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Abstract

With the development of multilingual pre-
trained language models (mPLMs), zero-shot
cross-lingual transfer shows great potential.
To further improve the performance of cross-
lingual transfer, many studies have explored
representation misalignment caused by mor-
phological differences but neglected the mis-
alignment caused by the anisotropic distribu-
tion of contextual representations. In this
work, we propose enhanced isotropy and con-
strained code-switching for zero-shot cross-
lingual transfer to alleviate the problem of mis-
alignment caused by the anisotropic represen-
tations and maintain syntactic structural knowl-
edge. Extensive experiments on three zero-
shot cross-lingual transfer tasks demonstrate
that our method gains significant improvements
over strong mPLM backbones and further im-
proves the state-of-the-art methods.1

1 Introduction

Cross-lingual transfer aims to utilize the rich se-
mantics and syntactic knowledge in high-resource
source languages to improve the performance of
low-resource target languages. Benefiting from
the “scaling effect”, language models pre-trained
on hundreds of languages have dominated cross-
lingual transfer for years owing to their superior
performance and generalization capability, which
can learn a unified representation space through
self-supervised learning (Devlin et al., 2019; Con-
neau and Lample, 2019; Conneau et al., 2020a;
Xue et al., 2020; Chi et al., 2021, 2022; Scao et al.,
2022a). These powerful multilingual pre-trained
language models (mPLMs) not merely improve
task performance with full supervised learning but
even the zero-shot cross-lingual transfer (Wu and
Dredze, 2019a; Hsu et al., 2019; Li et al., 2021;
Sherborne and Lapata, 2022).

∗Corresponding author.
1Our code is available at https://github.com/

Dereck0602/IsoZCL.
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Figure 1: An illustration of anisotropic and ideally isotropic
multilingual representations.

The core of cross-lingual transfer is to align rep-
resentations among different languages (Lample
et al., 2018b; Cao et al., 2020; Pan et al., 2021; Dou
and Neubig, 2021). Existing mPLMs can align the
representation well for myriads of the cross-lingual
transfer scenarios but fail to handle these language
pairs differed significantly under the zero-shot set-
ting, especially for languages with distinct morpho-
logical features (Ahmad et al., 2019a,b). Therefore,
many works have explored the key factors affecting
the alignment of language representations (Pires
et al., 2019; Karthikeyan et al., 2020; Libovický
et al., 2019; de Vries et al., 2022) and proposed
solutions accordingly (Cao et al., 2020; Chi et al.,
2021; Pan et al., 2021; Zhao et al., 2021; Huang
et al., 2021b). Existing methods can be roughly
divided into three categories: 1) using parallel cor-
pus (Chi et al., 2021; Wei et al., 2021; Feng et al.,
2022) or bilingual dictionary (Cao et al., 2020; Qin
et al., 2021) to better align contextualized word
embedding spaces; 2) utilizing morphological or
syntactic features (Ahmad et al., 2021; Yu et al.,
2021; Zhao et al., 2021) to eliminate misalignment;
3) leveraging robust training methods (Huang et al.,
2021b) to tolerate misaligned representations.

However, additional parallel corpora are diffi-
cult to obtain for many extremely low-resource
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languages, while annotating morphological or syn-
tactic features requires considerable human effort.
Though the robust training methods are free from
additional supervision signals, they ignore the mis-
alignment caused by the distributional properties
of representation. As found by Rajaee and Pilehvar
(2022), the representation distribution of mPLMs is
highly anisotropic, where most words are squeezed
into a narrow region in the representation space.
As shown in Figure 1a, even semantically irrele-
vant representations can appear in the neighbor-
hood. Thus, there are reasons to believe that highly
anisotropic representations hurt cross-lingual align-
ment in the representation space.

To alleviate the aforementioned obstacles, we
propose an isotropy enhancement strategy that can
improve the representation alignment at the seman-
tic level while maintaining the essential syntac-
tic knowledge, which is indispensable for cross-
lingual transfer (Ahmad et al., 2021). As an ex-
cessively isotropic representation space is risky to
pull apart representations that should be aligned,
we also introduce a constrained code-switching
method to better utilize the readily available bilin-
gual dictionaries. To verify the effectiveness of our
proposed method, we launch experiments on three
zero-shot cross-lingual tasks, i.e., paraphrase identi-
fication, natural language inference, and sentiment
classification. Experimental results demonstrate
that our proposed method significantly improves
the performance of zero-shot cross-lingual trans-
fer upon strong mPLMs. Further analytical explo-
ration confirms that our method can alleviate the
anisotropy problem of pre-trained representations
while preserving syntactic knowledge implicit in
the representations as much as possible.

2 Preliminary

In this section, we briefly introduce the anisotropic
problem of representation learning and the risk of
undermining knowledge of syntactic structures in
existing methods of mitigating anisotropy.

