
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 8088–8103
December 6-10, 2023 ©2023 Association for Computational Linguistics

Efficient k-NN Search with Cross-Encoders
using Adaptive Multi-Round CUR Decomposition

Nishant Yadav†, Nicholas Monath♢, Manzil Zaheer♢, and Andrew McCallum†
† University of Massachusetts Amherst ♢Google Research

{nishantyadav, mccallum}@cs.umass.edu {nmonath,manzilzaheer}@google.com

Abstract

Cross-encoder models, which jointly encode
and score a query-item pair, are prohibitively
expensive for direct k-nearest neighbor (k-NN)
search. Consequently, k-NN search typically
employs a fast approximate retrieval (e.g. using
BM25 or dual-encoder vectors), followed by
reranking with a cross-encoder; however, the
retrieval approximation often has detrimental
recall regret. This problem is tackled by AN-
NCUR (Yadav et al., 2022), a recent work that
employs a cross-encoder only, making search
efficient using a relatively small number of an-
chor items, and a CUR matrix factorization.
While ANNCUR’s one-time selection of an-
chors tends to approximate the cross-encoder
distances on average, doing so forfeits the ca-
pacity to accurately estimate distances to items
near the query, leading to regret in the crucial
end-task: recall of top-k items. In this paper, we
propose ADACUR, a method that adaptively, it-
eratively, and efficiently minimizes the approxi-
mation error for the practically important top-k
neighbors. It does so by iteratively performing
k-NN search using the anchors available so far,
then adding these retrieved nearest neighbors to
the anchor set for the next round. Empirically,
on multiple datasets, in comparison to previous
traditional and state-of-the-art methods such
as ANNCUR and dual-encoder-based retrieve-
and-rerank, our proposed approach ADACUR
consistently reduces recall error—by up to 70%
on the important k = 1 setting—while using
no more compute than its competitors.

1 Introduction

k-nearest neighbor (k-NN) search is a core sub-
routine of a variety of tasks in NLP such as en-
tity linking (Wu et al., 2020), passage retrieval for
QA (Karpukhin et al., 2020), and more generally,
in retrieval-augmented machine learning models
(Guu et al., 2020; Izacard et al., 2023). For many
of these applications, the state-of-the-art similarity
function is a cross-encoder that directly outputs
a scalar similarity score after jointly encoding a

50 60 70 80
Exact Scores

50

60

70

80

A
pp

ro
xi

m
at

e
Sc

or
es k=1

k=10

k=100

Approximate 1-10

11-100

101-500

501+
Anchor
Items

50 60 70 80
Exact Scores

50

60

70

80

A
pp

ro
xi

m
at

e
Sc

or
es k=1

k=10

k=100

Top-k Items 1-10

11-100

101-500

501+
Anchor
Items

50 55 60 65

Exact Scores

50

55

60

A
pp

ro
xi

m
at

e
S

co
re

s

k=1

k=10
k=100

(a) Uniformly at random

50 55 60 65

Exact Scores

50

55

60

65

A
pp

ro
xi

m
at

e
S

co
re

s k=1

k=10

k=100

(b) Biased sampling

Figure 1: Exact versus approximate cross-encoder
scores (computed using ANNCUR) of all items for a
test-query in domain=YuGiOh. ANNCUR incurs high
approximation error on k-NN items wrt exact scores
when using 50 anchor items sampled uniformly at ran-
dom (Fig. 1a). In contrast, sampling 50 anchor items
with probability proportional to exact cross-encoder
scores (Fig. 1b) significantly improves approximation
of top-scoring items.

given query-item pair. However, computing a sin-
gle query-item score using a cross-encoder requires
a forward pass of the model which can be compu-
tationally expensive as cross-encoders are typically
parameterized using deep neural models such as
transformers (Vaswani et al., 2017). For this rea-
son, k-NN search with a cross-encoder typically
involves retrieving candidate items using additional
models such as dual-encoders or BM25 (Robertson
et al., 2009), followed by re-ranking items using
the cross-encoder (Logeswaran et al., 2019; Zhang
and Stratos, 2021; Qu et al., 2021). However, the
accuracy of such retrieve-and-rerank approaches is
upperbound by the recall of first-stage retrieval and
may require computationally expensive distillation-
based training of dual-encoders to improve recall.

