) P(p)

GOP(p) = P(p|0) = 1
W=rEo =5 Yowre
O denotes a sequence of acoustic features, p stands
for the target phone, and () represents the set of

phones.
These scores are further improved using forced

alignment framework (Kawai and Hirose, 1998).
More details are presented in Witt and Young
(2000).

4.4 Reformulations of GOP

To enhance further the effectiveness of GOP scor-
ing, (Zhang et al., 2008) are first to propose a log-
posterior normalized GOP defined as:

_ | 2o P(p)
GOP,(p) = |maxq p(0t]q) | ©

Building upon this, Wang and Lee (2012) adopted
the GOP formulation and incorporate error pattern
detectors for phoneme mispronunciation diagnosis
tasks. With the emergence of DNN in the field
of ASR, Hu et al. (2013, 2015a,b) demonstrated
that using a DNN-HMM ASR for GOP yields im-
proved correlation scores surpassing GMM-HMM
based GOP. The GOP and its reformulation repre-
sent a significant milestone. It leverages pre-trained
acoustic models on the target language without the

necessitating of speaker’s L1 knowledge. Further-
more, it offers the advantage of being computation-
ally efficient to calculate. However, these scores
lack context-aware information that is crucial for
accurate pronunciation analysis. To overcome this,
Sudhakara et al. (2019) presented a context-aware
GOP formulation by adding phoneme state tran-
sition probabilities (STP) extracted from HMM
model to the GOP score calculation. Furthermore,
Shi et al. (2020) proposed a context-dependent
GOP, incorporating a phoneme duration factor «;,
and phonemes transition factor 7. The formulated
GOP score combines all the contextual scores as
illustrated in Equation 3.

Ev= - p(qlO)log(p(q|O))

1

m(p) = Zé —1log(p(q|0)) 3

GOP(p) = (1 — i) x7(p)

For sentence accuracy evaluation, one common
approach is to calculate the average GOP scores
across phonemes (Kim et al., 1997; Sudhakara
et al., 2019). However, relying solely on averaging
GOP scores at the phoneme level is limited. A re-
cent approach in (Sheoran et al., 2023) proposed a
combination of phone feature score and audio pitch
comparison using dynamic time warping (DTW)
with an ideal pronounced speech, as a score to as-
sess prosodic, fluency, completeness, and accuracy
at the sentence level. Inspired by GOP, Tong et al.
(2015) proposed Goodness of Tone (GOT) based

on posterior probabilities of tonal phones.
While efforts have been made to improve the

GOP formulation, it is important to acknowledge
that the GOP score still has limitations, specifically
in its ability to identify specific types of mispronun-
ciation errors (deletion, insertion, or substitution),
and it also demonstrates a degree of dependency
on the language of the acoustic model.

4.5 End-to-End Modeling

In the new era of DNNs and Transformers, there
is a significant exploration by researchers in lever-
aging the power of these models and training end-
to-end pronunciation systems. Li et al. (2017) in-
troduced LSTM mispronunciation detector lever-
aging phone-level posteriors, time boundary in-
formation, and posterior extracted from trained
DNNs models on the classification of phonetic at-
tributes (place, manner, aspiration, and voicing). In
contrast, Kyriakopoulos et al. (2018) introduced
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Figure 2: Overview of the performance of different phonetic pronunciation detection models on L2-ARCTIC

MultiPA
GOP-Transformer npon-verbal cues
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75-78%

Raw Speech
65.20%

Performance PCC Fluency
and Prosody
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Figure 3: Overview of the performance of fluency and
prosody assessment models on Speechocean762

a siamese network with BiLSTM for pronunci-
ation scoring by extracting distance metrics be-
tween phone instances from audio frames. A no-
table approach presented in Leung et al. (2019)
introduced a CNN-RNN-CTC model for phoneme
mispronunciation detection without any alignment
component dependency. Subsequently, Feng et al.
(2020) incorporated character embeddings to en-
hance CNN-RNN model. Furthermore, Ye et al.
(2022) enhanced the later model using a triplet of
features consisting of acoustic, phonetic, and lin-
guistic embeddings. Subsequently, GOP features
extracted from pre-trained ASR are enhanced us-
ing a Transformer encoder to predict a range of
scores of prosodic and segmental scores (Gong
etal., 2022), or using additional SSL representation
features, energy, and duration within the same ar-
chitecture (Chao et al., 2022), or using Conformer
encoder explored in (Fan et al., 2023). Moreover,
PEPPANET is also a transformer-based mispro-
nunciation model, but can jointly model the dic-
tation process and the alignment process, and it
provides corresponding diagnostic feedback (Yan

et al., 2023a). A subsequent improvement of PEP-
PANET uses knowledge about phone-level artic-
ulation traits with a graph convolutional network
(GCN) to obtain more discriminative phonetic em-
beddings (Yan et al., 2023b). Recently, Zhang et al.
(2023) proposed recurrent neural network trans-
ducer RNN-T for L2 phoneme sequence prediction
along with an extended phoneme set and weakly
supervised training strategy to differentiate similar-

sounding phonemes from different languages.
Several approaches have also been proposed

for supra-segmental features scoring. Yu et al.
(2015), proposed a new approach where traditional
time-aggregated features are replaced with time-
sequence features, such as pitch, to preserve more
information without requiring manual feature engi-
neering, a BILSTM model is proposed for fluency
predictions. Tao et al. (2016); Chen et al. (2018),
studied different DNNs models such as CNN, BiL-
STM, Attention BiLSTM to predict the fluency
and prosodic scoring. (Lin and Wang, 2021) uti-
lized deep features directly from the acoustic model
instead of relying on complex feature computa-
tions like GOP scores with a scoring module, incor-
porating a self-attention mechanism, which is de-
signed to model human sentence scoring. More re-
cently, (Zhu et al., 2023) proposed BiLSTM model
trained to predict the intelligibility score of a given
phoneme or word segment using an annotated in-
telligibility L2 speech using shadowing.

Towards lexical stress detection, several methods
have been proposed to improve accuracy and per-
formance. Ruan et al. (2019) proposed a sequence-
to-sequence approach using the Transformer model
upon the need for long-distance contextual infor-
mation to predict phoneme sequence with stress
marks. Furthermore, Korzekwa et al. (2020a) intro-
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duced an attention-based neural network focusing
on the automatic extraction of syllable-level fea-
tures that significantly improves the detection of

lexical stress errors.
Tone classification has received significant at-

tention in Mandarin language learning due to the
crucial role that tones play in Mandarin Chinese.
To address the challenge several methods have
been proposed. One approach involves training a
DNN to classify speech frames into six tone classes
(Ryant et al., 2014). Inspired by this, DNNs have
been used to map combined cepstral and tonal fea-
tures to frame-level tone posteriors. These tone
posteriors are then fed into tone verifiers to assess
the correctness of tone pronunciation (Lin et al.,
2018; Li et al., 2018b). Another study utilizes
CNN to classify syllables into four Mandarin tones
(Chen et al., 2016a). Similarly, ToneNet, a CNN-
based network is introduced for Chinese syllable
tone classification using mel-spectrogram as a fea-
ture representation (Gao et al., 2019). Additionally,
a BiLSTM model is proposed as an alternative to
capture long-term dependencies in acoustic and
prosodic features for tone classification (Li et al.,
2019).

4.6 Self-Supervised Models

Motivated by the recent success of self-supervised
learning methods (Baevski et al., 2020; Hsu et al.,
2021; Chen et al., 2022; Mohamed et al., 2022) in
speech recognition and related downstream tasks
such as emotion recognition, speaker verification,
and language identification (Chen and Rudnicky,
2023; Fan et al., 2020), self-supervised approaches

is employed also in this field.
Xu et al. (2021) explored finetuning wav2vec

2.0 on frame-level L2 phoneme prediction. A pre-
trained HMM-DNN ASR is used to extract time
force-alignment. To overcome the dependency
on time alignment, Peng et al. (2021) propose a
CTC-based wav2vec 2.0 to predict L2 phonemes
sequences. Building upon this work, Yang et al.
(2022) propose an approach that leverages unla-
beled L2 speech using momentum pseudo-labeling.
In a contrasting approach, (Lin and Wang, 2022b)
combined wav2vec 2.0 features and phoneme text
embeddings in a jointly learning framework to
predict frame-level phoneme sequence and detect
boundaries. Recently, EL Kheir et al. (2023a)
explored the multi-view representation utilizing
mono- and multilingual wav2vec 2.0 encoders to
capture different aspects of speech production and

leveraging articulatory features as auxiliary tasks to
phoneme sequence prediction. Furthermore, Kheir
et al. (2023b) introduces a novel L1-aware multi-
lingual, L1-MultiMDD, architecture for address-
ing mispronunciation in multilingual settings en-
compassing Arabic, English, and Mandarin using
wav2vec-large pre-trained model as the acoustic
encoder. L1-MultiMDD is enriched with L1-aware
speech representation, allowing it to understand the

nuances of each speaker’s native language.
SSL models have proven to be effective in pre-

dicting fluency and prosodic scores assigned by hu-
man annotators. Kim et al. (2022); Lin and Wang
(2023a); Yang et al. (2022) fine-tuned wav2vec 2.0

and Hubert to predict prosodic and fluency scores.
Similarly, another research conducted in (Lin

and Wang, 2023a) jointly predicts L2 phoneme
sequence using CTC loss, and predicts prosodic
scores using fused acoustic representations with
phoneme embeddings. Subsequently Lin and Wang
(2023b) introduced a fusion of language embed-
ding, representation features and build a unified
framework for multi-lingual prosodic scoring. Re-
cently, Chao et al. (2022); Kheir et al. (2023a);
Chen et al. (2023), enriched latent speech extracted
from SSL models with handcrafted frame- and
utterance-level non-verbal paralinguistic cues such
as duration, and energy for modeling Fluency and
Prosody scores.