2.1 Anisotropic Problem of Contextual
Representations

Anisotropy is a geometrical property of contextual
representations. As defined by Li et al. (2020),
anisotropic representations occupy a narrow cone
in the vector space. Conversely, isotropic repre-
sentations are uniformly dispersed in the vector
space. It is widely believed that anisotropy lim-

its the expressiveness of contextual representations
(Gao et al., 2019; Wang et al., 2020; Li et al., 2020;
Su et al., 2021; Rajaee and Pilehvar, 2021a). Next,
we will introduce two different metrics for measur-
ing isotropy quantitatively.
Cosine Similarity. Since the word vectors are
squeezed together, the external manifestation of
anisotropic representations is that for any two
words, the cosine similarity is large. If represen-
tations are isotropic, cosine similarities of random
representations are close to zero (Gao et al., 2019;
Ethayarajh, 2019). The metric can be formulated
as follows:

ICos(W) =
1

N

N∑

i,j,xi ̸=xj

Cos (xi, xj) (1)

where xi, xj are randomly sampled representations.
N is the number of sampled representation pairs.
ICos(W) closer to 0 indicates that the representa-
tions are more isotropic.
Principal Components. Following Mu and
Viswanath (2019), we use a partition function
(Arora et al., 2016) to measure the isotropy:

F (u) =

N∑

i=1

exp
(
uTwi

)
(2)

where wi ∈ W is a contextual word embedding,
N is the number of embeddings in the represen-
tation space, u ∈ U is the eigenvector of the em-
bedding matrix W TW . According to Arora et al.
(2016), if representations are isotropic, F (u) could
be approximated using a constant. Thus, Mu and
Viswanath (2019) propose a metric based on prin-
cipal components:

IPC(W) ≈ minu∈U F (u)

maxu∈U F (u)
(3)

IPC(W) closer to 1 indicates representations are
more isotropic.

2.2 Syntactic Knowledge Probing of Existing
Isotropy Enhancement Methods

Currently, research on enhancing the isotropy of
contextual representations focuses on feature-based
learning or training from scratch. For fine-tuning
the pre-trained language model, although the fine-
tuned model still has severe anisotropy, directly
applying existing methods to enhance isotropy can-
not effectively improve the performance and may
even degrade it (Rajaee and Pilehvar, 2021b; Zhang
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Figure 2: Depprobe results on the vanilla fine-tuned model
and three isotropic enhancement methods.

et al., 2022). Because the fine-tuning has changed
the distribution of linguistic and task-specific repre-
sentations in the pre-trained language model, exist-
ing methods may destroy task-essential knowledge
(Rajaee and Pilehvar, 2021b).

We analyze that most methods are applied to
semantic-level tasks, such as sentence representa-
tion and semantic textual similarity. Thus they ne-
glect to consider the structural syntactic knowledge
implicit in the representation. However, structured
syntactic knowledge implicit in representations is
essential for many natural language understanding
tasks, especially for cross-lingual transfer (Ahmad
et al., 2021). To verify our suspicions, we use the re-
cently proposed Depprobe (Müller-Eberstein et al.,
2022), a linear probe that can extract labeled and
directed dependency parse trees from contextual
representations, to measure the structural knowl-
edge of fine-tuned representations.

In experiments, we train the Depprobe on the En-
glish treebank and evaluate on six target languages.
We report two representative metrics in dependency
parsing, labeled attachment scores (LAS) and unla-
beled attachment scores (UAS), which measure the
accuracy of predicted dependency graphs. All these
datasets are from Universal Dependencies v2.82.
The mPLM used has been fine-tuned on the XNLI
dataset. We compare the impact of three repre-
sentative isotropic enhancement methods (whiten-
ing transformation (Su et al., 2021), cluster-based
methods (Rajaee and Pilehvar, 2021a), and CosReg
(Gao et al., 2019)) on structural knowledge. Fig-
ure 2 shows the LAS and UAS of six languages
on XLM-R. We can observe that all these methods
lead to a sharp drop in the results of the syntactic
probe experiments. Therefore, it is necessary to de-
vise an isotropic enhanced method for pre-trained
models while preserving knowledge at semantic

2http://hdl.handle.net/11234/1-3687
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Figure 3: Overview of our proposed method which
includes isotropy enhanced fine-tune and constrained
code-switching.

and structural levels.

3 Method

In this section, we introduce our method for
zero-shot cross-lingual transfer, which comprises
of isotropy enhancement and constrained code-
switching. Figure 3 shows the overview of our
proposed method. Before elaborating our method
in detail, we first present some necessary notations.
Given the training dataset D = {(xi, yi)}ni=1, the
loss of fine-tuning can be written by:

Lft
D =

∑

(xi,yi)∈D
l(f(xi; θ), yi) (4)

where xi is a token sequence (e.g., a sentence), and
yi is its label. f(·; θ) is the model to be optimized,
and l(·; ·) is the loss function to learn a task-specific
model on the source language. For classification
tasks, l(·; ·) is usually the cross-entropy loss. We
denote the contextual representation of xi as hi ∈
RL×d, where L is the length of the sample and d is
the dimension of the mPLM.