Recent work by Yadav et al. (2022) proposed
ANNCUR, a CUR factorization (Mahoney and
Drineas, 2009) based method, that approximates
cross-encoder using dot-product of latent query
and item embeddings and performs k-NN retrieval
using approximate scores followed by option-
ally re-ranking retrieved items using exact cross-

8088

encoder scores. The latent item embeddings are
computed by comparing each item against a set of
anchor queries, and the latent query embedding is
computed using the query’s cross-encoder scores
against a fixed set of anchor items. As shown in
Figure 1, when ANNCUR selects the anchor items
uniformly at random (Fig 1a), it incurs higher ap-
proximation error on the top-scoring items than
the rest of the items, resulting in poor k-NN recall,
and including some k-NN items as part of anchor
items (Fig. 1b) can significantly improve approxi-
mation error for top-scoring items.

In this work, we propose ADACUR, a search
strategy that improves k-NN search recall by im-
proving the approximation of top-scoring items.
ADACUR performs retrieval over multiple rounds,
retrieving the first batch of items either uniformly
at random or using heuristic or auxiliary mod-
els such as dual-encoder or BM25 to get a first
coarse approximation of item scores for the test
query. In subsequent rounds, it alternates between
a) performing retrieval using approximate scores
and scoring retrieved items using cross-encoder
and b) using all retrieved items as anchor items
to improve the approximation and hence retrieval
of relevant items in the subsequent rounds. Our
proposed approach provides significant improve-
ments in k-NN search recall over ANNCUR and
dual-encoder based retrieve-and-rerank approaches
when performing k-NN search with cross-encoder
models trained for the task of entity linking and
information retrieval.

2 Proposed Method: ADACUR

Task Given a scoring function fθ : Q× I → R
that maps a query-item pair to a scalar score, and
a query q ∈ Q, the k-nearest neighbor search task
is to retrieve top-k scoring items from a fixed item
set I according to the given scoring function fθ.

2.1 ADACUR: Offline Indexing of Items
The indexing step of ADACUR involves using
the cross-encoder model (fθ) to score each item
against a fixed set of kq anchor/train queries
(Qtrain), to get score matrix Ranc

Ranc(q, i) = fθ(q, i), ∀(q, i) ∈ Qtrain × I
Each column of EI := Ranc ∈ Rkq×|I| corre-
sponds to a kq-dimensional latent item embedding.

2.2 ADACUR: Test-time inference
The baseline method ANNCUR computes the la-
tent test-query embedding eqtest using Cqtest

, a

Algorithm 1 ADACUR k-NN Search
1: Input: (qtest , Ranc, NR,BCE,A)
2: qtest : Test query
3: Ranc: Matrix containing CE scores betweenQtrain and I
4: BCE: Total cross-encoder (CE) call budget.
5: A: Algorithm to use for selecting (anchor) items.
6: NR: Number of iterative search rounds
7: Output: Ŝ: Approximate scores of qtest with all items,
Ianc: Retrieved (anchor) items with CE scores in Ctest.

8: ks ← BCE/NR � Num. of items to sample per round
9: Ianc ← INIT(I, ks) � Initial set of anchor items

10: Ctest ← [fθ(qtest , i)]i∈Ianc � CE scores of Ianc for qtest
11: for j ← 2 to NR do
12: U ← Ranc[Ianc]† � U ∈ R|Ianc|×|Qtrain|

13: Ŝ(j) ← Ctest × U ×Ranc � Update approx. scores
14: I(j)anc ← SAMPLEITEMS(A, ks, Ianc, Ŝ(j))

15: Ianc ← Ianc ∪ I(j)anc

16: Ctest ← Ctest ⊕ [fθ(qtest , i)]i∈I(j)
anc

� Update Ctest

17: U ← Ranc[Ianc]† � U ∈ R|Ianc|×|Qtrain|

18: Ŝ ← Ctest × U ×Ranc � Compute approx. scores
19: return Ŝ, Ianc, Ctest

Algorithm 2 SAMPLEITEMS

1: Input: (A, ks, Imask, S)
2: A: Algorithm for sampling items
3: ks: Number of items to sample
4: Imask : Set of items to mask
5: S: (Approximate) Scores for all items
6: Output: Iselect : Set of sampled ks items