4.7 Unsupervised Approaches

It is important to note that the aforementioned ap-
proaches for studying mispronunciation detection
typically involve the need for expert knowledge,
laborious manual labeling, or dependable ASR re-
sults, all of which come with significant costs. In
contrast, recent years have witnessed considerable
endeavors in unsupervised acoustic pattern discov-
ery, yielding sub-optimal outcomes. Lee and Glass
(2012) initially investigated a comparison-based ap-
proach that analyzes the extent of misalignment be-
tween a student’s speech and a teacher’s speech. In
subsequent studies Lee and Glass (2015); Lee et al.
(2016), explored the discovery of mispronunciation
errors by analyzing the acoustic similarities across
individual learners’ utterances, with a proposed n-
best filtering method to resolve ambiguous error
candidate hypotheses derived from acoustic simi-
larity clustering. Furthermore, Mao et al. (2018)
proposed k-means clustering on phoneme-based
phonemic posterior-grams (PPGs) to expand the
phoneme set in L2 speech. More recently, Sini et al.
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(2023) introduced a weighted DTW alignment as
an alternative to the GOP algorithm for predicting
probabilities and the sequence of target phonemes.
Their proposed method achieves comparable re-
sults to the GOP scoring algorithm, likewise Anand
et al. (2023) explored alignment distance between
wav2vec 2.0 representations of teacher and learner
speech using DTW, to distinguish between intelli-
gible and unintelligible speech.

4.8 Data Augmentation

Two major challenges in this field are L2 data
scarcity and the imbalanced distribution of neg-
ative classes (mispronunciation). To address these
challenges, researchers have opted for data aug-
mentation techniques that are proven to be quite ef-
fective in pronunciation assessment. Such methods
employed strategies like altering the canonical text
by introducing mismatched phoneme pairs while
preserving the original word-level speech (Fu et al.,
2021). Additionally, a mixup technique is utilized
in the feature space, leveraging phone-level GOP
pooling to construct word-level training data (Fu
et al., 2022). Furthermore, the error distance of the
clustered SSL model embeddings are employed to
substitute the phoneme sound with a similar sound
(Zhang et al., 2022b). These latter approaches de-
pend on the reuse of existing information rather
than generating novel instances of mispronuncia-
tions. In (Fernandez et al., 2017), voice transfor-
mations in pitch, vocal-tract, vocal-source charac-
teristics to generate new samples. Furthermore,
L2-GEN can synthesize realistic L2 phoneme se-
quences by building a novel Seq2Seq phoneme
paraphrasing model (Zhang et al., 2022a). Ko-
rzekwa et al. (2020b) proposed an augmentation
technique by generating incorrectly stressed words
using Neural TTS. Furthermore, Korzekwa et al.
(2022) provided an overview of mispronunciation
error generation using three methods, phoneme-2-
phoneme P2P relies on perturbing phonetic tran-
scription for the corresponding speech audio, text-
2-speech create speech signals that match the syn-
thetic mispronunciations, and speech-2-speech S2S
to simulate a different aspect of prosodic nature of
speech. Recently, SpeechBlender (EL Kheir et al.,
2023b) framework is introduced as a fine-grained
data augmentation pipeline that linearly interpo-
lates raw good speech pronunciations to generate
mispronunciations at the phoneme level.

5 Evaluation Metrics

Phoneme Error Rate (PER): is a common metric
used in the MD evaluation, measuring the accu-
racy of the predicted phoneme with the human-
annotated sequence. However, PER might not pro-
vide a comprehensive assessment of model per-
formance when mispronunciations are infrequent

which is the case for MD datasets.
Hierarchical Evaluation Structure: The hierar-

chical evaluation structure developed in (Qian et al.,
2010), has also been widely adopted in (Wang and
Lee, 2015; Li et al., 2016a; EL Kheir et al., 2023a)
among others. The hierarchical mispronunciation
detection depends on detecting the misalignment
over: what is said (annotated verbatim sequence);
what is predicted (model output) along with what
should have been said (text-dependent reference se-
quence). Based on the aforementioned sequences,
the false rejection rate, false acceptance rate, and
diagnostic error rate are calculated, using:

* True acceptance (TA): the number of phones an-
notated and recognized as correct pronunciations.

* True rejection (TR): the number of phones both
annotated and correctly predicted as mispro-
nunciations. The labels are further utilized to
measure the diagnostic errors and correct diag-
nosis based on the prediction output and text-
dependent canonical pronunciation.

 False rejection (FR): the number of phones
wrongly predicted as mispronunciations.

* False acceptance (FA): the number of phones
misclassified as correct pronunciations.

As a result, we can calculate the false rejection
rate (FRR) that indicates the number of phones
recognized as mispronunciations when the actual
pronunciations are correct, false acceptance rate
(FAR) that indicates phones misclassified as cor-
rect but are actually mispronounced, and diagnostic
error rate (DER) using the following equations:

FR

FRE = TA+ FR “)
FA

FAR = 3R ©)
DFE

DER = CD + DE ©)

Precision, Recall, and F-measure are also widely
used as the performance measures for mispronun-
ciation detection. These metrics are defined as
follows:
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. TR
Precision = TR+ FR @)
TR

Precision - Recall

F = measure =2- Precision + Recall ©
Pearson Correlation Coefficient: PCC is widely
used to measure the relation of the predicted score
of fluency, stress, and prosody with other supra-
segmental and pronunciation constructs with sub-
jective human evaluation for pronunciation assess-
ment. The human scores are typically averaged
across all annotators to provide a comprehensive

Score.

6 Challenges and Future Look

There are two significant challenges facing advanc-
ing the research further: (1) the lack of public re-
sources. Table 1 shows a handful of L2 languages.
With 7,000 languages spoken on earth, there is an
urgent need for inclusivity in pronouncing the lan-
guages of the world. (2) There is a need for a uni-
fied evaluation metric for pronunciation learning,
this can be used to establish and continually main-
tain a detailed leaderboard system, which serves
as a dynamic and multifaceted platform for track-
ing, ranking, and showcasing the advances in the
field to guide researchers from academia and in-
dustry to push the boundaries for pronunciation as-
sessments from unintelligible audio to native-like
speech. The advent of Al technology represents
a pivotal moment in our technological landscape,
offering the prospect of far-reaching and transfor-
mative changes that have the potential to revolu-
tionize a wide array of services in CAPT. Listing

here some of the opportunities:
Integration with Conversation Al Systems:

The progress made in Generative Pre-trained Trans-
former (GPT) led to a human-like text-based con-
versational Al. Furthermore, low-latency ASR has
enhanced the adoption of speech processing in our
daily life. Both have paved the way for the devel-
opment of a reliable virtual tutor CAPT system,
which is capable of interacting and providing stu-
dents with instant and tailored feedback, thereby
enhancing their pronunciation skills and augment-

ing private tutors.
Multilingual: Recent advancements in end-to-

end ASR enabled the development of multi-lingual
code-switching systems (Datta et al., 2020; Chowd-
hury et al., 2021; Ogunremi et al., 2023). The
great progress in SSL expanded ASR capabilities

to support from over 100 (Pratap et al., 2023), to
over 1,000 (Pratap et al., 2023) languages. Tra-
ditional research in pronunciation assessments fo-
cused on designing monolingual assessment sys-
tems. However, recent advancements in multilin-
gualism allowed for the generalization of findings
across different languages. Zhang et al. (2021a) ex-
plored the adaptation of pronunciation assessments
from English (a stress-timed language) to Malay
(a syllable-timed language). Meanwhile, Lin and
Wang (2023b) investigated the use of language-
specific embeddings for diverse languages, while
optimizing the entire network within a unified

framework.
Children CAPT: There is a noticeable imbal-

ance in research between children learning pronun-
ciation research papers, for example, reading as-
sessments, compared to adults’ L2 language learn-
ing. This disparity can be attributed to the scarcity
of publicly available corpora and the difficulties in

collecting children’s speech data.
Dialectal CAPT: One implicit assumption in

most of the current research in pronunciation as-
sessment is that L2 is a language with a standard
orthographic rule. However, Cases like dialectal
Arabic — which is every Arab native language, there
is no standard orthography. Since speaking as a
native is the ultimate objective for advanced pro-
nunciation learning, there is a growing demand for
this task.

7 Conclusion

This paper serves as a comprehensive resource that
summarizes the current research landscape in au-
tomatic pronunciation assessment covering both
segmental and supra-segmental space. The paper
offers insights into the following:

* Modeling techniques — highlighting design
choices and their effect on performance.

* Data challenges and available resources — em-
phasizes the success of automatic data gener-
ation/augmentation pipeline and lack of con-
sensus annotation guidelines and labels. The
paper also lists available resources to the com-
munity along with the current state-of-the-art
performances reported per resource.

* Importance of standardised evaluation metrics
and steady benchmarking efforts.

With the current trend of end-to-end modeling and
multilingualism, we believe this study will provide
a guideline for new researchers and a foundation
for future advancements in the field.
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Limitations

In this overview, we address different constructs
of pronunciation and various scientific approaches
for detecting errors, predicting prosodic and flu-
ency scores among others. However, we have
not included the corrective feedback mechanism
of CAPT system. Moreover, the paper does not
cover, in detail, the limited literature on CAPT’s
user study, or other qualitative study involving sub-
jective evaluation. With the fast-growing field of
pronunciation assessments, it is hard to mention
all the studies and resources. Therefore, we would
also like to apologize for any oversights of corpora
or major research papers in this study.