3.1 Isotropy Enhancement

To enhance the isotropy of the token representa-
tion space of the multilingual pre-trained language
model and meanwhile maintain semantic and syn-
tactic features as much as possible, we introduce
an isotropy-aware loss as a regular term to force
the representation distribution H to be close to an
isotropic distribution. For feasibility, we suppose
H obeys a normal distribution N (µ,Σ), which is
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a reasonable assumption and has also acquiesced
in other methods such as whitening transformation.
As we all know, the zero-mean isotropic normal
distribution N (0, σ2I) is a perfect isotropic distri-
bution, thus we can use the Wasserstein distance
between the two normal distributions to measure
the isotropy degree of H (Salmona et al., 2021):

W = ∥µ∥22 + Tr(Σ+ σ2I − 2σ2Σ
1
2 ) (5)

When W is used as a regular term, to ensure the sta-
bility of the optimization process, the value of W
should be on the same order of magnitude as Lft

D
by setting the σ to a small value. Therefore, σ is a
very sensitive hyperparameter. To avoid tedious hy-
perparameter search, we calculate the Wasserstein
distance between the normalized representation dis-
tribution and N

(
0, 1dI

)
, which has been proved to

be equivalent to (5) by Fang et al. (2023):

W = ∥µ∥22 + 1 + Tr(Σ)− 2√
d
Tr(Σ

1
2 ) (6)

For a given batch of samples, the mean and covari-
ance matrix of representations are as follows:

µ =
1

N

N∑

i=1

hi

∥hi∥2
(7)

Σ =
1

N

N∑

i=1

(
hi

∥hi∥2
− µ

)T (
hi

∥hi∥2
− µ

)
(8)

where ∥ · ∥2 denotes L2 norm, N is the number
of token representations in the given batch. The
proposed isotropy-aware loss can be formulated as:

Liso = λ1W (9)

where λ1 is a hyperparameter which controls the
degree of isotropy.

3.2 Constrained Code-switching
Isotropy enhancement provides a suitable represen-
tation space property for multilingual alignment,
making unrelated representations not misaligned
due to representation space degradation. How-
ever, an excessively isotropic representation space
is risky to pull apart representations that should
be aligned. Thus, we align representations with
similar semantics by constraining code-switch data.
Code-switching means that more than one language
alternates in a sentence, which is widely considered
to provide anchor points for aligning multilingual

representations (Conneau et al., 2020b; Yang et al.,
2020; Qin et al., 2021). We randomly select words
in the source language text, query bilingual dic-
tionaries, and replace them with target language
words to obtain code-switching data. More details
can be found in §4.2.
Consistency Constraints. We denote the origi-
nal and corresponding code-switching data as x =
{w1, w2, . . . , wL} and x′ = {w1, w

′
2, . . . , wL},

where w′
i means the replaced source language token

by target languages. For a sample xi ∈ D and its
code-switching data x′i ∈ D′, the mPLM will pro-
duce two different representations hi,h

′
i ∈ RL×d.

To further promote the alignment among represen-
tations with similar semantic in different languages,
we utilize the following consistency constraints be-
tween the original and its code-switching data:

Lreg = λ2

∑

xi∈D
x′
i
∈D′

Cos(hi,hi
′) (10)

where Cos(·, ·) is the cosine similarity between two
representations and λ2 is a hyper-parameter.

3.3 Training

As mentioned above, the whole training process
is divided into two stages. Our method first im-
proves the spatial distribution of multilingual rep-
resentations via isotropic enhancement, and then
promotes representation alignment via constrained
code-switching. For the first stage, the loss func-
tion takes the form of:

L1 = Lft
D + Liso (11)

where Lft
D is to learn a task-specific model on the

source language. Liso is to enhance the isotropy
of contextual representations during fine-tuning by
narrowing the difference between the representa-
tion space and the standard normal distribution. In
the second stage, the loss function is:

L2 =
1

2
(Lft

D + Lft
D′) + Lreg (12)

where Lft
D ,Lft

D′ are the fine-tuning loss on orig-
inal data and code-switching, respectively, Lreg

is for aligning constraints between the representa-
tions of code-switching samples and the original
data. We split training into two stages for two rea-
sons. First, these losses may interfere with each
other because isotropy enhancement widens the
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distance between representations so that representa-
tions are distributed more evenly, while constrained
code-switching makes multilingual representations
with the same semantics close. When optimizing,
achieving a delicate balance is challenging. Also,
simultaneous optimizations add more cost (Eq.5
has more computational cost than Eq.10).

4 Experiments

4.1 Datasets

We conduct our experiments on three different
cross-lingual tasks, including paraphrase identifi-
cation (PAWS-X; Yang et al., 2019), natural lan-
guage inference (XNLI; Conneau et al., 2018) and
sentiment classification (MARC3; Keung et al.,
2020). For MARC, following Keung et al.(2020),
we splice the “review title” and “product category”
after the review. Due to the limitations of com-
puting resources, we sampled 25% of the original
training set as training set. The data characteristics
are shown in Appendix A.