7: S̄ ← SOFTMAX(S)
8: S̄[Imask]← 0 � Mask items in Imask
9: if A = TopK then

10: Iselect ← TOPK(S̄, ks)
11: else if A = SoftMax then
12: Iselect ← ks items sampled using S̄
13: else if A = Random then
14: Iselect ← ks items uniformly sampled from I \ Imask
15: return Iselect

|Ianc|-dimensional vector containing cross-encoder
scores of qtest with a set of anchor items (Ianc) as:

Cqtest
= [fθ(qtest , i)]i∈Ianc

eqtest = Cqtest
× U

where U ∈ R|Ianc|×|Qtrain| is the pseudo-inverse
of Ranc[Ianc], the subset of columns of Ranc cor-
responding to (anchor) items Ianc. Finally, AN-
NCUR approximates the score for a query-item
pair (qtest , i) using dot-product of the query em-
bedding eqtest and item embedding EI [:, i] as

f̂θ(qtest , i) = e⊤qtest
EI [:, i]

The main bottleneck at test-time inference is the
number of items scored using the cross-encoder for
the given test-query. For a given budget of cross-
encoder calls, ANNCUR splits the budget (BCE)

8089

into two parts – it uses ki cross-encoder calls to
compare against anchor items (chosen uniformly at
random or using heuristic methods) and retrieves
BCE − ki items using approximate scores and re-
ranks them using exact cross-encoder scores.

In contrast, our proposed approach ADACUR
uses the cross-encoder call budget to adaptively
retrieve and score items over NR rounds, re-
purposing the retrieved items as anchor items as
shown in Algorithm 1. ADACUR begins by sam-
pling the first batch of ks = BCE/NR (anchor)
items uniformly at random. The first batch of items
can also be selected using baseline retrieval meth-
ods such as BM25 and dual-encoders. In the jth

round, the items retrieved up to round j−1 are used
as anchor items to revise the test-query embedding,
which in turn is used to update the approximate
scores (line 13 in Algorithm 1). Finally, the items
selected so far are masked out and the next batch of
ks items in round j is retrieved using the updated
approximate scores in the following two ways:

• TopK: Greedily pick top-ks items according to
approximate scores.

• SoftMax: Convert approximate item scores
into probability using softmax and sample ks
items without replacement.

Finally, ADACUR returns top-k items based on ex-
act cross-encoder scores1 from the set of retrieved
(anchor) items as approximate k-NN items. We
refer interested readers to Appendix B.5 for a dis-
cussion on the time complexity of ADACUR.

3 Experiments

In our experiments, we evaluate the proposed ap-
proach and baselines on the task of finding k-
nearest neighbor items as per a given cross-encoder.
We experiment with two cross-encoders – one
trained for the task of zero-shot entity linking, and
another trained on information retrieval datasets.

Experimental Setup We run evaluation on do-
mains YuGiOh, StarTrek, and Military from
ZESHEL–a zero-shot entity linking dataset (Lo-
geswaran et al., 2019), and domains SciDocs and
HotpotQA from BEIR–a zero-shot information re-
trieval benchmark (Thakur et al., 2021). We use two
cross-encoder models trained on labeled training
data from the corresponding benchmark and evalu-
ate separately on each domain on the task of find-

1Sorting retrieved items based on exact cross-encoder
scores does not require any additional cross-encoder calls
as cross-encoder scores for these items have already been
computed (see line 16 in Algorithm 1).

ing k-NN cross-encoder items. For each ZESHEL
domain, we randomly split the query set into a
train/anchor set (Qtrain) and a test set (Qtest) while
for BEIR domains, we use pseudo-queries released
as part of the benchmark as train/anchor queries
and evaluate on queries in the official test split. We
refer the reader to Table 1 for additional details.