Ethics Statement

We discussed publicly available research and
datasets in our study. Any biases are unintended.

References

David Abercrombie. 1949. Teaching pronunciation.
ELT Journal, 3(5):113-122.

Mohammed Algabri, Hassan Mathkour, Mansour Alsu-
laiman, and Mohamed A Bencherif. 2022. Mispro-
nunciation detection and diagnosis with articulatory-
level feedback generation for non-native arabic
speech. Mathematics, 10(15):2727.

Nayan Anand, Meenakshi Sirigiraju, and Chiranjeevi
Yarra. 2023. Unsupervised speech intelligibility as-
sessment with utterance level alignment distance be-
tween teacher and learner wav2vec-2.0 representa-
tions.

Amalia Arvaniti and Mary Baltazani. 2000. Greek tobi:
A system for the annotation of greek speech corpora.
In LREC.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Advances in neural information processing systems,

33:12449-12460.

Anton Batliner, Mats Blomberg, Shona D’ Arcy, Daniel
Elenius, Diego Giuliani, Matteo Gerosa, Christian
Hacker, Martin Russell, Stefan Steidl, and Michael
Wong. 2005. The PF STAR Children’s Speech Cor-
pus. In Proc. of Interspeech.

Linda Bell, Johan Boyce, Joakim Gustafson, Mattias
Heldner, Anders Lindstrom, and Mats Wirén. 2005.
The swedish nice corpus - spoken dialogues between
children and embodied characters in a computer game
scenario. In Proc. of Eurospeech.

Patrizia Bonaventura, Peter Howarth, and Wolfgang
Menzel. 2000. Phonetic annotation of a non-native

speech corpus. In Proceedings International Work-
shop on Integrating Speech Technology in the (Lan-
guage) Learning and Assistive Interface, InStil, pages
10-17.

Boulder Learning Inc. 2019. Myst corpus. Retrieved
July 17, 2019.

Edward Wilder Caro Anzola and Miguel Angel Men-
doza Moreno. 2023. Goodness of pronunciation al-
gorithm in the speech analysis and assessment for de-
tecting errors in acoustic phonetics: An exploratory
review.

Fu-An Chao, Tien-Hong Lo, Tzu-I Wu, Yao-Ting Sung,
and Berlin Chen. 2022. 3m: An effective multi-
view, multi-granularity, and multi-aspect modeling
approach to english pronunciation assessment. In
2022 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA
ASC), pages 575-582.

Charles Chen, Razvan C Bunescu, Li Xu, and Chang
Liu. 2016a. Tone classification in mandarin chinese
using convolutional neural networks. In Interspeech,
pages 2150-2154.

Jin-Yu Chen and Lan Wang. 2010. Automatic lexical
stress detection for chinese learners’ of english. In
2010 7th International Symposium on Chinese Spo-
ken Language Processing, pages 407-411. IEEE.

Lei Chen, Jidong Tao, Shabnam Ghaffarzadegan, and
Yao Qian. 2018. End-to-end neural network based
automated speech scoring. In 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6234-6238. IEEE.

Li-Wei Chen and Alexander Rudnicky. 2023. Explor-
ing wav2vec 2.0 fine tuning for improved speech
emotion recognition. In /CASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1-5. IEEE.

Nancy F. Chen and Haizhou Li. 2016. Computer-
assisted pronunciation training: From pronunciation
scoring towards spoken language learning. In 2016
Asia-Pacific Signal and Information Processing As-
sociation Annual Summit and Conference (APSIPA),
pages 1-7.

Nancy F Chen, Rong Tong, Darren Wee, Pei Xuan
Lee, Bin Ma, and Haizhou Li. 2016b. Singakids-
mandarin: Speech corpus of singaporean children
speaking mandarin chinese. In Inferspeech, pages
1545-1549.

Nancy F Chen, Rong Tong, Darren Wee, Peixuan Lee,
Bin Ma, and Haizhou Li. 2015. icall corpus: Man-
darin chinese spoken by non-native speakers of euro-
pean descent. In Sixteenth Annual Conference of the
International Speech Communication Association.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen,
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, et al. 2022.

8313


http://arxiv.org/abs/2306.08845
http://arxiv.org/abs/2306.08845
http://arxiv.org/abs/2306.08845
http://arxiv.org/abs/2306.08845
http://boulderlearning.com/request-the-myst-corpus/
https://doi.org/10.23919/APSIPAASC55919.2022.9979979
https://doi.org/10.23919/APSIPAASC55919.2022.9979979
https://doi.org/10.23919/APSIPAASC55919.2022.9979979
https://doi.org/10.1109/APSIPA.2016.7820782
https://doi.org/10.1109/APSIPA.2016.7820782
https://doi.org/10.1109/APSIPA.2016.7820782

Wavlm: Large-scale self-supervised pre-training for
full stack speech processing. IEEE Journal of Se-
lected Topics in Signal Processing, 16(6):1505-1518.

Yu Chen, Jun Hu, and Xinyu Zhang. 2019. Sell-corpus:
an open source multiple accented chinese-english
speech corpus for 12 english learning assessment.
In ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing

(ICASSP), pages 7425-7429. IEEE.

Yu-Wen Chen, Zhou Yu, and Julia Hirschberg. 2023.
Multipa: a multi-task speech pronunciation assess-
ment system for a closed and open response scenario.

S. Chowdhury, A. Hussein, A. Abdelali, and A. Ali.
2021. Towards one model to rule all: Multilingual
strategy for dialectal code-switching Arabic Asr. In-
terspeech 2021.

Jennifer Cole, Timothy Mahrt, and Joseph Roy. 2017.
Crowd-sourcing prosodic annotation. Computer
Speech & Language, 45:300-325.

Morris R Council III, Ralph Gardner III, Gwendolyn
Cartledge, and Alana O Telesman. 2019. Improving
reading within an urban elementary school: com-
puterized intervention and paraprofessional factors.
Preventing School Failure: Alternative Education for

Children and Youth, 63(2):162—-174.

Natalia Cylwik, Agnieszka Wagner, and Grazyna De-
menko. 2009. The euronounce corpus of non-native
polish for asr-based pronunciation tutoring system.
In International Workshop on Speech and Language
Technology in Education.

Silvia Dahmen, Martine Grice, and Simon Roessig.
2023. Prosodic and segmental aspects of pronun-
ciation training and their effects on 12. Languages,
8(1):74.

Arindrima Datta, Bhuvana Ramabhadran, Jesse Emond,
Anjuli Kannan, and Brian Roark. 2020. Language-
agnostic multilingual modeling. In ICASSP 2020-
2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 8§239—
8243. IEEE.

Katherine Demuth. 1992. Acquisition of sesotho. In
Dan Slobin, editor, The Cross-Linguistic Study of
Language Acquisition, volume 3, pages 557-638.
Lawrence Erlbaum Associates, Hillsdale, N.J.

Katherine Demuth, Jennifer Culbertson, and Jessica
Alter. 2006. Word-minimality, epenthesis, and coda
licensing in the acquisition of english. Language &
Speech, 49:137-174.

Katherine Demuth and Anne Tremblay. 2007.
Prosodically-conditioned variability in children’s
production of french determiners. Journal of Child
Language, 34:1-29.

Tracey M Derwing and Murray J Munro. 1997. Accent,
intelligibility, and comprehensibility: Evidence from

four 11s. Studies in second language acquisition,
19(1):1-16.

Heejin Do, Yunsu Kim, and Gary Geunbae Lee. 2023.
Hierarchical pronunciation assessment with multi-
aspect attention. In ICASSP 2023 - 2023 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1-5.

Yassine EL Kheir, Shammur Chowdhury, and Ahmed
Ali. 2023a. Multi-View Multi-Task Representation
Learning for Mispronunciation Detection. In Proc.
9th Workshop on Speech and Language Technology
in Education (SLaTE), pages 86-90.

Yassine EL Kheir, Shammur Chowdhury, Ahmed Ali,
Hamdy Mubarak, and Shazia Afzal. 2023b. Speech-
Blender: Speech Augmentation Framework for Mis-
pronunciation Data Generation. In Proc. 9th Work-
shop on Speech and Language Technology in Educa-
tion (SLaTE), pages 26-30.

Maxine Eskenazi. 1999. Using automatic speech pro-
cessing for foreign language pronunciation tutoring:
Some issues and a prototype.

Maxine Eskenazi. 2009. An overview of spoken lan-
guage technology for education. Speech Communi-
cation, 51(10):832-844.

Maxine Eskenazi, Jack Mostow, and David Graff. 1997.
The CMU Kids Corpus LDC97S63. Linguistic Data
Consortium.

Zhixing Fan, Jing Li, Aishan Wumaier, Zaokere Kadeer,
and Abdujelil Abdurahman. 2023. A multifaceted
approach to oral assessment based on the conformer
architecture. IEEE Access, 11:28318-28329.

Zhiyun Fan, Meng Li, Shiyu Zhou, and Bo Xu.
2020. Exploring wav2vec 2.0 on speaker verifi-
cation and language identification. arXiv preprint
arXiv:2012.06185.

Yiqing Feng, Guanyu Fu, Qingcai Chen, and Kai Chen.
2020. Sed-mdd: Towards sentence dependent end-to-
end mispronunciation detection and diagnosis. In
ICASSP 2020 - 2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 3492-3496.

