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Abstract
Data Maps (Swayamdipta et al., 2020) have
emerged as a powerful tool for diagnosing large
annotated datasets. Given a model fitted on a
dataset, these maps show each data instance
from the dataset in a 2-dimensional space
defined by a) the model’s confidence in the true
class and b) the variability of this confidence.
In previous work, confidence and variability
are usually computed using training dynamics,
which requires the fitting of a strong model to
the dataset. In this paper, we introduce a novel
approach: Zero-Shot Data Maps based on
fast bi-encoder networks. For each data point,
confidence on the true label and variability are
computed over the members of an ensemble
of zero-shot models constructed with different
— but semantically equivalent — label
descriptions, i.e., textual representations of
each class in a given label space. We conduct
a comparative analysis of maps compiled
using traditional training dynamics and our
proposed zero-shot models across various
datasets. Our findings reveal that Zero-Shot
Data Maps generally match those produced by
the traditional method while delivering up to a
14x speedup. The code is available at https:
//github.com/symanto-research/
zeroshot-cartography.

1 Introduction

Practices like annotation crowdsourcing and large-
scale web scraping have enabled NLP researchers
to create large annotated corpora (Snow et al.,
2008; Brown et al., 2020). Concurrently, this
growth in data volume has led to an increased preva-
lence of label noise and annotation artifacts within
datasets (Abad and Moschitti, 2016; Gururangan
et al., 2018). Further complicating matters, the
widening gap between dataset annotators and end-
users — researchers and practitioners who use the
datasets to train models — often transforms these

datasets into black boxes (Paullada et al., 2020).
This division of labour, while economically advan-
tageous in terms of time and resources, hinders
thorough comprehension of the data. Dataset Car-
tography using training dynamics (Swayamdipta
et al., 2020) offers a partial solution to this prob-
lem as it can help interpreting annotated corpora
with respect to a model. Specifically, data maps
reveal three loose groups of instances within an
annotated dataset: easy-to-learn, ambiguous and
hard-to-learn instances; the latter often correspond
to annotation errors. Training new models based
on samples from these regions can lead to better
models with improved generalization. While car-
tography based on training dynamics can generally
compile high quality maps, it does so at the cost of
training a large model on the target dataset.

In this work, we introduce a novel, fast method
for drawing Data Maps using zero-shot models.
This approach capitalizes on the sensitivity of zero-
shot models to label description framing, offering
a more efficient and resource-friendly alternative
to the original training dynamics method. Our ap-
proach allows for the generation of data maps with-
out the requirement of extensive computational re-
sources for the training of a robust model on a
large dataset. When evaluated on data selection
and error detection tasks, our experimental results
show that zero-shot map coordinates are as useful
as coordinates obtained through training dynamic
maps, while requiring a fraction of the time to com-
pute. Zero-shot data maps speed up the analysis of
large datasets, removing the need for model train-
ing; they are a handy tool for industry practitioners
managing daily unique datasets.

Research Questions In this study, we aim to an-
swer the following research questions (RQ):

• RQ1: Can bi-encoder models serve as the ba-
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sis for a lightweight, low-resource variant of
data cartography? In particular, can map co-
ordinates obtained through training dynamics
be approximated by zero-shot models?

• RQ2: Can the confidence metrics from en-
sembled zero-shot models serve as a reliable
indicator for finding annotation errors?

Contributions We introduce a novel method for
compiling data maps up to 14x faster. We compare
our method against training dynamics-based maps.
Furthermore, we show that zero-shot maps can be
used for automatic annotation error detection. Fi-
nally, we will provide an easy-to-use implementa-
tion of our method for enabling NLP practitioners
to inspect new datasets.

2 Data Maps with Zero-Shot Models

In this section, we first explain how our chosen
zero-shot architecture works and why we chose it
over other options (Section 2.1). We then proceed
to illustrate the sensitivity of zero-shot models to
label descriptions (Section 2.2). Finally, we de-
scribe how we can use this feature to build Data
Maps with zero-shot models, thus avoiding model
training (Section 2.3).