4.2 Experimental Setup

Our experiments are based on two mPLMs,
mBERT (Devlin et al., 2019) and XLM-R-large
(Conneau et al., 2020a). On each task, we fine-
tune the mPLM for five epochs with batch size 32
on the English training set, select the best model
on the English development set, and then evalu-
ate the cross-lingual performance on test sets of
all target languages. We run 2 epochs in the first
stage and 3 epochs in the second stage for PAWS-
X and MARC. For XNLI, the epochs of the two
stages is 1 and 4. For PAWS-X and XNLI, we tune
the learning rate in {1e-6, 2e-6, 5e-6, 1e-5, 2e-5};
for MARC, learning rate in {8e-7, 1e-6, 2e-6, 1e-
5, 2e-5}. We tune coefficient λ1 and λ2 in {0.5,
1.0}. We report details of all hyper-parameters in
Appendix B. When constructing code-switching
data, we set the probability that each token in a
sample is replaced with a target language token to
0.5. The bilingual dictionaries we used are from
MUSE (Lample et al., 2018a)4. We report the av-
erage score on the test set of 5 runs with different
seeds. We conduct the experiments on one NVIDIA
GTX3090 GPU.

3https://github.com/awslabs/open-data-
docs/blob/main/docs/amazon-reviews-ml/license.txt

4https://github.com/facebookresearch/MUSE

4.3 Baselines

We compare our methods with the following
isotropy enhancement methods and strong zero-
shot cross-lingual transfer baselines:
Fine-tune. We fine-tune all the parameters of the
mPLM with the English training set and then eval-
uate on test sets of all target languages.
BN. Zhao et al. (2021) propose a vector space
normalization method. They apply batch normal-
ization to the last layer representations of mPLM
to induce language-agnostic representations and
increase the discriminativeness of embeddings.
IsoBN. Zhou et al. (2021) explore the isotropy
of the pre-trained [CLS] embeddings and propose
isotropic batch normalization (IsoBN). They as-
sume that the absolute correlation matrix of embed-
dings is block-diagonal.
CosReg. The high cosine similarity between word
representations is an extrinsic indication of repre-
sentation degeneracy. Thus, Gao et al. (2019) add
a CosReg loss to minimize the cosine similarities
between any two contextual token embeddings.
NoisyTune. Wu et al. (2022) inject noise into
the parameters of the pre-trained model when fine-
tuning, preventing the pre-trained model from over-
fitting on the source language.
DA. Huang et al. (2021b) improve zero-shot cross-
lingual transfer through robust training based on
data augmentation. They use a predefined synonym
set to generate augmentation examples. For a fair
comparison with our method, we set the number of
augmented examples to 2 for all datasets.

4.4 Main Results

Table 1 shows zero-shot cross-lingual results on
three datasets using two mPLMs. Following He
et al. (2021), to better compare cross-lingual trans-
fer to languages of different language families, we
show the average results for three cases, including
all languages (All), target languages other than En-
glish (Target), and non-Indo-European languages
(Distant). We find that existing methods for en-
hancing isotropy in the fine-tuning stage do not
significantly improve cross-lingual transfer perfor-
mance. BN, IsoBN, and CosReg even perform
worse than the vanilla fine-tuning on some datasets.
In comparison, our method has consistent and sig-
nificant performance gains on all these datasets and
mPLMs. Especially for non-Indo-European lan-
guages, our method has better transfer ability. Then,
our method achieves comparable or even better per-
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Models PAWS-X XNLI MARC Avg.
All Target Distant All Target Distant All Target Distant

mBERT 83.51 81.77 76.22 66.34 65.20 61.43 45.80 42.68 38.18 65.22
mBERT+BN 82.99 81.14 75.40 66.39 65.23 61.40 44.43 40.98 36.39 64.60
mBERT+IsoBN 83.34 81.57 75.96 66.60 65.47 61.88 45.38 42.13 37.56 65.11
mBERT+CosReg 83.18 81.38 75.42 66.28 65.11 61.55 46.72 43.51 38.63 65.39
mBERT+NoisyTune 83.86 82.22 76.83 66.44 65.27 61.54 46.34 43.32 38.86 65.55
mBERT+DA 84.86 83.40 78.79 66.32 65.23 61.52 46.98 44.04 38.93 66.05
mBERT+ours 85.29 83.81 78.76 67.27 66.17 62.96 47.90 44.83 39.52 66.79
mBERT+DA+ours 85.50 84.19 79.67 67.47 66.51 63.19 48.21 45.34 39.73 67.06

XLM-R 87.01 85.63 81.09 79.35 78.71 76.94 58.88 57.52 53.99 75.08
XLM-R+BN 87.45 86.11 81.49 79.46 78.81 77.10 59.29 57.97 54.57 75.40
XLM-R+IsoBN 87.60 86.30 81.84 79.66 79.03 77.36 59.21 57.90 54.59 75.49
XLM-R+CosReg 87.73 86.42 81.66 79.27 78.63 76.90 59.46 58.11 54.55 75.49
XLM-R+NoisyTune 87.53 86.22 81.56 79.73 79.10 77.43 58.99 57.71 54.31 75.42
XLM-R+DA 88.86 87.74 83.89 81.10 80.60 79.10 59.48 58.05 54.28 76.48
XLM-R+ours 89.03 87.93 83.86 80.90 80.31 78.71 59.71 58.34 54.54 76.50
XLM-R+DA+ours 89.48 88.37 84.51 81.40 80.90 79.21 59.89 58.56 54.92 76.92

Table 1: Overall comparison of zero-shot cross-lingual performance between our proposed model and baseline
models. All is the average result of all languages. Target is the average result of target languages other than English.
Distant is the average result of non-Indo-European languages. Avg. is the average result of three datasets.