Raul Fernandez, Andrew Rosenberg, Alexander Sorin,
Bhuvana Ramabhadran, and Ron Hoory. 2017. Voice-
transformation-based data augmentation for prosodic
classification. In 2017 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 5530-5534.

Luciana Ferrer, Harry Bratt, Colleen Richey, Horacio
Franco, Victor Abrash, and Kristin Precoda. 2015.
Classification of lexical stress using spectral and
prosodic features for computer-assisted language
learning systems. Speech Communication, 69:31—
45.

8314


http://arxiv.org/abs/2308.12490
http://arxiv.org/abs/2308.12490
https://doi.org/10.1109/ICASSP49357.2023.10095733
https://doi.org/10.1109/ICASSP49357.2023.10095733
https://doi.org/10.21437/SLaTE.2023-18
https://doi.org/10.21437/SLaTE.2023-18
https://doi.org/10.21437/SLaTE.2023-6
https://doi.org/10.21437/SLaTE.2023-6
https://doi.org/10.21437/SLaTE.2023-6
https://doi.org/10.1109/ICASSP40776.2020.9052975
https://doi.org/10.1109/ICASSP40776.2020.9052975
https://doi.org/10.1109/ICASSP.2017.7953214
https://doi.org/10.1109/ICASSP.2017.7953214
https://doi.org/10.1109/ICASSP.2017.7953214

Kaiqi Fu, Shaojun Gao, Kai Wang, Wei Li, Xiaohai
Tian, and Zejun Ma. 2022. Improving non-native
word-level pronunciation scoring with phone-level
mixup data augmentation and multi-source informa-
tion. arXiv preprint arXiv:2203.01826.

Kaiqi Fu, Jones Lin, Dengfeng Ke, Yanlu Xie, Jin-
song Zhang, and Binghuai Lin. 2021. A full text-
dependent end to end mispronunciation detection and
diagnosis with easy data augmentation techniques.
arXiv preprint arXiv:2104.08428.

Jun Gao, Aijun Li, and Ziyu Xiong. 2012. Mandarin
multimedia child speech corpus: CASS_CHILD. In
International Conference on Speech Database and
Assessments (Oriental COCOSDA).

Qiang Gao, Shutao Sun, and Yaping Yang. 2019.
Tonenet: A cnn model of tone classification of man-
darin chinese. In Interspeech, pages 3367-3371.

Marta Garrote. 2008. CHIEDE: A Spontaneous Child
Language Corpus of Spanish. Ph.D. thesis, Universi-
dad Auténoma de Madrid, Spain.

Yuan Gong, Ziyi Chen, Iek-Heng Chu, Peng Chang,
and James Glass. 2022. Transformer-based multi-
aspect multi-granularity non-native english speaker
pronunciation assessment. In ICASSP 2022 - 2022
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 7262-7266.

Reginald Gooch, Kazuya Saito, and Roy Lyster. 2016.
Effects of recasts and prompts on 12 pronunciation
development: Teaching english//to korean adult efl
learners. System, 60:117-127.

Roberto Gretter, Marco Matassoni, Stefano Banno, and
Falavigna Daniele. 2020. TLT-school: a corpus of
non native children speech. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 378-385, Marseille, France. European
Language Resources Association.

Andreas Hagen, Bryan Pellom, and Ronald Cole. 2003.
Children’s speech recognition with application to in-
teractive books and tutors. In IEEE Workshop on
Automatic Speech Recognition and Understanding.

Nina Hosseini-Kivanani, Roberto Gretter, Marco Matas-
soni, and Giuseppe Daniele Falavigna. 2021. Exper-
iments of asr-based mispronunciation detection for
children and adult english learners.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 29:3451-3460.

Wenping Hu, Yao Qian, and Frank K Soong. 2013. A
new dnn-based high quality pronunciation evalua-
tion for computer-aided language learning (call). In
Interspeech, pages 1886—1890.

Wenping Hu, Yao Qian, and Frank K Soong. 2015a. An
improved dnn-based approach to mispronunciation
detection and diagnosis of 12 learners’ speech. In
SLaTE, pages 71-76.

Wenping Hu, Yao Qian, Frank K Soong, and Yong
Wang. 2015b. Improved mispronunciation detection
with deep neural network trained acoustic models and
transfer learning based logistic regression classifiers.
Speech Communication, 67:154—166.

Guimin Huang, Qiupu Chen, and Hongtao Zhu. 2020.
A mispronunciation detection method of confus-
ing vowel pair for chinese students. In Journal
of Physics: Conference Series, volume 1693, page
012102. IOP Publishing.

Akinori Ito, Yen-Ling Lim, Motoyuki Suzuki, and
Shozo Makino. 2005. Pronunciation error detection
method based on error rule clustering using a deci-
sion tree. In Ninth European Conference on Speech
Communication and Technology.

Okim Kang, Ron I Thomson, and John Murphy. 2018.
The Routledge handbook of contemporary English
pronunciation. Routledge New York, NY.

Natalia Kartushina and Ulrich H Frauenfelder. 2014. On
the effects of 12 perception and of individual differ-
ences in 11 production on 12 pronunciation. Frontiers
in psychology, 5:1246.

Goh Kawai and Keikichi Hirose. 1998. A call system us-
ing speech recognition to teach the pronunciation of
japanese tokushuhaku. In STiLL-Speech Technology
in Language Learning.

Abe Kazemzadeh, Hong You, Markus Iseli, Barbara
Jones, Xiaodong Cui, Margaret Heritage, Patti Price,
Elaine Anderson, Shrikanth Narayanan, and Abeer
Alwan. 2005. TBALL data collection: The making
of a young children’s speech corpus. In Proc. of
Interspeech.

Yassine El Kheir, Shammur Absar Chowdhury, and
Ahmed Ali. 2023a. The complementary roles of
non-verbal cues for robust pronunciation assessment.
arXiv preprint arXiv:2309.07739.

Yassine El Kheir, Shammur Absar Chowdhury, and
Ahmed Ali. 2023b. Ll-aware multilingual mis-
pronunciation detection framework. arXiv preprint
arXiv:2309.07719.

Eesung Kim, Jae-Jin Jeon, Hyeji Seo, and Hoon Kim.
2022. Automatic pronunciation assessment using
self-supervised speech representation learning.

Yoon Kim, Horacio Franco, and Leonardo Neumeyer.
1997. Automatic pronunciation scoring of specific
phone segments for language instruction. In Fifth
European Conference on Speech Communication and
Technology.

8315


https://doi.org/10.1109/ICASSP43922.2022.9746743
https://doi.org/10.1109/ICASSP43922.2022.9746743
https://doi.org/10.1109/ICASSP43922.2022.9746743
https://aclanthology.org/2020.lrec-1.47
https://aclanthology.org/2020.lrec-1.47
http://arxiv.org/abs/2104.05980
http://arxiv.org/abs/2104.05980
http://arxiv.org/abs/2104.05980
http://arxiv.org/abs/2204.03863
http://arxiv.org/abs/2204.03863

Daniel Korzekwa, Roberto Barra-Chicote, Szymon Za-
porowski, Grzegorz Beringer, Jaime Lorenzo-Trueba,
Alicja Serafinowicz, Jasha Droppo, Thomas Drug-
man, and Bozena Kostek. 2020a. Detection of lex-
ical stress errors in non-native (12) english with
data augmentation and attention. arXiv preprint
arXiv:2012.14788.

Daniel Korzekwa, Roberto Barra-Chicote, Szymon Za-
porowski, Grzegorz Beringer, Jaime Lorenzo-Trueba,
Alicja Serafinowicz, Jasha Droppo, Thomas Drug-
man, and Bozena Kostek. 2020b. Detection of lexi-
cal stress errors in non-native (12) english with data
augmentation and attention. In Interspeech.

Daniel Korzekwa, Jaime Lorenzo-Trueba, Thomas
Drugman, and Bozena Kostek. 2022. Computer-
assisted pronunciation training—speech synthesis is
almost all you need. Speech Communication, 142:22—
33.

Konstantinos Kyriakopoulos, Kate M Knill, and
Mark JF Gales. 2018. A deep learning approach to
assessing non-native pronunciation of english using
phone distances. ISCA.

Konstantinos Kyriakopoulos, Kate M Knill, and
Mark JF Gales. 2020. Automatic detection of ac-
cent and lexical pronunciation errors in spontaneous
non-native english speech. ISCA.

Ann Lee, Nancy F Chen, and James Glass. 2016. Per-
sonalized mispronunciation detection and diagnosis
based on unsupervised error pattern discovery. In
2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6145—
6149. IEEE.

Ann Lee and James Glass. 2012. A comparison-based
approach to mispronunciation detection. In 2012
IEEE Spoken Language Technology Workshop (SLT),
pages 382-387.

Ann Lee and James Glass. 2015. Mispronunciation de-
tection without nonnative training data. In Sixteenth
Annual Conference of the International Speech Com-
munication Association.

R. Gary Leonard and George Doddington. 1993. In
Web Download, Philadelphia. Linguistic Data Con-
sortium.

Wai-Kim Leung, Xunying Liu, and Helen Meng.
2019. Cnn-rnn-ctc based end-to-end mispronunci-
ation detection and diagnosis. In ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 8132-8136.
IEEE.

Kun Li, Shaoguang Mao, Xu Li, Zhiyong Wu, and He-
len Meng. 2018a. Automatic lexical stress and pitch
accent detection for 12 english speech using multi-

distribution deep neural networks. Speech Communi-
cation, 96:28-36.

Kun Li, Xiaojun Qian, and Helen Meng. 2016a. Mis-
pronunciation detection and diagnosis in 12 english
speech using multidistribution deep neural networks.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 25(1):193-207.