2.1 Zero-Shot Classification with Bi-Encoder
Models

Recent work in NLP (Radford et al., 2019) have
shown that large pre-trained language models
(LLMs) can effectively be used in a zero-shot setup,
meaning that they require no data to solve a task.
Among the different architectures that have been
shown capable of turning LLMs into zero-shot clas-
sifiers (Radford et al., 2019; Yin et al., 2019; Schick
and Schütze, 2021), we focus on the bi-encoder
(or Dual Encoder) class of models (Reimers and
Gurevych, 2019; Mueller et al., 2022) due to their
efficiency during inference. Bi-encoder models
work as classifiers thanks to label descriptions,
which we define as a natural language represen-
tation of each class in the label space. Label de-
scriptions are essentially the sentence-embedding
counterpart to the use of task descriptions with
pre-trained language models (Radford et al., 2019).
For example, consider a binary classification task
to identify spam emails. Here, the label description
for the spam class might be This email contains un-
solicited content while for the non-spam class, it
could be This email includes relevant information.

A bi-encoder model operates in a two-step process
when given input texts and label descriptions: first,
it generates embeddings for both the documents
and label descriptions, and secondly, it uses these
similarity scores as a classification function.

More formally, given a corpus of N documents
and a task with with K classes — each with a corre-
sponding label description lk — bi-encoders firstly
independently embed the input texts and the label
descriptions. We define the document embeddings
as X ∈ RN×d and the label description embed-
dings as L ∈ RK×d, where d is the dimension of
the bi-encoder embedding model E(·). Next, a sim-
ilarity score is computed for each document and
label description pair: this is done using a sym-
metric function s(·, ·) like cosine similarity or dot
product. Finally, the class associated with the label
yielding the highest similarity with the input text is
chosen as the prediction:

ŷ = argmaxlis(E(x), E(li)) (1)

The application of a softmax transformation to
the array of similarities, turns the bi-encoder model
into probabilistic classifiers. These transformed
similarities create a probability distribution over
the labels:

P (yi|x) = softmax(s(E(x), E(li))) (2)

In this way, the model provides not just a pre-
diction but also a probability distribution over all
labels, offering an interpretation of the model’s
confidence for each label.

We opt for the bi-encoder architecture because of
its inference efficiency. In particular, bi-encoders
can independently model input and labels, meaning
that only a single pass over the input documents
is necessary, regardless of the number of classes
or label descriptions per class. In contrast, cross-
encoder Natural Language Inference (NLI) models
(Yin et al., 2019), a popular architecture for zero-
shot classification, implies K passes over the input
data for each class k within the label space. When
defining multiple label descriptions L per class to
create a source of variation in predictions — as
we do in this work — N × L ×K passes would
be required, iterating for each class and each la-
bel description. In contrast, Mueller et al. (2022)
demonstrate that bi-encoders can achieve quality
similar to that of cross-encoder models while being
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Figure 1: Data Maps for the training split (limited to 25k examples) of the SST2 dataset, computed using training
dynamics (left) and our zero-shot proposed method (right) with sentence-t5-large (Ni et al., 2022).

up to 20 times faster in terms of processed tokens
per second.

2.2 Sensitivity to Label Description Phrasing

LABEL DESCRIPTION F1

a)
Just bad!

89.33
All in all, the movie was awesome.

b)
Just terrible!

68.71
All in all, the film was great.

mean 78.55
min 24.79
max 89.33

Table 1: Top: a) the best performing combination of
label descriptions (red and green for the negative and
positive class respectively) on the SST dataset and b)
a semantically similar, but much worse, set of label
descriptions. Bottom: Mean, minimum and max score
across a set of 729 label description combinations for
the SST2 dataset.

LLM-based zero-shot models are notably sensi-
tive to the phrasing and structure of the prompts
used for specific tasks (Shin et al., 2020; Lu et al.,
2022). Label descriptions suffer from the same
problem. To illustrate this, let us consider the case
of a sentiment analysis task with positive and
negative as the class labels. The phrasing of
label descriptions can vary within the same class.
For instance, positive descriptions could be All
in all, the movie was awesome. or All in all, the film
was great., while negative descriptions could
be Just bad! or Just terrible!. Despite conveying
the same meaning, the specific wording of these
descriptions can have a substantial impact on the

model’s performance, as shown in Table 1.
For each task, we first manually craft a large

set of different label descriptions; next, we gener-
ate predictions for all the possible combinations
of these label descriptions. More formally, let us
assume we have a total of L label descriptions per
class k. For our input text we compute an embed-
ding x. For each label description i in class k, we
calculate an embedding, denoted as lc,i. Next, we
apply a symmetric similarity function f to deter-
mine the similarity between x and each lc,i, result-
ing in an array of similarities Sk for each label
description:

Sk,i = f(x, lk,i)

Hence, for each embedded input text x and each
class k, we generate an array of L predictions (one
for each label description). This leads to N × L×
C predictions for each input text, where C is the
number of classes and L is the number of different
label descriptions per class. In Figure 2 we show
the distribution of macro F1 scores computed using
a large set of different label descriptions1 across
several datasets: on average, performances range
between state-of-the-art and purely random.

2.3 Zero-Shot Data Maps
Considering that bi-encoder classifiers a) deliver
efficient inference time regardless of the number of
labels, and b) exhibit performance variations based
on the phrasing of label descriptions, we can trans-
late the concept of training dynamics to zero-shot
maps. More precisely, we compute confidence and
variability across the predictions of Z ensemble

1A detailed overview of the label descriptions can be found
in Table 8 in the Appendix.
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Figure 2: Zero-shot macro F1 performance of difference
combinations of label descriptions for 4 datasets.

members of a zero-shot model instead of a series of
training epochs. Intuitively, we can view zero-shot
maps as the equivalent of a time-unrolled version
of a training dynamics map: we take multiple pre-
dictions all at once from various zero-shot models,
each prompted with a different label description,
as opposed to gathering predictions from different
epochs of the same model. Similar to the variable
quality of predictions across training epochs, which
generally improve as more epochs are completed,
the performance of zero-shot models can also vary
substantially depending on the label description, as
we discuss in Section 2.2: this source of variation
serves as the basis for computing confidence and
variability.

The average confidence of a zero-shot model
— defined by the embeddings of a specific set of
label descriptions θz — over an instance xi with
true label y∗i is defined as the average probability
assigned by the ensemble to label y∗i across all the
members Z of the ensemble:

µi =
1

Z

Z∑

z=1

pθ(z)(y
∗
i |xi)

Similarly, we define variability as the standard
deviation of the model’s probabilities across the
ensemble members:

σi =

√∑Z
z=1(pθ(z)(y

∗
i |xi)− µi)2

Z

This measure quantifies the spread of model’s
probabilities across the ensemble, giving an indi-
cation of the degree of agreement or disagreement

among the ensemble members about the correct
label for an instance.

Finally, correctness simply tracks the number of
times a model predicted the gold label. In Figure 1
we show an example of data maps compiled using
both the training dynamics method and our novel
zero-shot approach.

3 Experimental Setup

We first conduct a visual evaluation of the quality of
our zero-shot data maps, comparing them with the
maps obtained through training dynamics. Next,
we follow the original data selection experiments
and train a set of models on 8 sub-samples of three
datasets. Finally, we evaluate zero-shot maps as
error detectors and compare run time and resource
usage against training dynamics maps.

3.1 Data Selection

For the data selection experiments, we first gen-
erate maps using both training dynamics and our
proposed zero-shot method; for consistency, we
use the same model — sentence-t5-large (Ni et al.,
2022) — for both approaches. Next, following
the existing literature (Swayamdipta et al., 2020),
we define eight distinct regions based on all pos-
sible combinations of confidence, correctness and
variability. These regions include:

• Easy-to-learn: These are instances that the
models consistently predict with high confi-
dence. These instances exhibit both high con-
fidence and low variability.

• Hard-to-learn: These are instances that the
models find challenging. These instances have
low confidence and low variability.

• Ambiguous: These instances exhibit high
variability and differing levels of confidence.
They usually constitute the majority of the
instances in a dataset.

• High confidence: Instances where the models,
regardless of variability, exhibit consistently
high confidence.

• High correctness: Instances that are consis-
tently correctly predicted across different la-
bel descriptions or training epochs.

• Low correctness: Instances that are frequently
misclassified.
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• Low variability: Instances that yield consis-
tent model predictions.