Models En De Es Fr Ja Ko Zh Avg.

XLM-R 95.57 89.77 90.19 90.57 80.30 79.80 83.17 87.01
XLM-R+ours 95.64 91.37 91.98 92.61 83.19 83.15 85.25 89.03
only isotropy 95.86 91.25 91.64 92.23 82.42 81.52 84.31 88.46
only constrained 95.43 90.90 91.05 91.25 82.38 82.50 84.13 88.23
one stage 95.78 91.00 91.46 92.29 82.06 81.50 85.41 88.50

Table 2: Ablation results on PAWS-X based on XLM-R. only isotropy means only using isotropy enhancement,
only constrained means only using constrained code-swtching, and one stage means using isotropy enhancement
and constrained code-switching together.

formance than the state-of-art model. Combining
our method with DA can lead to a new state-of-art
model. In conclusion, all the results confirm the
effectiveness of our method for zero-shot cross-
language transfer tasks. The results for each target
language are detailed in the Appendix D.

5 Analysis and Discussion

5.1 Ablation Study
We conduct ablation experiments to analyze the
contributions of isotropy enhancement, constrained
code-switching and two-stage training. From the
results in Table 2, we can see that both isotropy
enhancement and constrained code-switching sig-
nificantly impact the cross-lingual transfer perfor-
mance. Using only isotropy enhancement consis-
tently increases the performance of all languages
in the test set, suggesting that anisotropic represen-

tations hurt both high-resource and low-resource
languages. However, using only constrained code-
switching sacrifices a little source language perfor-
mance. We think this is because code-switching
inevitably introduces some noisy samples. After
removing the constrained code-switching, the per-
formance of Japanese, Korean and Chinese, which
belongs to a different language family than the
source language, is severely degraded. It indicates
that for target languages that are different from the
source language, constrained code-switching can
play a great role. We also investigate the necessity
of two-stage training, and the experimental results
provide a positive affirmation. We can observe
that although the one-stage training has a signif-
icant performance improvement compared to the
baseline, it still lags behind the two-stage training.
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Figure 4: CKA scores on the XNLI test set.

5.2 Cross-lingual Representation Discrepancy

Cross-lingual representation discrepancy quantita-
tively measures the degree of divergence between
source and target language representations in the
same embedding space. Yang et al. (2022) demon-
strate that the cross-lingual transfer performance
is highly related to the cross-lingual representation
discrepancy. The smaller cross-lingual representa-
tion discrepancy correlates to better cross-lingual
transfer performance. Following Conneau et al.
(2020b), we utilize the linear centered kernel align-
ment (CKA) (Kornblith et al., 2019) score to indi-
cate the cross-lingual representation discrepancy:

CKA(X,Y ) =

∥∥Y ⊤X
∥∥2
F

∥X⊤X∥2F ∥Y ⊤Y ∥2F
(13)

where X and Y are features of parallel sequences
from the source and target languages. A higher
CKA score means a smaller cross-lingual represen-
tation discrepancy. We use the cross-lingual repre-
sentation discrepancy as a quantitative measure of
sentence-level representation alignment. We con-
duct vanilla fine-tuning and our method on XNLI
and evaluate CKA scores on test sets. Figure 4
shows CKA scores for six language pairs. We can
observe that our method achieves a higher CKA
score. Thus, we claim that our method helps induce
better aligned multilingual representations.

5.3 Isotropy Measuring

To verify whether our proposed isotropy enhance-
ment method can induce an isotropic representation
space, we measure the isotropy of contextual rep-
resentations on the test sets of XNLI using two
metrics introduced in §2.1. As shown in Figure 5,
whether it is ICos or IPC , our proposed method can
obtain more isotropic contextual representations on
mBERT and XLM-R model than the vanilla fine-
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Figure 5: The isotropy metric on XNLI.

tuning and baselines. We note that although Cos-
Reg can obtain a near-perfect ICos by constraining
the cosine similarity between word representations,
it exhibits a high degree of anisotropy under the
IPC . Rajaee and Pilehvar (2021b) find cosine sim-
ilarity might fail in high-dimensional space. Al-
though the cosine similarity is close to zero, it’s
only isotropic in some dimensions and remains
highly anisotropic from a global perspective. There-
fore, we consider that using the CosReg method
during fine-tuning does not inherently correct the
anisotropic distribution of the representation.

5.4 Visualization

To demonstrate the effectiveness of our method
on the representation distribution, we utilize PCA
to reduce the contextual representations of XLM-
R on PAWS-X to two dimensions5. Specifically,
we randomly sample 10,000 token representations
from the source language. As presented in Figure 6,
each data point in the plots represents a contextual
representation. We can observe from the left plot
that after vanilla fine-tuning, most representations
are concentrated in two regions of space, which
reflects the highly anisotropic distribution of these
representations. In contrast, the representations on
the right plot are more evenly distributed through-
out the space. The PCA visualization demonstrates
that our isotropy enhancement method can produce
a more uniformly distributed representation.