Wei Li, Nancy F Chen, Sabato Marco Siniscalchi, and
Chin-Hui Lee. 2017. Improving mispronunciation
detection for non-native learners with multisource
information and Istm-based deep models. In Infer-
speech, pages 2759-2763.

Wei Li, Nancy F Chen, Sabato Marco Siniscalchi, and
Chin-Hui Lee. 2018b. Improving mandarin tone mis-
pronunciation detection for non-native learners with
soft-target tone labels and blstm-based deep models.
In 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
6249-6253. IEEE.

Wei Li, Nancy F Chen, Sabato Marco Siniscalchi, and
Chin-Hui Lee. 2019. Improving mispronunciation
detection of mandarin tones for non-native learners
with soft-target tone labels and blstm-based deep tone
models. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 27(12):2012-2024.

Wei Li, Sabato Marco Siniscalchi, Nancy F Chen, and
Chin-Hui Lee. 2016b. Using tone-based extended
recognition network to detect non-native mandarin
tone mispronunciations. In 2016 Asia-Pacific Sig-
nal and Information Processing Association Annual
Summit and Conference (APSIPA), pages 1-4. IEEE.

Hank Liao, Golan Pundak, Olivier Siohan, Melissa Car-
roll, Noah Coccaro, Qi-Ming Jiang, Tara N. Sainath,
Andrew Senior, Francoise Beaufays, and Michiel
Bacchiani. 2015. Large vocabulary automatic speech
recognition for children. In Interspeech.

Binghuai Lin and Liyuan Wang. 2021. Deep feature
transfer learning for automatic pronunciation assess-
ment. In Interspeech, pages 4438—4442.

Binghuai Lin and Liyuan Wang. 2022a. Phoneme mis-
pronunciation detection by jointly learning to align.
In ICASSP 2022-2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 6822-6826. IEEE.

Binghuai Lin and Liyuan Wang. 2022b. Phoneme mis-
pronunciation detection by jointly learning to align.
In ICASSP 2022 - 2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 6822-6826.

Binghuai Lin and Liyuan Wang. 2023a. Exploiting in-
formation from native data for non-native automatic
pronunciation assessment. In 2022 IEEE Spoken Lan-
guage Technology Workshop (SLT), pages 708—714.

Binghuai Lin and Liyuan Wang. 2023b. Multi-lingual
pronunciation assessment with unified phoneme set
and language-specific embeddings. In ICASSP 2023-
2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1-5.
IEEE.

8316


https://doi.org/10.1109/SLT.2012.6424254
https://doi.org/10.1109/SLT.2012.6424254
https://doi.org/10.1109/ICASSP43922.2022.9746727
https://doi.org/10.1109/ICASSP43922.2022.9746727
https://doi.org/10.1109/SLT54892.2023.10022486
https://doi.org/10.1109/SLT54892.2023.10022486
https://doi.org/10.1109/SLT54892.2023.10022486

Ju Lin, Wei Li, Yingming Gao, Yanlu Xie, Nancy F
Chen, Sabato Marco Siniscalchi, Jinsong Zhang, and
Chin-Hui Lee. 2018. Improving mandarin tone recog-
nition based on dnn by combining acoustic and artic-
ulatory features using extended recognition networks.
Journal of Signal Processing Systems, 90:1077-1087.

Wai-Kit Lo, Shuang Zhang, and Helen Meng. 2010.
Automatic derivation of phonological rules for mis-
pronunciation detection in a computer-assisted pro-
nunciation training system. In Eleventh annual con-
ference of the international speech communication
association.

Yi Luan, Masayuki Suzuki, Yutaka Yamauchi, Nobuaki
Minematsu, Shuhei Kato, and Keikichi Hirose. 2012.
Performance improvement of automatic pronuncia-
tion assessment in a noisy classroom. In 2012 IEEE
Spoken Language Technology Workshop (SLT), pages
428-431.

Shaoguang Mao, Xu Li, Kun Li, Zhiyong Wu, Xunying
Liu, and Helen Meng. 2018. Unsupervised discovery
of an extended phoneme set in 12 english speech for
mispronunciation detection and diagnosis. In 2018
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6244—6248.
IEEE.

Peter Hugoe Matthews. 2014. The concise Oxford dic-
tionary of linguistics. Oxford University Press.

Helen Meng, Yuen Yee Lo, Lan Wang, and Wing Yiu
Lau. 2007a. Deriving salient learners’ mispronuncia-
tions from cross-language phonological comparisons.
In 2007 IEEE Workshop on Automatic Speech Recog-
nition Understanding (ASRU), pages 437-442.

Helen Meng, Yuen Yee Lo, Lan Wang, and Wing Yiu
Lau. 2007b. Deriving salient learners’ mispronun-
ciations from cross-language phonological compar-
isons. In 2007 IEEE Workshop on Automatic Speech
Recognition & Understanding (ASRU), pages 437—
442. IEEE.

Wolfgang Menzel, Eric Atwell, Patrizia Bonaventura,
Daniel Herron, Peter Howarth, Rachel Morton, and
Clive Souter. 2000. The isle corpus of non-native
spoken english. In Proceedings of LREC 2000: Lan-
guage Resources and Evaluation Conference, vol. 2,
pages 957-964. European Language Resources As-
sociation.

Nobuaki Minematsu, Koji Okabe, Keisuke Ogaki, and
Keikichi Hirose. 2011. Measurement of objective in-
telligibility of japanese accented english using erj (en-
glish read by japanese) database. In INTERSPEECH,
pages 1481-1484.

Nobuaki Minematsu, Yoshihiro Tomiyama, Kei Yoshi-
moto, Katsumasa Shimizu, Seiichi Nakagawa, Masa-
take Dantsuji, and Shozo Makino. 2004. Develop-
ment of english speech database read by japanese to
support call research. In Proc. ICA, volume 1, pages
557-560.

Abdelrahman Mohamed, Hung-yi Lee, Lasse Borgholt,
Jakob D. Havtorn, Joakim Edin, Christian Igel, Ka-
trin Kirchhoff, Shang-Wen Li, Karen Livescu, Lars
Maalge, Tara N. Sainath, and Shinji Watanabe. 2022.
Self-supervised speech representation learning: A
review. IEEE Journal of Selected Topics in Signal
Processing, 16(6):1179-1210.

Murray J Munro and Tracey M Derwing. 1995. For-
eign accent, comprehensibility, and intelligibility in
the speech of second language learners. Language
learning, 45(1):73-97.

Ambra Neri, Ornella Mich, Matteo Gerosa, and Diego
Giuliani. 2008. The effectiveness of computer as-
sisted pronunciation training for foreign language
learning by children. Computer Assisted Language
Learning, 21(5):393-408.

Raymond W. M. Ng, Alvin C.M. Kwan, Tan Lee, and
Thomas Hain. 2017a. Shefce: A cantonese-english
bilingual speech corpus for pronunciation assessment.
In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5825—
5829.

Raymond WM Ng, Alvin CM Kwan, Tan Lee, and
Thomas Hain. 2017b. Shefce: A cantonese-english
bilingual speech corpus for pronunciation assessment.
In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5825—
5829. IEEE.

Thi Thu Trang Nguyen, Do Dat Tran, Albert Rilliard,
Christophe d’Alessandro, and Thi Ngoc Yen Pham.
2014. Intonation issues in hmm-based speech synthe-
sis for vietnamese. In Spoken Language Technologies
for Under-Resourced Languages.

Tolulope Ogunremi, Christopher Manning, and Dan Ju-
rafsky. 2023. Multilingual self-supervised speech
representations improve the speech recognition of
low-resource african languages with codeswitching.
In Empirical Methods in Natural Language Process-
ing.

Kota Ohata. 2004. Phonological differences between
japanese and english: Several potentially problematic.
Language learning, 22:29-41.

Priyanshi Pal, Chiranjeevi Yarra, and Prasanta Kumar
Ghosh. 2022. Voistutor 2.0: A speech corpus with
phonetic transcription for pronunciation evaluation
of indian 12 english learners. In 2022 25th Confer-
ence of the Oriental COCOSDA International Com-
mittee for the Co-ordination and Standardisation of
Speech Databases and Assessment Techniques (O-
COCOSDA), pages 1-6.

R. M. Pascual and R. C. L. Guevara. 2012. Developing
a children’s filipino speech corpus for application in
automatic detection of reading miscues and disfluen-
cies. In TENCON 2012 IEEE Region 10 Conference,
pages 1-6.

8317


https://doi.org/10.1109/SLT.2012.6424262
https://doi.org/10.1109/SLT.2012.6424262
https://doi.org/10.1109/ASRU.2007.4430152
https://doi.org/10.1109/ASRU.2007.4430152
https://doi.org/10.1109/JSTSP.2022.3207050
https://doi.org/10.1109/JSTSP.2022.3207050
https://doi.org/10.1109/ICASSP.2017.7953273
https://doi.org/10.1109/ICASSP.2017.7953273
https://doi.org/10.1109/O-COCOSDA202257103.2022.9997873
https://doi.org/10.1109/O-COCOSDA202257103.2022.9997873
https://doi.org/10.1109/O-COCOSDA202257103.2022.9997873
https://doi.org/10.1109/TENCON.2012.6412235
https://doi.org/10.1109/TENCON.2012.6412235
https://doi.org/10.1109/TENCON.2012.6412235
https://doi.org/10.1109/TENCON.2012.6412235

Linkai Peng, Kaiqi Fu, Binghuai Lin, Dengfeng Ke,
and Jinsong Zhang. 2021. A study on fine-tuning
wav2vec2. 0 model for the task of mispronunciation
detection and diagnosis. In Interspeech, pages 4448—
4452.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
et al. 2023. Scaling speech technology to 1,000+
languages. arXiv preprint arXiv:2305.13516.