• Random: a baseline that randomly selects in-
stances from all over the map

Given the map of the entire training set, we order
the instances based on our strategy of interest (e.g.,
hard-to-learn, easy-to-learn, ambiguous, etc.), and
then sample from this ordered list until we acquire
33% of the original dataset. In some cases, a class
might not be represented in the sampled split: we
avoid this by including four random instances from
each class in the subset. Given a 33% sample of
the original data, we train a classifier using exclu-
sively such sample and evaluate its performance on
the test split. For the zero-shot maps, we use the
sentence-t5-large model as a frozen encoder and
trained a logistic regression model on top.

3.2 Error Detection
A plausible interpretation for instances populating
the low-confidence and low-variability map area
might be to consider them as annotation errors. The
interpretation is based on the idea that if a model
persistently mispredicts the gold label as the most
probable label for a given instance, it is likely that
the gold label itself is incorrect. We test if the confi-
dence coordinates provided by zero-shot data maps
can serve as features for an automatic error detec-
tion system and compare with training dynamics
data maps as a baseline. In their comprehensive
study of automatic error detection, Klie et al. (2023)
demonstrated that the confidence feature from train-
ing dynamics maps is as a robust error detection
baseline, performing well across various tasks and
datasets.

We test a simple linear model on the semi-
automatically validated test subset of the IMDB
dataset (Northcutt et al., 2021), using confidence as
defining features and flipped gold labels as target.
Specifically, we train a logistic regression model
using the scikit-learn implementation (Pedregosa
et al., 2011) on the train split of IMDB: we sort
the instances by decreasing confidence, sample 300
instances per class and flip the gold labels of the
first 150 instances, under the assumption that in-
stances with high confidence are probably correctly
labelled.

3.3 Datasets
For our data selection experiments, we select 3
commonly used English labelled corpora: IMDB

(Maas et al., 2011), SST2 (Socher et al., 2013)
and Cola (Warstadt et al., 2019). Additionally, we
plot maps for these datasets together with the Yelp
(Zhang et al., 2015) and AG News (Gulli, 2005)
datasets. We test automatic error detection using
two datasets: a version of IMDB which has been re-
annotated using both crowdworkers and automatic
methods (Northcutt et al., 2021) and the SST2
dataset where we simulated errors by randomly
flipping 5% of the gold labels. Table 2 highlights
the key facts about these datasets.

4 Results

4.1 Visual Comparison

We visually compare zero-shot and training dy-
namics maps, revealing a good similarity between
them. As can be seen in Figure 1, while the training
dynamics map exhibits more pronounced spikes, re-
flecting distinct training epochs, the zero-shot maps
present a smoother profile. This smoothness stems
from the larger number of label description combi-
nations used in the zero-shot setting, in contrast to
the few epochs used in the training dynamics. Fig-
ure 3 provides a view into the relationship between
dataset tasks and the performance of the zero-shot
model. For tasks where the zero-shot model yields
strong results, such as Yelp Polarity and Ag News,
the plotted curve demonstrates a distinct bell shape,
which closely mirrors the distribution observed in
the training dynamics map. For datasets like Cola,
the distribution, although still bell-shaped, shows a
larger concentration of instances in the lower half
of the graph, indicating a subpar performance of
the zero-shot model on this particular task. These
observations suggest that the model is highly sensi-
tive to the nature of the task at hand.

4.2 Data Selection

For the data selection experiments, we trained mod-
els using data samples selected based on the coor-
dinates from both zero-shot and training dynamics
maps. The results in Table 3 show that zero-shot
maps and training dynamics generally offer compa-
rable performance for data selection, though there
are some notable exceptions. For instance, the
ambiguous category in the Cola dataset shows a
marked difference, which we hypothesize may be
due to the inherent complexities of the Cola cor-
pus and limitations in the dual-encoder embedder’s
ability to assess sentence grammaticality. As such,
while zero-shot maps provide a resource-efficient
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DATASET TASK CLASSES TRAIN TEST VALIDATION

Ag news (Gulli, 2005) topic classification Business Sci/Tech Sports World 120,000 7,600 -
Cola (Warstadt et al., 2019) linguistic acceptability acceptable unacceptable 8,551 1,063 1,043
IMDB (Maas et al., 2011) sentiment negative positive 25,000 25,000 -
SST2 (Socher et al., 2013) sentiment negative positive 67,349 1,821 872
Yelp Polarity (Zhang et al., 2015) sentiment negative positive 560,000 38,000 -

Table 2: Dataset Overview. All the datasets are in English. For the data selection experiments, we use the validation
split for Cola and SST2 and the test split for the rest.