Baselines We compare our proposed approach
with the following baseline retrieval methods.
Dual-Encoders (DE): Query-item scores are com-
puted using dot-product of embeddings produced
by a learned deep encoder model. DE is used for
initial retrieval followed by re-ranking using the
cross-encoder. We report results for DEBASE, a
dual-encoder trained on training domains in the
corresponding dataset, and the following two dual-
encoder models trained on the target domain via
distillation using the cross-encoder.

• DE
CE

BERT: DE initialized with BERT (Devlin
et al., 2019) and trained only on the target do-
main via distillation using the cross-encoder.

• DE
CE

BASE: DEBASE model further fine-tuned on
the target domain via distillation.

ANNCUR : k-NN search method proposed by Ya-
dav et al. (2022) where anchor items are chosen
uniformly at random. We additionally experiment
with ANNCURDEBASE which uses top-scoring items
retrieved using DEBASE as anchor items.

Evaluation Metric Following the precedent set
by previous work (Yadav et al., 2022), we evaluate
all approaches using Top-k-Recall@BCE which is
defined as the fraction of k-NN items retrieved
under test-time cost budget BCE where the cost
is defined as the number of cross-encoder calls
made during inference. DE baselines will use the
entire budget of BCE calls for re-ranking retrieved
items using exact cross-encoder scores, ANNCUR
splits the budget between scoring anchor ki items
and using exact cross-encoder scores for re-ranking
BCE − ki retrieved items, and ADACUR use the
budget to adaptively search for k-NN items.

For ADACUR, unless noted otherwise, we use
NR = 5 with TopK method for retrieving items us-
ing approximate scores, and retrieve the first batch
of items uniformly at random (ADACUR) or using
DEBASE (ADACURDEBASE). We refer readers to Ap-
pendix B for implementation details and details on
training and parameterization of cross-encoder and
dual-encoder models used in our experiments.

8090

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

k=1

50 100 200 500

k=10

200 500 1000

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

DE
ce
bert DEbase DE

ce
base annCUR annCUR

DEBASE
Proposed adaCUR adaCUR

DEBASE

Figure 2: Top-k-Recall for ADACUR and baselines for domain=YuGiOh, |Qtrain| = 500. ADACUR consistently
outperforms the corresponding ANNCUR variant and ADACURDEBASE outperforms all DE-based retrieve-and-rerank
approaches including DE

CE

BASE, a DE model trained via distillation on the target domain using the cross-encoder.

3.1 Results

ADACUR versus baselines Figure 2 shows
Top-k-Recall for ADACUR and baselines on do-
main=YuGiOh. ADACUR, which uses adaptively re-
trieved items as anchor items over NR = 5 rounds,
consistently outperforms ANNCUR which selects
all anchor items uniformly at random. ADACUR
also outperforms strong DE baseline DE

CE

BERT for
all values of k and outperforms DEBASE & DE

CE

BASE

for large values of k = 10, 100.

Sampling anchor items using DEBASE For
k = 1, 10, Top-k-Recall for both ANNCUR and
ADACUR can be further improved by leveraging
baseline retrieval models such as DEBASE for re-
trieving all and the first batch of anchor items
respectively instead of sampling them uniformly
at random. ADACURDEBASE always performs better
than ANNCURDEBASEwhich in turn performs better
than re-ranking items retrieved using DEBASE. Thus,
for a given cost budget (BCE), even when a strong
baseline retrieval model such as DEBASE is avail-
able, using the baseline retrieval model to select
the first batch of BCE/NR items followed by using
the proposed approach to adaptively retrieve more
items over remaining NR − 1 rounds performs
better than merely re-ranking BCE top-scoring
items retrieved using DEBASE. Finally, note that
ADACURDEBASE outperforms all baselines including
DE

CE

BASE which requires additional compute- and
resource-intensive distillation-based fine-tuning of
DEBASE on the target domain.

We refer the reader to Appendix C for results on
other domains, training data size (|Qtrain|) values,
oracle-based sampling experiments (§C.2), and ad-
ditional results for multi-vector encoder (§C.3) and
TF-IDF (§C.4) baselines.

50 100 200 500
0

50

100

T
op

-k
-R

ec
al

l

k=1

100 200 500 1000

k=50

Inference Cost (Total Number of Cross-Encoder Calls)

Rounds 1 2 5 10 20

Figure 3: Top-k-Recall for ADACUR for different num-
ber of rounds for domain=YuGiOh, |Qtrain| = 500.