Xiaojun Qian, Helen Meng, and Frank Soong. 2010.
Capturing 12 segmental mispronunciations with joint-
sequence models in computer-aided pronunciation
training (capt). In 2010 7th International Symposium
on Chinese Spoken Language Processing, pages 84—
88. IEEE.

Ramya Rasipuram, Milos Cernak, and Mathew
Magimai.-Doss. 2015. Hmm-based non-native ac-
cent assessment using posterior features.

Antoine Raux and Tatsuya Kawahara. 2002. Automatic
intelligibility assessment and diagnosis of critical
pronunciation errors for computer-assisted pronunci-
ation learning. In INTERSPEECH.

Manny Rayner, Nikos Tsourakis, Claudia Baur, Pier-
rette Bouillon, and Johanna Gerlach. 2014. CALL-
SLT: A spoken CALL system based on grammar and
speech recognition. Linguistic Issues in Language
Technology, 10(2).

Pamela M Rogerson-Revell. 2021. Computer-assisted
pronunciation training (CAPT): Current issues and
future directions. RELC Journal, 52(1):189-205.

Orith Ronen, Leonardo Neumeyer, and Horacio Franco.
1997. Automatic detection of mispronunciation for
language instruction. In EUROSPEECH.

Yong Ruan, Xiangdong Wang, Hong Liu, Zhigang
Ou, Yun Gao, Jianfeng Cheng, and Yueliang Qian.
2019. An end-to-end approach for lexical stress
detection based on transformer. arXiv preprint
arXiv:1911.04862.

Neville Ryant, Jiahong Yuan, and Mark Liberman. 2014.
Mandarin tone classification without pitch tracking.
In 2014 IEEE international conference on acoustics,
speech and signal processing (ICASSP), pages 4868—
4872. IEEE.

Kazuya Saito, Pavel Trofimovich, and Talia Isaacs. 2016.
Second language speech production: Investigating
linguistic correlates of comprehensibility and accent-
edness for learners at different ability levels. Applied
Psycholinguistics, 37(2):217-240.

Marcelo Sancinetti, Jazmin Vidal, Cyntia Bonomi, and
Luciana Ferrer. 2022. A transfer learning approach
for pronunciation scoring. In ICASSP 2022 - 2022
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6812-6816.

Mostafa Ali Shahin, Julien Epps, and Beena Ahmed.
2016. Automatic classification of lexical stress in
english and arabic languages using deep learning. In
Interspeech, pages 175-179.

Kavita Sheoran, Arpit Bajgoti, Rishik Gupta, Nishtha
Jatana, Geetika Dhand, Charu Gupta, Pankaj Dad-
heech, Umar Yahya, and Nagender Aneja. 2023. Pro-
nunciation scoring with goodness of pronunciation
and dynamic time warping. IEEE Access, 11:15485—
15495.

Jiatong Shi, Nan Huo, and Qin Jin. 2020. Context-
aware goodness of pronunciation for computer-

assisted pronunciation training. arXiv preprint
arXiv:2008.08647.

Aghilas Sini, Antoine Perquin, Damien Lolive, and Ar-
naud Delhay. 2023. Phone-level pronunciation scor-
ing for 11 using weighted-dynamic time warping. In
2022 IEEE Spoken Language Technology Workshop
(SLT), pages 1081-1087. IEEE.

Helmer Strik, Khiet Truong, Febe De Wet, and Catia
Cucchiarini. 2009. Comparing different approaches
for automatic pronunciation error detection. Speech
communication, 51(10):845-852.

Sweekar Sudhakara, Manoj Kumar Ramanathi, Chiran-
jeevi Yarra, and Prasanta Kumar Ghosh. 2019. An
improved goodness of pronunciation (gop) measure
for pronunciation evaluation with dnn-hmm system
considering hmm transition probabilities. In INTER-
SPEECH, pages 954-958.

Jidong Tao, Shabnam Ghaffarzadegan, Lei Chen, and
Klaus Zechner. 2016. Exploring deep learning archi-
tectures for automatically grading non-native spon-
taneous speech. In 2016 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6140-6144.

Rong Tong, Nancy F Chen, and Bin Ma. 2017. Multi-
task learning for mispronunciation detection on sin-
gapore children’s mandarin speech. In Interspeech,
pages 2193-2197.

Rong Tong, Nancy F Chen, Bin Ma, and Haizhou Li.
2015. Goodness of tone (got) for non-native man-
darin tone recognition. In Sixteenth Annual Con-
ference of the International Speech Communication
Association.

Pavel Trofimovich and Talia Isaacs. 2012. Disentan-
gling accent from comprehensibility. Bilingualism:
Language and Cognition, 15(4):905-916.

KP Truong, Ambra Neri, Catia Cucchiarini, and Helmer
Strik. 2004. Automatic pronunciation error detection:
an acoustic-phonetic approach.

Takumi Uchihara. 2022. Is it possible to measure word-
level comprehensibility and accentedness as indepen-
dent constructs of pronunciation knowledge? Re-
search Methods in Applied Linguistics, 1(2):100011.

8318


http://infoscience.epfl.ch/record/213707
http://infoscience.epfl.ch/record/213707
https://doi.org/10.1109/ICASSP43922.2022.9747727
https://doi.org/10.1109/ICASSP43922.2022.9747727
https://doi.org/10.1109/ACCESS.2023.3244393
https://doi.org/10.1109/ACCESS.2023.3244393
https://doi.org/10.1109/ACCESS.2023.3244393
https://doi.org/10.1109/ICASSP.2016.7472857
https://doi.org/10.1109/ICASSP.2016.7472857
https://doi.org/10.1109/ICASSP.2016.7472857

Joost Van Doremalen, Catia Cucchiarini, and Helmer
Strik. 2009. Automatic detection of vowel pronunci-
ation errors using multiple information sources. In
2009 IEEE Workshop on Automatic Speech Recogni-
tion & Understanding, pages 580-585. IEEE.

Lavanya Venkatasubramaniam, Vishal Sunder, and Eric
Fosler-Lussier. 2023. End-to-end word-level disflu-
ency detection and classification in children’s reading
assessment. In ICASSP 2023-2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1-5. IEEE.

Jazmin Vidal, Luciana Ferrer, and Leonardo Brambilla.
2019a. Epadb: A database for development of pro-
nunciation assessment systems. In INTERSPEECH,
pages 589-593.

Jazmin Vidal, Luciana Ferrer, and Leonardo Brambilla.
2019b. Epadb: a database for development of pro-
nunciation assessment systems. Proc. Interspeech
2019, pages 589-593.

Agnieszka Wagner. 2014. Rhythmic structure of utter-
ances in native and non-native polish. In Proc. 7th
International Conference on Speech Prosody 2014,
pages 337-341.

Xue Wang. 2022. Segmental versus suprasegmental:
Which one is more important to teach? RELC Jour-
nal, 53(1):194-202.

Yow-Bang Wang and Lin-Shan Lee. 2012. Improved
approaches of modeling and detecting error patterns
with empirical analysis for computer-aided pronun-
ciation training. In 2012 IEEFE international con-

ference on acoustics, speech and signal processing
(ICASSP), pages 5049-5052. IEEE.

Yow-Bang Wang and Lin-shan Lee. 2015. Supervised
detection and unsupervised discovery of pronunci-
ation error patterns for computer-assisted language
learning. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 23(3):564-579.

Silke M Witt. 2012. Automatic error detection in pro-
nunciation training: Where we are and where we
need to go. In International Symposium on auto-
matic detection on errors in pronunciation training,
volume 1.

Silke M Witt and Steve J Young. 2000. Phone-level
pronunciation scoring and assessment for interactive

language learning. Speech communication, 30(2-
3):95-108.

Minglin Wu, Kun Li, Wai-Kim Leung, and Helen Meng.
2021. Transformer based end-to-end mispronuncia-
tion detection and diagnosis. In Interspeech, pages
3954-3958.

Xiaoshuo Xu, Yueteng Kang, Songjun Cao, Binghuai
Lin, and Long Ma. 2021. Explore wav2vec 2.0 for
mispronunciation detection. In Interspeech, pages
4428-4432.

Bi-Cheng Yan, Hsin-Wei Wang, and Berlin Chen. 2023a.
Peppanet: Effective mispronunciation detection and
diagnosis leveraging phonetic, phonological, and
acoustic cues. In 2022 IEEE Spoken Language Tech-
nology Workshop (SLT), pages 1045-1051.

Bi-Cheng Yan, Hsin-Wei Wang, Yi-Cheng Wang, and
Berlin Chen. 2023b. Effective graph-based modeling
of articulation traits for mispronunciation detection
and diagnosis. In ICASSP 2023 - 2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1-5.

Mu Yang, Kevin Hirschi, Stephen D Looney, Okim
Kang, and John HL Hansen. 2022. Improv-
ing mispronunciation detection with wav2vec2-
based momentum pseudo-labeling for accented-
ness and intelligibility assessment. arXiv preprint
arXiv:2203.15937.

Chiranjeevi Yarra, Aparna Srinivasan, Chandana Srini-
vasa, Ritu Aggarwal, and Prasanta Kumar Ghosh.
2019. voistutor corpus: A speech corpus of indian
12 english learners for pronunciation assessment. In
2019 22nd Conference of the Oriental COCOSDA
International Committee for the Co-ordination and
Standardisation of Speech Databases and Assessment
Techniques (O-COCOSDA), pages 1-6. IEEE.