(a) (b)

(c) (d)

Figure 3: An overview of Zero-shot and Training Dynamics Maps. Top: Cola data maps generated using zero-shot
models (left) and training dynamics (right). Bottom: zero-shot maps for the Yelp (left) and Ag News (right) datasets.

COLA IMDB SST2

100% train 62.60 92.55 94.04

33
%

tr
ai

n

TD ZS TD ZS TD ZS

random 36.22 36.22 92.10 92.11 93.00 93.00
ambiguous 44.04 37.33 92.22 92.15 92.54 93.35
easy-to-learn 34.13 36.41 92.24 92.25 92.43 92.43
hard-to-learn 34.43 36.01 92.23 92.24 92.43 92.43
high-confidence 25.12 49.18 33.38 92.22 92.89 90.02
high-correctness 34.42 49.43 33.77 92.21 92.89 90.37
low-correctness 39.40 46.09 33.53 92.14 93.23 91.63
low-variability 34.10 36.51 92.24 92.25 92.43 92.43

Table 3: Macro-averaged F1 scores from Training Dy-
namics (TD) versus Zero-Shot (ZS) generated maps.
For each dataset, the best results for both methods are
in bold font.

alternative, they should not be considered a com-
plete substitute for training dynamics, particularly
for complex tasks.

We consistently observe significant improve-
ments over the random baseline data selection for
both zero-shot and training dynamics methods. In-
terestingly, for datasets that are annotated by hu-
mans, such as Cola and SST2, the advantage over
random selection is more pronounced. This may be
due to the less systematic labeling of these datasets,
as they are annotated by humans, compared to
datasets like IMDB which are compiled automati-
cally using proxies like star ratings. These findings
suggest that the data selection approach using data
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maps is particularly effective when dealing with
datasets that exhibit a high degree of labeling com-
plexity.

4.3 Error Detection
The automatic error detection results shown are pre-
sented in Table 4. Zero-shot maps even outperform
Training Dynamics in terms of average precision,
showing that this method has potential as a basis
for an automatic error detection system.

MODEL IMDB SST2

Training Dynamics 30.2 49.0
Zero-Shot 34.7 57.0

Table 4: Average Precision scores for the automatic
error detection systems on two datasets: the semi-
automatically cleaned IMDB dataset and the SST2
dataset where errors were simulated by randomly flip-
ping 5% of the gold labels.

Figure 4a presents a zero-shot map of the IMDB
dataset’s test split, where instances identified as an-
notation errors by Northcutt et al. (2021) are high-
lighted in red. A large proportion of instances with
incorrect gold labels clusters towards the lower half
of the map. This clustering implies that the con-
fidence of ensemble zero-shot models can be an
effective indicator for identifying error instances.
Similarly, Figure 4b shows that the average confi-
dence assigned to instances with incorrect annota-
tions is generally lower compared to instances with
correct labels.

4.4 Computational Requirements
The main advantage of our method is that it by-
passes model training. This speedup is further in-
creased by the zero-shot architecture choice, i.e.,
the bi-encoder network. A comparison of the com-
putation time and resources used for generating
training dynamics and zero-shot maps reveals that
zero-shot maps are generally much faster to com-
pute, as illustrated in Table 5. The absence of
a training phase allows for a different use of re-
sources: given the same GPU, larger — often better
— encoding models can be used in the creation of
zero-shot maps as there is no requirement for the
backward pass typically needed in training.