0.00

0.25

0.50

0.75

1.00

L
at

en
cy

B
re

ak
do

w
n

1 2 5 10
10−2

10−1

100

In
fe

re
nc

e
L

at
en

cy
(i

n
s)

CE Calls=10

1 2 5 10 20 50 100

CE Calls=100

1 2 5 10 20 50 100

CE Calls=500

Number of Rounds

Total Cross-Enc Calls Matrix Multiply Matrix Inverse

Figure 4: ADACUR inference latency versus number of
rounds for domain=YuGiOh, |Qtrain| = 500.

Effect of number of rounds Figure 3 shows Top-
k-Recall and Figure 4 shows total inference latency
of ADACUR on primary y-axis for various values
of the test-time cross-encoder call budget (BCE).
The secondary y-axis in Figure 4 shows the frac-
tion of total inference time spent on each one of
the three main steps in Algorithm 1 – (a) comput-
ing U as pseudo-inverse of Ranc[Ianc] (line 12), (b)
updating approximate scores for all items (line 13),
and (c) computing exact cross-encoder scores for
retrieved items (line 16). Since ADACUR selects
items uniformly at random in the first round,
ADACUR with NR = 1 performs poorly as it sim-
ply returns a subset of items sampled uniformly at
random. As expected, Top-k-Recall for ADACUR
increases with the number of rounds and saturates

8091

at around 5-10 rounds while incurring negligible
overhead in inference latency. As shown in Fig-
ure 4, cross-encoder score computation is the main
bottleneck in test-time inference, taking ∼7ms per
score2. Increasing NR to large values such as 100
can incur up to 25% overhead with step (a) con-
tributing significantly to this overhead. Although
the time taken by matrix multiplication in step (b)
is linear in the number of items in the domain, we
observe that it is a negligible fraction of overall
latency on GPUs even for domain=HotpotQA with
5 million items (see Figure 5) as GPUs can enable
significant speedup even for brute-force computa-
tion of this step.

4 Conclusion

In this paper, we presented an adaptive search strat-
egy that incrementally builds a query embedding
to approximate cross-encoder scores and performs
k-NN search using approximate scores over several
rounds. Our approach is designed to reduce approx-
imation error for the top-scoring items and hence
improves k-NN search recall when retrieving items
based on the approximate scores. We perform an in-
depth empirical analysis of the proposed approach
in terms of both retrieval quality and efficiency.

Limitations

Building the index for the ADACUR is more ex-
pensive than the traditional dual-encoder index due
to the computation of dense cross-encoder scores
matrix (see §2.1). We have successfully run our
approach on up to 5 million items, but scaling to
billions of items is an interesting direction for fu-
ture work. Dual-encoder-based retrieve-and-rerank
baseline approaches can benefit from training the
dual-encoder on multiple domains. It is not clear
if data from multiple domains can be leveraged to
improve performance of the proposed approach on
a given target domain; although in any case, cross-
encoders tend to be more robust to domain shift
than using only dual-encoders for retrieval.

Ethics Statement

In this paper we tackle the task of finding k-nearest
neighbor items for a given query when query-items
scores are computed using a black-box similarity
function such as a cross-encoder model. The cross-
encoder scoring function may have certain biases

2For a 12-layer transformer model on an Nvidia 2080ti

and error tendencies, and it is unclear if our pro-
posed method to approximate cross-encoder scores
exacerbates or mitigates such biases.

Acknowledgments

We thank members of UMass IESL for helpful dis-
cussions and feedback. This work was supported
in part by the Center for Data Science and the Cen-
ter for Intelligent Information Retrieval, in part
by the National Science Foundation under Grant
No. NSF1763618, in part by the Chan Zuckerberg
Initiative under the project “Scientific Knowledge
Base Construction”, in part by International Busi-
ness Machines Corporation Cognitive Horizons
Network agreement number W1668553, in part by
Amazon Digital Services, and in part using high-
performance computing equipment obtained under
a grant from the Collaborative R&D Fund managed
by the Massachusetts Technology Collaborative.
Any opinions, findings, conclusions, and recom-
mendations expressed in this material are those of
the authors and do not necessarily reflect those of
the sponsor(s).