Wenxuan Ye, Shaoguang Mao, Frank Soong, Wenshan
Wu, Yan Xia, Jonathan Tien, and Zhiyong Wu. 2022.
An approach to mispronunciation detection and di-
agnosis with acoustic, phonetic and linguistic (apl)
embeddings. In ICASSP 2022 - 2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6827-6831.

Zhou Yu, Vikram Ramanarayanan, David Suendermann-
Oeft, Xinhao Wang, Klaus Zechner, Lei Chen, Jidong
Tao, Aliaksei Ivanou, and Yao Qian. 2015. Using
bidirectional Istm recurrent neural networks to learn
high-level abstractions of sequential features for au-
tomated scoring of non-native spontaneous speech.
In 2015 IEEE Workshop on Automatic Speech Recog-
nition and Understanding (ASRU), pages 338-345.

Daniel Zhang, Ashwinkumar Ganesan, Sarah Camp-
bell, and Daniel Korzekwa. 2022a. L.2-gen: A neural
phoneme paraphrasing approach to 12 speech synthe-
sis for mispronunciation diagnosis.

Daniel Yue Zhang, Soumya Saha, and Sarah Campbell.
2023. Phonetic rnn-transducer for mispronunciation
diagnosis. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 1-5. IEEE.

Feng Zhang, Chao Huang, Frank K Soong, Min Chu,
and Renhua Wang. 2008. Automatic mispronuncia-
tion detection for mandarin. In 2008 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing, pages 5077-5080. IEEE.

Huayun Zhang, Ke Shi, and Nancy F Chen. 2021a. Mul-
tilingual speech evaluation: case studies on english,
malay and tamil. arXiv preprint arXiv:2107.03675.

8319


https://doi.org/10.1109/SLT54892.2023.10022472
https://doi.org/10.1109/SLT54892.2023.10022472
https://doi.org/10.1109/SLT54892.2023.10022472
https://doi.org/10.1109/ICASSP49357.2023.10097226
https://doi.org/10.1109/ICASSP49357.2023.10097226
https://doi.org/10.1109/ICASSP49357.2023.10097226
https://doi.org/10.1109/ICASSP43922.2022.9746604
https://doi.org/10.1109/ICASSP43922.2022.9746604
https://doi.org/10.1109/ICASSP43922.2022.9746604
https://doi.org/10.1109/ASRU.2015.7404814
https://doi.org/10.1109/ASRU.2015.7404814
https://doi.org/10.1109/ASRU.2015.7404814
https://doi.org/10.1109/ASRU.2015.7404814

Junbo Zhang, Zhiwen Zhang, Yongqing Wang, Zhiyong
Yan, Qiong Song, Yukai Huang, Ke Li, Daniel Povey,
and Yujun Wang. 2021b. speechocean762: An open-
source non-native english speech corpus for pronunci-
ation assessment. arXiv preprint arXiv:2104.01378.

Junbo Zhang, Zhiwen Zhang, Yongqing Wang, Zhiyong
Yan, Qiong Song, Yukai Huang, Ke Li, Daniel Povey,
and Yujun Wang. 2021c. speechocean762: An open-
source non-native english speech corpus for pronunci-
ation assessment. arXiv preprint arXiv:2104.01378.

Long Zhang, Ziping Zhao, Chunmei Ma, Linlin Shan,
Huazhi Sun, Lifen Jiang, Shiwen Deng, and Chang
Gao. 2020. End-to-end automatic pronunciation er-
ror detection based on improved hybrid ctc/attention
architecture. Sensors, 20(7):1809.

XIAO ZHANG. 2021. Latic: A non-native pre-labelled
mandarin chinese validation corpus for automatic
speech scoring and evaluation task.

Zhan Zhang, Yuehai Wang, and Jianyi Yang. 2022b.
End-to-end mispronunciation detection with simu-
lated error distance. Proc. Interspeech 2022, pages
4327-4331.

Guanlong Zhao, Sinem Sonsaat, Alif Silpachai, Ivana
Lucic, Evgeny Chukharev-Hudilainen, John Levis,
and Ricardo Gutierrez-Osuna. 2018a. L2-arctic: A
non-native english speech corpus. In Interspeech,
pages 2783-2787.

Guanlong Zhao, Sinem Sonsaat, Alif Silpachai, Ivana
Lucic, Evgeny Chukharev-Hudilainen, John Levis,
and Ricardo Gutierrez-Osuna. 2018b. L2-arctic: A
non-native english speech corpus. In Interspeech,
pages 2783-2787.

Chuanbo Zhu, Takuya Kunihara, Daisuke Saito,
Nobuaki Minematsu, and Noriko Nakanishi. 2023.
Automatic prediction of intelligibility of words and
phonemes produced orally by japanese learners of
english. In 2022 IEEE Spoken Language Technology
Workshop (SLT), pages 1029-1036.

8320


https://doi.org/10.21227/mqtj-qh10
https://doi.org/10.21227/mqtj-qh10
https://doi.org/10.21227/mqtj-qh10
https://doi.org/10.1109/SLT54892.2023.10023307
https://doi.org/10.1109/SLT54892.2023.10023307
https://doi.org/10.1109/SLT54892.2023.10023307

Appendix

A Mispronunciation Assessment and
Non-Native Datasets

In this section, we provide a comprehensive
overview of existing pronunciation assessment
datasets as presented in Table 1.

A.1 ISLE Speech Corpus (Menzel et al., 2000)

The ISLE corpus stands out as one of the largest
speech corpora in terms of duration and offers
the advantage of being distributed by ELDA. This
corpus focuses on German and Italian accented
English, featuring recordings of 23 intermediate-
level speakers from each accent group. The par-
ticipants, primarily employees and students from
project sites in Italy, Germany, and the UK, were
selected to achieve a balance of native languages
(German/Italian) while including a small number of
non-native speakers from other countries (Spanish,
French, Chinese) and native British English speak-
ers for comparison purposes. The corpus contains
readings of both nonfictional autobiographic text
(1300 words) and short utterances (1100 words) de-
signed to cover common pronunciation errors made
by language learners. It offers annotations at both
the word and phone levels, making it particularly
valuable for developing Computer Assisted Lan-
guage Learning systems. The annotation process
involved multiple steps, including quality checks,
reference transcription, forced alignment, and the
addition of canonical pronunciations and stress
markings. An emphasis was placed on matching
non-English phones to the closest equivalent in the
UK English phone set, with occasional input from
a trained phonetician and a native speaker of the
speaker’s mother tongue for verification and quality
improvement purposes.

A.2 English read by Japanese Corpus (ER])
(Minematsu et al., 2004)

The ERJ corpus (English Read by Japanese) is
a database of English speech read by Japanese
students. It was created to support research in
computer-assisted language learning (CALL). The
corpus contains 800 utterances from 202 (100
males and 102 females) Japanese university stu-
dents, each of whom read a set of 100 sentences.
The sentences were selected to be phonetically bal-
anced and to cover a variety of grammatical struc-
tures. The corpus is annotated with phonemic tran-
scriptions and prosodic markings. The ERJ corpus

consists of two sets of data: a phonemic pronuncia-
tion set and a prosody set. The phonemic pronunci-
ation set contains 460 phonetically-balanced sen-
tences, 32 sentences including phoneme sequences
difficult for Japanese to pronounce correctly, and
100 sentences designed for the test set. The prosody
set contains 94 sentences with various intonation
patterns, 120 sentences with various accent and
rhythm patterns, and 109 words with various ac-
cent patterns. The ERJ corpus is annotated with
phonemic transcriptions and prosodic markings.
The phonemic transcriptions are based on the In-
ternational Phonetic Alphabet (IPA). The prosodic
markings include information about intonation, ac-
cent, and rhythm.

A.3 Chinese University Chinese Learners of
English (CU-CHLOE) (Meng et al.,
2007a)

The CU-CHLOE corpus encompasses a diverse
group of speakers, including 110 Mandarin speak-
ers (60 males and 50 females) and 100 Cantonese
speakers (50 males and 50 females). It is struc-
tured into five distinct sections, namely confusable
words, minimal pairs, phonemic sentences, the Ae-
sop’s Fable "The North Wind and the Sun," and
prompts sourced from the TIMIT dataset. Trained
linguists have diligently labeled all sections, except
for the TIMIT prompts, contributing to approxi-
mately 30% of the comprehensive CHLOE data.
This expert annotation ensures the corpus provides
reliable and precise linguistic information, making
it a valuable resource for exploring Mandarin and
Cantonese speech characteristics and facilitating
advancements in research within these languages.

A.4 EURONOUNCE (Cylwik et al., 2009)

EURONOUNCE is a speech corpus developed for
an ASR-based pronunciation tutoring system. The
annotation conveys a phonetic segmentation, with
identifying pronunciation errors, including substi-
tutions, insertions, and deletions. The resulting
annotations are then reviewed by a native speaker
of the source language (German) to validate the
assessment.

A.5 iCALL (Chen et al., 2015)

iCALL is comprised of 90,841 spoken statements
delivered by 305 individuals, spanning a cumula-
tive duration of 142 hours. The speaker composi-
tion ensures gender equality, encompasses various
native languages, and reflects a representative range
of adult Mandarin learners. These oral statements
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have been transcribed phonetically and evaluated
for fluency by proficient native Mandarin speakers.