4.5 Discussion
In this study, our goal was to address two key re-
search questions. Firstly, we aimed to create a

TIME RAM

Zero-Shot (CPU) 28 min 10.6Gb
Zero-Shot (GPU) 1 min 2.2Gb
TD (CPU) 9 hr 5 min 16.4Gb
TD (GPU) 14 min 6.6Gb

Table 5: Comparison of time and RAM usage for Zero-
Shot and Training Dynamics (TD) on both CPU and
GPU for a dataset with 10.000 instances using a batch
size of 8 and static padding to 512 tokens. RAM is
VRAM for the GPU experiments and system RAM for
the CPU experiments.

more efficient, lightweight method for construct-
ing data maps (RQ1). Our experimental outcomes,
as outlined in Sections 4.1 and 4.2, suggest that
zero-shot data maps can precisely characterize a
dataset when the task can be accurately represented
using label descriptions only. Typically, these tasks
include most text classification tasks, such as senti-
ment analysis and topic classification.
Secondly, we focused on automatic error detection
(RQ2) with an emphasis on adhering to the inter-
pretations of the data maps regions as provided
by Swayamdipta et al. (2020), i.e., assuming that
hard-to-learn instances are likely to be annotation
errors. Our findings in Section 4.3 provide evidence
that the confidence scores derived from zero-shot
classifiers can indeed serve as a reliable signal for
constructing error detection systems. These results
suggest that zero-shot maps can be a good alterna-
tive to training dynamics maps.

For larger academic datasets, which often re-
quire substantial investment in terms of both time
and financial resources, the cost associated with
training a supervised model could well be justified.
In applied settings, particularly in industry, datasets
are constantly being created and updated. In these
scenarios, we recommend the use of zero-shot data
maps as they offer a swift, efficient method for
understanding data, while still delivering perfor-
mance on par with training dynamics maps. With
recent advancements in NLP technology, products
like ChatGPT (OpenAi, 2022; OpenAI, 2023) have
made it much easier to label new data for a wide
range of applications. These models have, in some
instances, even begun to replace the need for hu-
man annotators and crowdsourcing (Gilardi et al.,
2023; He et al., 2023). Despite the impressive ca-
pabilities of these models in a zero-shot setting,
they still commonly make mistakes. Consequently,
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(a) (b)

Figure 4: a): A zero-shot data map of the IMDB test split. We show in red the annotation errors. b): the confidence
distribution for the test split of IMDB for instances with a correct gold label (error False) and incorrectly labeled
ones (error True)

labeled test sets continue to be a critical require-
ment for their proper evaluation. This fact under-
scores the need for fast and accurate data mapping
techniques that can be used to identify potential
(automatic) annotation errors. This context further
highlights the value of the zero-shot data maps pro-
posed in this study.

5 Related Work

Recently, several lines of research have presented
findings related to the concept of Dataset Cartog-
raphy. Sanh et al. (2020) demonstrated how weak
models, as opposed to strong ones, recreate sim-
ilar data maps by leveraging annotation artifacts
and biases. On the subject of instance difficulty,
Ethayarajh et al. (2022) proposed V-usable infor-
mation, a generalization of Shannon information
(Shannon, 1948), which provides an aggregate mea-
sure of data difficulty in relation to a model; the
pointwise V − Information, an extension of V , has
been shown to correlate strongly with data map
coordinates, and offers the additional benefit of ex-
plaining why an instance can be challenging for a
model. Data maps have been recently applied to a
variety of tasks such as syntactic parsing (Kulmizev
and Nivre, 2023), hate speech detection (Ramponi
and Tonelli, 2022), and visual question answering
(Karamcheti et al., 2021). Furthermore, data maps
have been shown to be an effective data selection
tool for active learning (Zhang and Plank, 2021;
Liu et al., 2022). The idea of using semantic simi-
larity for zero-shot classification can be traced back
to Gabrilovich and Markovitch (2007). Chang et al.
(2008) introduced the concept of dataless classi-

fication by using label descriptions encoded with
shallow features for zero- and few-shot classifica-
tion. Recently, Müller et al. (2022) have shown how
modern approaches using dense bi-encoders can
outperform more resource-intensive cross-encoder
models. For a comprehensive review of automatic
annotation error detection, one can refer to Klie
et al. (2023).

6 Conclusion

In this paper, we have introduced the concept of
Zero-Shot Data Maps, a new method for under-
standing annotated datasets. Our evaluation on
various datasets demonstrates the effectiveness of
Zero-Shot Data Maps in providing a precise visual
representation of labelled datasets.