5.5 Syntax Probing

Through the discussion in §5.2, our method nar-
rows the representation discrepancy between multi-

5https://projector.tensorflow.org/
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(a) vanilla fine-tune (b) our isotropy enhancement method

Figure 6: PCA visualization of representations in vanilla
fine-tuned XML-R and fine-tuned by our method.

Model Ar En Hi Ru Tr Zh

LAS
XLM-R 17.4 48.5 21.0 32.5 24.4 4.7
+BN 4.5 19.2 5.7 7.4 9.4 4.1
+IsoBN 4.8 18.1 6.4 7.7 10.7 3.8
+ours 23.6 54.6 21.7 34.6 26.9 5.8

UAS
XLM-R 32.4 55.7 37.5 44.3 41.2 17.7
+BN 15.8 32.1 19.3 19.0 24.3 14.3
+IsoBN 15.7 30.5 19.5 18.9 25.5 12.9
+ours 37.2 61.0 39.5 47.0 43.8 18.8

Table 3: Depprobe results on vanilla fine-tuned models
and our proposed isotropy enhencement methods.

ple languages at the semantic level. As we saw
in §2.2, many existing isotropic transformation
methods do not preserve knowledge at the struc-
tural level, and we also conduct dependency syntax
probe experiments on our proposed method with
the same setting. Table 3 shows the LAS and UAS
on XLM-R. Our proposed method can exceed the
performance of the vanilla fine-tuning method on
both metrics in all languages. In summary, the ex-
perimental results show that our proposed isotropy
enhancement method enhances the isotropy of the
representation distribution while maintaining the
structural knowledge of the original representation.
This may be because the distribution transforma-
tion by optimizing the Wasserstein distance can
preserve some geometric characteristics of the orig-
inal distribution (Panaretos and Zemel, 2019).

6 Related Work

Anisotropy of Contextual Representation.
Nowadays, contextual representation (Peters
et al., 2018; Devlin et al., 2019) often performs
better than static representation in many NLP
tasks. However, several studies (Gao et al., 2019;
Ethayarajh, 2019; Cai et al., 2021) find contextual
representations exhibit severe anisotropy in
geometric properties. Their experiments show that

representations with high anisotropy negatively
affect downstream tasks. Furthermore, Rajaee and
Pilehvar (2022) find multilingual pre-trained lan-
guage models have a higher degree of anisotropy
than the corresponding monolingual ones.

Currently, a number of methods have been pro-
posed to mitigate the degradation of contextual
representations. Gao et al. (2019), Zhang et al.
(2020) and Wang et al. (2020) tackle this problem
by adding additional loss function constraints in the
pre-training phase. In addition, there has been some
work to enhance isotropy through post-processing
methods. Li et al. (2020) utilize flow-based gen-
erative model to map contextual representations
into isotropy standard normal distribution. Su et al.
(2021) and Huang et al. (2021a) achieve the same
effect by the whitening transformation. Rajaee
and Pilehvar (2021a) propose a local cluster-based
method. However, Rajaee and Pilehvar (2021b)
find that though fine-tuning pre-trained language
models can achieve a considerable performance
boost, the representation space of fine-tuned mod-
els is still highly anisotropic. Unfortunately, many
existing methods for adjusting the fine-tuned rep-
resentation space for isotropy will hurt its perfor-
mance. Our study finds that existing methods de-
stroy the syntactic knowledge implied by original
representations when applied to fine-tuning. In con-
trast, our proposed isotropy enhancement method
can preserve as much important syntactic knowl-
edge as possible in the fine-tuning stage.

Zero-shot Cross-lingual Transfer. Owing to the
significant progress in multilingual pre-trained lan-
guage models (mPLMs) (Devlin et al., 2019; Con-
neau and Lample, 2019; Conneau et al., 2020a;
Xue et al., 2021; Chi et al., 2021, 2022; Scao et al.,
2022b), zero-shot cross-lingual transfer achieves
surprising performance in various NLP tasks (Hsu
et al., 2019; Li et al., 2021; Sherborne and Lapata,
2022; Zheng et al., 2021).

However, to date, researchers have not been able
to figure out what factors influence the ability of
zero-shot cross-lingual transfer. Wu and Dredze
(2019b) observe the sub-word overlap between the
source and target languages has positive effects
on the zero-shot performance. In contrast, some
researchers (Pires et al., 2019; Karthikeyan et al.,
2020) show no direct relationship between lexical
overlap and cross-lingual transfer effects. de Vries
et al. (2022) confirm the impact of some typolog-
ical features, such as lexical-phonetic distances,
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word order differences, and writing systems. Mean-
while, Chai et al. (2022) further find that word
composition plays a more important role in cross-
lingual transfer than other language properties. Ad-
ditionally, some studies have focused on the rep-
resentation level and proposed many methods to
align representations and induce language-agnostic
representations (Cao et al., 2020; Libovický et al.,
2019; Zhao et al., 2021; Tanti et al., 2021). Huang
et al. (2021b) considered the difference in repre-
sentation between the source and target languages
as noise in the contextual embedding and utilized
robust training methods to tolerate noise.