References
Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,

Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
et al. 2016. MS-MARCO: A human generated ma-
chine reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Realm: retrieval-
augmented language model pre-training. In Interna-
tional Conference on Machine Learning.

Sebastian Hofstätter, Sophia Althammer, Michael
Schröder, Mete Sertkan, and Allan Hanbury. 2020.
Improving efficient neural ranking models with
cross-architecture knowledge distillation. ArXiv,
abs/2010.02666.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-
Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2023. Atlas: Few-shot learning with retrieval
augmented language models. Journal of Machine
Learning Research, 24.

8092

https://huggingface.co/nishantyadav/emb_crossenc_zeshel
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1611.09268
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://dl.acm.org/doi/abs/10.5555/3524938.3525306
https://dl.acm.org/doi/abs/10.5555/3524938.3525306
https://arxiv.org/abs/2010.02666
https://arxiv.org/abs/2010.02666
http://jmlr.org/papers/v24/23-0037.html
http://jmlr.org/papers/v24/23-0037.html

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Omar Khattab and Matei Zaharia. 2020. ColBERT: Effi-
cient and effective passage search via contextualized
late interaction over bert. In ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations, ICLR.

Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee,
Kristina Toutanova, Jacob Devlin, and Honglak Lee.
2019. Zero-shot entity linking by reading entity de-
scriptions. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations, ICLR.

Xinyin Ma, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Weiming Lu.
2021. MuVER: Improving first-stage entity retrieval
with multi-view entity representations. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing.

Michael W Mahoney and Petros Drineas. 2009. Cur
matrix decompositions for improved data analysis.
Proceedings of the National Academy of Sciences,
106:697–702.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. RocketQA: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends in Information Re-
trieval, 3(4).

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural In-
formation Processing Systems.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Nishant Yadav, Nicholas Monath, Rico Angell, Manzil
Zaheer, and Andrew McCallum. 2022. Efficient near-
est neighbor search for cross-encoder models using
matrix factorization. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing.

Wenzheng Zhang and Karl Stratos. 2021. Understand-
ing hard negatives in noise contrastive estimation.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

A Appendix A

B Training and Implementation Details

All the code for reproducing experiments is avail-
able at https://github.com/iesl/anncur.

B.1 Training Cross-Encoder Models
In our experiments, we use [EMB]-CE, a cross-
encoder model variant proposed by Yadav et al.
(2022) that jointly encodes a query-item pair and
computes the final score using dot-product of con-
textualized query and item embeddings extracted
after joint encoding.

B.1.1 ZESHEL Dataset
ZESHEL dataset is a zero-shot entity linking con-
taining a set of 16 domains, each containing a dis-
joint set of items (entities). Each domain contains
a set of queries (mention) paired with their ground-
truth items (entities). For ZESHEL, we use the
cross-encoder model checkpoint3 released by Ya-
dav et al. (2022). The cross-encoder model was
trained by first training a dual-encoder model on
ZESHEL training data using hard negatives, and
then training a cross-encoder model for the task
of zero-shot entity-linking on all eight training do-
mains using cross-entropy loss with ground-truth