Our Zero-Shot Data Maps can match the pre-
cision of maps produced with training dynamics,
while providing the added benefit of being available
instantly.

However, training dynamic maps can be drawn
for a broader array of tasks, making zero-shot maps
as a valuable complement,

rather than a direct replacement. Furthermore,
our approach proves to be an effective tool for spot-
ting potential annotation errors: the confidence of
ensembled zero-shot models acts as a reliable indi-
cator for identifying incorrect gold labels.

The quality of zero-shot maps largely depends
on carefully crafted label descriptions and their en-
semble combination. An intriguing direction for
future research lies not only in improving the gen-
eration of these descriptions, potentially through
automated methods, but also in experimenting with
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different zero-shot architectures to approach more
task types than bi-encoders allow. The combination
of our method with active learning and automated
error detection algorithms could pave the way for
more efficient dataset curation and improvement
processes. We believe that our approach to create
data maps can help researchers and practitioners
improve data quality and ultimately build better
models.

Limitations

The main limitation of our work is that zero-shot
data maps from bi-encoders can be compiled effec-
tively only for the same type of tasks that can be
solved by bi-encoder network architectures. While
other, more flexible but resource-hungry, zero-shot
methods can be adapted to build data maps, they
cannot compete in terms of speed. Furthermore,
the success of zero-shot data maps depends on the
quality of label descriptions used in the zero-shot
setup.

As a result, zero-shot data maps can also dis-
play considerable variability across datasets, and
the insights derived from them may not generalize
effectively across different tasks.
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A Appendix

A.1 Model Calibration
The effectiveness of zero-shot maps is contingent
on the proper calibration of the zero-shot model.
In Figure 5, we demonstrate the impact of calibra-
tion, showcasing two maps, one compiled with a
calibrated model and the other without. While both
maps display a bell-shaped curvature, the curve’s
prominence is notably enhanced with calibration.
As seen from Figure 5, the calibration step is crucial
for compiling zero-shot maps that closely resemble
those derived using training dynamics.

For the calibration process, we fit an isotonic
regressor, which is designed to map our model’s
initial predicted logits to new, calibrated values.
The function used in this process is strictly mono-
tone, which means that it retains the original order
of predictions. Consequently, while this calibration
process improves the visual representation of our
dataset by providing more accurate probability es-
timates, it does not affect the data selection part
of our methodology, since the predicted class la-
bels remain unchanged. Therefore, this calibration
process improves the interpretability of our zero-
shot data maps without altering their underlying
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Figure 5: Zero-shot Data Maps for SST2 compiled using sentence-t5-large with calibration (right) and without
(left).

structure. We note that calibration is done exactly
once per encoder and the calibrated model is then
applied to all tasks.

A.2 Analysis of Variability in Label
Descriptions

To evaluate the stability of our maps concerning
different sets of label descriptions, we introduce
dropout maps. Starting with the complete coordi-
nate matrix, these maps are created by randomly
omitting pairs of label description combinations.
We construct dropout maps with varying numbers
of retained label description combinations (3, 5,
8, 13, and 21), omitting the rest. A Pearson cor-
relation analysis is then conducted between the
variability vectors of the dropout and full maps.
Our findings in Table 6 indicate strong robustness,
even when only 3 combinations are retained. This
confirms that the observed variability in the maps
largely stems from label descriptions rather than
input instances.

n AG_NEWS COLA IMDB SST2

3 0.60 0.58 0.58 0.65
5 0.72 0.70 0.65 0.76
7 0.79 0.79 0.81 0.82
10 0.86 0.86 0.84 0.88
15 0.90 0.89 0.87 0.92
20 0.93 0.93 0.92 0.93

Table 6: Pearson correlation coefficients between origi-
nal full map and dropout maps with varying number of
ensemble members.

A.3 Item-Level Metrics Comparison in
Zero-Shot and Training Models

AG_NEWS COLA IMDB SST2

confidence 61.48 34.34 28.17 77.47
correctness 47.34 42.3 32.95 81.93
variability 27.82 22.8 31.88 36.34

Table 7: Percentage of items categorized into the same
bin (high, medium, low) for both training dynamics and
zero-shot maps across four datasets. For example, in the
SST2 dataset, 77.47% of the items were assigned to the
same confidence bin by both methods.