7 Conclusion

In this paper, we propose a simple but effec-
tive method to improve the performance of zero-
shot cross-lingual transfer. By introducing the
isotropy enhanced fine-tuning and constrained
code-switching, our proposed method can induce
moderate isotropic representation and align mul-
tilingual representation. Experimental results on
three zero-shot cross-lingual transfer tasks demon-
strate the performance superiority of our method
over existing methods. Extensive analytical ex-
periments further confirm the effectiveness of our
method for enhancing isotropic representations and
reducing cross-lingual representation discrepancy.

Limitations

Even though our work improves cross-lingual per-
formance effectively, some limitations are still
listed below:

• Our method is based on a widely accepted
assumption: multilingual pre-trained language
models can map the semantics of different lan-
guages to the same representation space, and rep-
resentation alignment significantly affects cross-
lingual generalization ability. However, a pre-
trained model cannot cover all languages world-
wide. For languages not seen in the pre-training
stage, they may not be in the same representation
space as the source language, and our method
may have little effect.

• We conduct experiments on two strong masked
language models. However, we have not success-
fully applied our method to the most promising
generative pre-training models, such as BLOOM,
and we will continue to explore in the future.

• Compared with the original fine-tuning, our
method increases the training phase’s time cost,

especially since calculating Wasserstein distance
requires more computation. We will explore
more efficient isotropy enhancement methods for
cross-lingual transfer in the future.
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A The characteristics of datasets

Table 4 shows the detailed characteristics of
datasets.

Dataset PAWS-X XNLI MARC

Task Paraphrase NLI Sentiment
Class 2 3 5
|Lang| 7 15 6
Metric Acc. Acc. Acc.
|Train| 49,401 392,702 50,000
|Dev| 2,000 2,490 5,000
|Test| 2,000 5,010 5,000

Table 4: Characteristics of datasets

B Hyper-parameters

Table 5 shows the detail of hyper-parameters.

PAWS-X XNLI MARC

mBERT XLM-R mBERT XLM-R mBERT XLM-R

lr 2e-5 5e-6 1e-5 5e-6 2e-5 2e-6
λ1 0.5 0.5 0.5 1.0 0.5 0.5
λ2 1.0 1.0 1.0 1.0 1.0 1.0

Table 5: Details of hyper-parameters.

C Confidence interval

Table 6 shows the 95% confidence interval of the
vanilla fine-tuning and our method.

PAWS-X XNLI MARC

mBERT 83.51±0.07 66.34±0.48 45.80±2.00
mBERT+ours 85.29±0.29 67.20±0.15 47.90±0.78
mBERT+DA+ours 85.50±0.16 67.47±0.13 48.21±0.93

XLM-R 87.01±0.80 79.35±0.19 58.88±0.18
XLM-R+ours 89.03±0.13 80.90±0.56 59.71±0.13
XLM-R+DA+ours 89.48±0.28 81.40±0.08 59.89±0.12

Table 6: The 95% confidence interval of results.

D Results for each task and language

Table 7-9 show detailed results for each language
in PAWS-X, XNLI and MARC.
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Models en de es fr ja ko zh avg

mBERT 93.97 85.92 88.16 87.85 75.16 74.34 79.17 83.51
mBERT+BN 94.07 85.90 87.69 87.07 75.09 72.77 78.34 82.99
mBERT+IsoBN 93.98 85.76 88.12 87.64 74.97 73.77 79.14 83.34
mBERT+CosReg 93.96 85.75 88.60 87.70 74.28 73.30 78.67 83.18
mBERT+NoisyTune 93.69 86.59 88.22 88.02 76.42 74.23 79.85 83.86
mBERT+DA 93.47 88.3 88.27 88.33 77.90 77.04 80.71 84.86
mBERT+ours 94.16 87.53 89.70 89.35 78.06 77.30 80.91 85.29
mBERT+DA+ours 93.40 87.91 88.90 89.29 79.35 77.87 81.79 85.50

XLM-R 95.57 89.77 90.19 90.57 80.30 79.80 83.17 87.01
XLM-R+BN 95.46 90.38 90.82 91.02 80.63 80.25 83.59 87.45
XLM-R+IsoBN 95.42 90.64 90.86 90.75 81.51 80.66 83.36 87.60
XLM-R+CosReg 95.59 90.79 90.99 91.75 80.95 80.22 83.82 87.73
XLM-R+NoisyTune 95.39 90.58 90.90 91.17 80.80 80.61 83.26 87.53
XLM-R+DA 95.56 91.21 91.51 92.06 82.71 83.70 85.27 88.86
XLM-R+ours 95.64 91.37 91.98 92.61 83.19 83.15 85.25 89.03
XLM-R+DA+ours 96.09 92.00 92.13 92.59 83.66 84.26 85.60 89.48

Table 7: Detailed results in different languages on PAWS-X.