A.6 SingaKids-Mandarin (Chen et al., 2016b)

SingaKids-Mandarin is a comprehensive speech
corpus consisting of recordings from 255 Singa-
porean children between the ages of 7 and 12. The
corpus aims to provide a resource for studying Man-
darin Chinese pronunciation and language acquisi-
tion in Singaporean children. The corpus contains
a total of 125 hours of audio data, with 75 hours
dedicated to speech. Within this dataset, there are
79,843 utterances, each of which has been metic-
ulously annotated by human experts. The annota-
tions include phonetic transcriptions, lexical tone
markings, and proficiency scoring at the level of in-
dividual utterances. The reading scripts used in the
corpus encompass a wide range of utterance styles.
They cover syllable-level minimal pairs, individual
words, phrases, complete sentences, and even short
stories. This diversity allows for a thorough analy-
sis of different aspects of Mandarin pronunciation
and fluency in Singaporean children.

A.7 SHEFCE (Ng et al., 2017b)

SHEFCE (ShefCE) is a bilingual parallel speech
corpus that focuses on Cantonese and English. It
was recorded by second language (L2) English
learners in Hong Kong. The corpus consists of
recordings from 31 undergraduate to postgraduate
students, aged 20 to 30. The corpus includes a total
of 25 hours of speech data, with approximately 12
hours recorded in Cantonese and 13 hours recorded
in English. The primary goal of this corpus is
to provide a resource for studying the speech pat-
terns, pronunciation, and language acquisition of
Cantonese-speaking individuals who are learning
English as a second language.

A.8 L2-ARCTIC (Zhao et al., 2018a)

The L2-ARCTIC? corpus is a specialized speech
corpus designed for research in voice conversion,
accent conversion, and mispronunciation detection
in non-native English. It encompasses a substantial
collection of 26867 utterances from 24 non-native
speakers (12 males and 12 females) whose L1 lan-
guages include Hindi, Korean, Mandarin, Span-
ish, Arabic, and Vietnamese. The recordings were
sourced from a total of 4 speakers per L1 language,
consisting of 2 males and 2 females ensuring a bal-
anced distribution in terms of gender and native

2yersion 5 released in 2020 avalaible:

https://psi.engr.tamu.edu/12-arctic-corpus

languages (L1s). Yet, only 150 utterances is manu-
ally per speaker to identify three types of segmental
mispronunciation errors: substitutions, deletions,
and insertions resulting in 3.66 hours.

A.9 VoisTUTOR corpus (Yarra et al., 2019)

VoisTUTOR is a pronunciation assessment corpus
of Indian second language (L2) learners learning
English. The corpus consists of audio recordings
of 16 Indian L2 learners reading a set of 1676 sen-
tences. The recordings are accompanied by pho-
netic transcriptions, human ratings of pronuncia-
tion accuracy on a scale of 0 to 10 for each utter-
ance, and binary decisions for seven factors that af-
fect pronunciation quality: intelligibility, phoneme
quality, phoneme mispronunciation, syllable stress
quality, intonation quality, correctness of pauses,
and mother tongue influence.

A.10 SELL-CORPUS (Chen et al., 2019)

SELL-CORPUS is a multiple accented speech cor-
pus for L2 English learning in China. The corpus
consists of audio recordings of 389 volunteer speak-
ers, including 186 males and 203 females. The
speakers are from seven major regional dialects of
China, including Mandarin, Cantonese, Wu, Min,
Hakka, and Southwestern Mandarin. The corpus
contains 31.6 hours of speech recordings. Each
recording in the corpus contains a word-level or-
thographic transcription manually inspected and
cleaned by inserting, substituting, or deleting mis-
matching characters.

A.11 English Pronunciation by Argentinians
Database (EpaDB) (Vidal et al., 2019a)

EpaDB consists of English phrases recorded by
native Spanish speakers with varying levels of En-
glish proficiency. The recordings are annotated
with ratings indicating the quality of pronunciation
at the phrase level. Additionally, detailed phonetic
alignments and transcriptions are provided, indicat-
ing which phones were actually pronounced by the
speakers.

A.12 Speechocean762 (Zhang et al., 2021b)

Speechocean762 is an extensive dataset specifically
designed for pronunciation assessment. It com-
prises a total of 5,000 English utterances obtained
from 250 non-native speakers. Each utterance in
the dataset is associated with five aspect scores at
the utterance level, namely accuracy, fluency, com-
pleteness, prosody, and a total score ranging from
0 to 10. Additionally, for each word within the ut-
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terance, three aspect scores are provided, including
accuracy, stress, and a total score ranging from 0 to
10. Furthermore, an accuracy score is assigned to
each individual phoneme, ranging from O to 2. To
ensure reliability, each of these scores is annotated
by five expert evaluators.

A.13 LATIC (ZHANG, 2021)

LATIC primarily targets non-native learners of
Mandarin Chinese. The dataset comprises four
hours of recordings involving specifically selected
non-native Chinese speakers. The participants’
L1’s vary, including Russian, Korean, French, and
Arabic. Following each audio file, annotators tran-
scribed the "closest" transcript and provided mod-
ern Mandarin annotations after careful listening.

A.14 Arabic-CAPT (Algabri et al., 2022)

Arabic-CAPT is an Arabic mispronunciation de-
tection corpus consisting of 62 non-native Arabic
speakers from 20 different nationalities, totaling
2.36 hours of speech data. The Arabic non-native
speech is annotated following the guidelines in
(Zhao et al., 2018a).

A.15 AraVoiceL2 (EL Kheir et al., 2023b)

AraVoiceL.2 is an Arabic mispronunciation detec-
tion corpus comprised of 5.5 hours of data recorded
by 11 non-native Arabic speakers. Each speaker
recorded a fixed list of 642 words and short sen-
tences, making for a total of 7, 062 recordings. The
corpus is annotated at character level including dia-
critics following (Zhang et al., 2021b) guidelines.

A.16 Non-Native Datasets:

Table 2 provides a comprehensive overview of ex-
isting non-native datasets that are particularly bene-
ficial as they enable the extraction of error patterns
allowing for a thorough assessment of L2 pronun-
ciation. These datasets can also be used to train
robust ASR models, from which we can extract val-
uation features to accurately score L2 speech. Fur-
thermore, non-native datasets can enhance existing
pronunciation assessment end-to-end approaches.

B Annotation

In this section, we provide an overview of the stan-
dard approaches to annotate segmental and supra-
segmental errors widely used in MDD research.

B.1 Segmental Annotation

Segmental human annotation can be approached
from two perspectives. The first and the com-
monly utilized approach in most available MDD

corpora involves linguistics experts transcribing the
actual sequence of phonemes spoken by the learner
(Bonaventura et al., 2000; Zhao et al., 2018b; Vi-
dal et al., 2019b). The resulted transcription is
commonly referred as hypothesis annotation. Ad-
ditionally, extra tasks can be incorporated, such
as providing time boundaries for each pronounced
phoneme, to further enhance the annotation pro-
cess. This approaches may have limitations in cap-
turing non-clear speech instances, such as heav-
ily accented pronunciations that may not be eas-
ily detected by human annotators. This leads to
the second approach, which incorporates scoring-
based methods in addition to hypothesis annotation
(Zhang et al., 2021c). In this approach, a score is
assigned to each phoneme: 0 represents deleted
or mispronounced phonemes, 1 indicates heavily
accented pronunciation, and 2 signifies good pro-
nunciation. This scoring-based approach provides
a more comprehensive assessment of pronunciation
quality, particularly in cases where clear detection
by human annotators may be challenging.

B.2 Supra-segmental Annotation

Limited research has been conducted regarding
the annotation of supra-segmental features at the
rhythm, stress, and intonation levels such as in (Ar-
vaniti and Baltazani, 2000; Chen et al., 2016b; Cole
et al., 2017). However, the ultimate objective of an-
notating these supra-segmental aspects is to ensure
the fluency and intelligibility of L2 learners’ speech.
Hence the most commonly used annotated datasets
at the prosodic level provide human-scored words,
and sentences based on overall pronunciation qual-
ity and fluency. Multiple tiers of human scoring
annotations can be applied in this context. This in-
cludes providing the accuracy of pronounced words
to assess their intelligibility, assigning scores to
evaluate the positioning of stress within individual
words or within sentences, and evaluating sentence
fluency by considering factors such as pauses, rep-
etitions, and stammering in speech as adapted in
(Zhang et al., 2021c).
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Corpus Languages Dur / #Utt #Speakers
Demuth Sesotho Corpus (Demuth, Sesotho 98h// 13250 4
1992)

TIDIGITS (Leonard and Doddington, English - /326
1993)

CMU Kids Corpus (Eskenazi et al., English /5180 76
1997)

CU Children’s Read and Prompted English /100 663
Speech Corpus (Hagen et al., 2003)

CU Story Corpus (Hagen et al., 2003) English 40h /7062 106
PF-STAR Children’s Speech Corpus English 14.5h / 158
(Batliner et al., 2005)

TBALL (Kazemzadeh et al., 2005) English 40h / 5000 256
Swedish NICE Corpus (Bell et al., Swedish - 5580
2005)

Providence Corpus (Demuth et al., English 363h/ 6
2006)

Lyon Corpus (Demuth and Tremblay, French 185h/ 4
2007)

CHIEDE (Garrote, 2008) Spanish 8h // 15444 59
CFSC (Pascual and Guevara, 2012) Filipino 8h/ 57
CASSCHILD (Gao et al., 2012) Mandarin - 23
CALL-SLT (Rayner et al., 2014) German /5000 -
Boulder Learning—MyST Corpus English 393h /228874 1371
(Boulder Learning Inc, 2019)

TLT-school (Gretter et al., 2020) English and German  119.1h /26059 6547

Table 2: Non-Native Speech Datasets
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