To assess the overlap between training dynamics
(TD) and zero-shot (ZS) maps in terms of item cat-
egorization, we binned the coordinates into three
buckets: high, medium, and low. We then com-
pared the percentage of instances that fell into the
same bin in both methods. The results in Table 7 re-
veal a strong alignment between the TD and ZS ap-
proaches. We note that we have conducted here the
strictest possible test, measuring the exact matches
between the two methods across the whole corpus
for each dataset.

A.4 Implementation Details
We use the Sentence Transformers (Reimers and
Gurevych, 2019) and HuggingFace Transformers
(Wolf et al., 2020) libraries for using the Trans-
former models: specifically, for all our experiments
we use sentence-t5-large (Ni et al., 2022), a 335
million parameter sentence-encoder based on T5
(Raffel et al., 2020). Based on the MTEB bench-
mark (Muennighoff et al., 2023), sentence-t5-large
is the best-performing model that we can run on
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our GPU and the third best model overall for classi-
fication tasks. The AI2-Tango toolkit (Groeneveld
et al., 2023) handles our experiment management.
We employ the AdamW optimizer in training dy-
namics experiments and scikit-learn (Pedregosa
et al., 2011) for the experiments with frozen em-
beddings. All the datasets for the experiments are
sourced and loaded using the Huggingface Datasets
library (Lhoest et al., 2021). All computations are
performed on a single RTX A6000 GPU, with a
consistent batch size of 8 across all datasets, which
is the maximum batch size that can be used to
finetune sentence-t5-large on our GPU before en-
countering out-of-memory errors.

A.5 Dropping Ensemble Members
In the original work involving training dynamics,
an epoch burn-out scheme is employed to discard
the initial steps until the training process stabilizes:
by discarding the predictions from the initial train-
ing epochs, this scheme prevents premature influ-
ence from the initial, unstable steps of the training.

In our approach to creating zero-shot data maps,
we replicate this burn-out effect by dropping en-
semble members. This process mirrors the ef-
fect of epoch burn-in from the training dynamics
method. Specifically, we selectively discard predic-
tions from some ensemble members.

This method ensures that our metrics of confi-
dence and variability are based on more reliable
model predictions, thereby enhancing the robust-
ness and reliability of the zero-shot data maps.

A.6 Label Descriptions
In Table 8, we present an overview of the datasets,
labels, corresponding descriptions, and the associ-
ated patterns used in our experiments. The label
descriptions and patterns were manually crafted,
drawing inspiration from previous studies on zero-
and few-shot learning (Schick and Schütze, 2021;
Müller et al., 2022). . Specifically, we used a tem-
plate with class names (e.g., ’Category: business,
science, sports’) to match a realistic scenario where
here users would prefer to minimize time spent on
crafting descriptions. The label descriptions used
in our experiments were generated combinatorially
based on the data presented in Table 8.
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Dataset Label Descriptions Patterns

Ag News

Business business, markets, money

It is {} news., {}, Category: {}., Section {}.
Sci/Tech science and technology, technology, science
Sports sports, fitness, races
World world, global, international

Cola
acceptable acceptable, good, right, perfect {}, It is {}., This sentence is grammatically {}.

This sentence is {}., The grammaticality of this sentence is {}.unacceptable unacceptable, not acceptable, wrong, incorrect

IMDB
neg negative, bad, terrible, poor

{}, This feels {}., Just {}!, All in all, the movie was {}.
pos positive, great, awesome, fantastic

SST2
negative negative, bad, terrible, poor

{}, This feels {}., Just {}!, All in all, the movie was {}.
positive positive, great, awesome, fantastic

yelp polarity
1 negative, bad, terrible, poor

{}, This feels {}., Just {}!, All in all, the restaurant was {}.
2 positive, great, awesome, fantastic

Table 8: Overview of the labels, label descriptions and patterns used for each dataset. The placeholder {} in the
patterns host the label descriptions. In the Label column we include the class names as they are encoded in the
datasets accessed through the Huggingface Datasets (Lhoest et al., 2021) library.
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