Models en ar bg de el es fr hi

mBERT 82.36 65.21 69.03 71.54 67.30 74.84 74.00 60.09
mBERT+BN 82.61 65.04 68.89 71.53 67.27 74.99 74.44 60.07
mBERT+IsoBN 82.38 64.98 69.25 71.46 67.37 74.55 74.06 60.56
mBERT+CosReg 82.68 64.89 68.36 71.55 67.17 74.48 73.99 59.91
mBERT+NoisyTune 82.73 65.03 68.89 71.72 67.05 74.57 74.07 60.74
mBERT+DA 81.63 64.73 68.48 71.22 66.39 74.77 73.71 60.08
mBERT+ours 82.73 65.47 68.74 72.34 67.67 75.67 74.72 61.62
mBERT+DA+ours 80.97 66.04 68.88 72.24 67.90 75.13 74.40 63.27

XLM-R 88.34 77.71 82.43 82.87 81.41 83.81 82.60 75.74
XLM-R+BN 88.60 77.99 82.42 82.90 81.53 83.92 82.61 75.82
XLM-R+IsoBN 88.52 78.30 82.63 82.90 81.79 84.08 82.75 75.95
XLM-R+CosReg 88.26 77.62 82.21 82.78 81.43 83.58 82.75 75.62
XLM-R+NoisyTune 88.61 78.11 82.97 82.96 81.80 83.96 82.75 76.20
XLM-R+DA 88.13 80.35 84.61 83.28 83.04 84.80 83.82 77.85
XLM-R+ours 89.13 80.33 84.06 83.55 82.84 85.22 83.79 77.90
XLM-R+DA+ours 88.42 81.07 84.83 83.44 83.78 85.10 84.49 79.05

Models ru sw th tr ur vi zh avg

mBERT 69.28 49.42 53.56 61.06 58.10 70.07 69.24 66.34
mBERT+BN 69.50 49.61 52.91 61.51 58.15 70.24 69.09 66.39
mBERT+IsoBN 69.46 49.71 54.25 61.82 58.64 70.82 69.69 66.60
mBERT+CosReg 68.92 50.19 53.36 61.41 57.83 70.27 69.19 66.28
mBERT+NoisyTune 69.45 49.04 54.02 61.00 58.14 70.57 69.58 66.44
mBERT+DA 69.60 48.66 53.89 60.70 59.78 70.58 70.58 66.32
mBERT+ours 69.15 51.35 55.03 63.57 58.68 71.80 70.55 67.27
mBERT+DA+ours 69.26 50.90 54.89 62.96 60.92 72.28 72.06 67.47

XLM-R 79.94 71.38 76.41 78.39 71.49 79.22 78.51 79.35
XLM-R+BN 79.90 71.59 76.71 78.26 71.60 79.35 78.70 79.46
XLM-R+IsoBN 80.20 71.87 76.92 78.67 71.90 79.65 78.77 79.66
XLM-R+CosReg 79.65 71.34 76.45 78.38 71.36 79.28 78.34 79.27
XLM-R+NoisyTune 80.18 72.17 77.20 78.89 71.93 79.34 78.88 79.73
XLM-R+DA 81.70 73.25 79.06 79.91 74.64 81.49 80.57 81.10
XLM-R+ours 81.10 72.92 78.24 79.98 73.70 81.08 79.72 80.90
XLM-R+DA+ours 81.88 72.40 79.42 79.45 75.02 81.77 81.11 81.40

Table 8: Detailed results in different languages on XNLI.
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Models en de es fr ja zh avg

mBERT 61.37 45.39 44.81 46.86 39.15 37.22 45.80
mBERT+BN 61.69 44.52 42.88 44.71 38.63 34.15 44.43
mBERT+IsoBN 61.65 44.85 44.38 46.27 38.11 37.02 45.38
mBERT+CosReg 62.75 47.51 45.91 46.88 39.79 37.48 46.72
mBERT+NoisyTune 61.44 46.60 45.23 47.06 39.57 38.15 46.34
mBERT+DA 61.69 48.40 46.70 47.22 39.26 38.61 46.98
mBERT+ours 63.25 48.99 47.94 48.18 39.68 39.36 47.90
mBERT+DA+ours 62.60 50.58 48.14 48.51 39.84 39.63 48.21

XLM-R 65.64 63.62 57.68 58.34 55.13 52.85 58.88
XLM-R+BN 65.90 64.35 57.82 58.54 56.03 53.10 59.29
XLM-R+IsoBN 65.78 63.98 57.58 58.74 55.88 53.30 59.21
XLM-R+CosReg 66.23 64.29 58.22 58.93 55.66 53.43 59.46
XLM-R+NoisyTune 65.41 63.90 57.72 58.28 56.06 52.57 58.99
XLM-R+DA 66.62 64.37 58.54 58.80 54.68 53.87 59.48
XLM-R+ours 66.53 64.54 58.90 59.22 56.28 52.81 59.71
XLM-R+DA+ours 66.54 65.15 58.84 58.97 56.77 53.08 59.89

Table 9: Detailed results in different languages on MARC.
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