3https://huggingface.co/nishantyadav/emb_crossenc_zeshel

8093

https://aclanthology.org/2020.emnlp-main.550/
https://aclanthology.org/2020.emnlp-main.550/
https://dl.acm.org/doi/10.1145/3397271.3401075
https://dl.acm.org/doi/10.1145/3397271.3401075
https://dl.acm.org/doi/10.1145/3397271.3401075
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://aclanthology.org/P19-1335/
https://aclanthology.org/P19-1335/
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2021.emnlp-main.205
https://doi.org/10.18653/v1/2021.emnlp-main.205
https://www.pnas.org/doi/10.1073/pnas.0803205106
https://www.pnas.org/doi/10.1073/pnas.0803205106
https://aclanthology.org/2021.naacl-main.466/
https://aclanthology.org/2021.naacl-main.466/
https://aclanthology.org/2021.naacl-main.466/
https://dl.acm.org/doi/10.1561/1500000019
https://dl.acm.org/doi/10.1561/1500000019
https://dl.acm.org/doi/10.1561/1500000019
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://dl.acm.org/doi/10.5555/3295222.3295349
https://dl.acm.org/doi/10.5555/3295222.3295349
https://dl.acm.org/doi/abs/10.5555/3495724.3496209
https://dl.acm.org/doi/abs/10.5555/3495724.3496209
https://dl.acm.org/doi/abs/10.5555/3495724.3496209
https://aclanthology.org/2020.emnlp-main.519/
https://aclanthology.org/2020.emnlp-main.519/
https://aclanthology.org/2022.emnlp-main.140
https://aclanthology.org/2022.emnlp-main.140
https://aclanthology.org/2022.emnlp-main.140
https://aclanthology.org/2021.naacl-main.86/
https://aclanthology.org/2021.naacl-main.86/
https://github.com/iesl/anncur
https://huggingface.co/nishantyadav/emb_crossenc_zeshel

Dataset Domain |I| (|Qtrain|, |Qtest|) Splits Train Query (Qtrain) Type

ZESHEL YuGiOh 10,031 (100/3274), (500/2874), (2000/1374) Real Queries
ZESHEL StarTrek 34,430 (100/4127), (500/3727), (2000/2227) Real Queries
ZESHEL Military 104,520 (100/2300), (500/1900), (2000/0400) Real Queries

BEIR SciDocs 25,657 (1000/1000) Pseudo-Queries
BEIR HotpotQA 5,233,329 (1000/1000) Pseudo-Queries

Table 1: Statistics on the number of items (I) and the number of queries in train and test splits for each domain.
The train-query (Qtrain) split refers to queries used for distilling dual-encoder models or for indexing items using
ADACUR and ANNCUR. For ZESHEL domains, we create train-test splits by splitting the queries in each domain
uniformly at random and test with three different splits by putting 100, 500, or 2000 queries in train split. For BEIR
domains, we use pseudo-queries released as part of the benchmark as train queries (Qtrain) and run k-NN evaluation
on test queries from the official test split (as per BEIR benchmark) of these domains. For HotpotQA, we use the first
1K queries out of a total of 7K test queries and we use all 1K test queries for SciDocs.

entity and negative entities mined using the dual-
encoder. We refer readers to Yadav et al. (2022) for
further details on cross-encoder training.

We perform k-NN experiments on domains
YuGiOh, StarTrek, and Military from ZESHEL
of which only Military was part of the train-
ing data used to train the cross-encoder model
and YuGiOh and StarTrek are part of the origi-
nal ZESHEL test domains and the cross-encoder
model was not trained on these domains.

B.1.2 BEIR
We follow the training setup used by Hofstätter
et al. (2020). We first train three teacher cross-
encoders initialized with albert-large-v2 (Lan
et al., 2020), bert-large-whole-word-masking,
and bert-base-uncased (Devlin et al., 2019), and
compute soft labels on 40 million (query, posi-
tive item, negative item) triplets in MS-MARCO
dataset (Bajaj et al., 2016). We then train our
cross-encoder model parameterized using a 6-
layer MINI-LM model (Wang et al., 2020) via
distillation using average scores of the three
teacher models as target signal and minimizing
mean-square-error between predicted and target
scores. We use training scripts available as part of
sentence-transformer4 repository to train the
cross-encoder model and use a dot-product based
scoring mechanism for cross-encoders proposed
by Yadav et al. (2022)..

B.2 Training Dual-Encoder Models
B.2.1 ZESHEL dataset
We report results for DE baselines as reported in Ya-
dav et al. (2022). The DE models were initialized
using bert-base-uncased and contain separate
query and item encoders, thus containing a total of

4https://github.com/UKPLab/sentence-transformers

2× 110M parameters. We refer readers to Yadav
et al. (2022) for details related to the training of all
DE model variants on ZESHEL dataset.

B.2.2 BEIR benchmark
For BEIR domains, we use a dual-encoder model5

released as part of sentence-transformer repos-
itory as DEBASE. This dual-encoder model was
initialized using distillbert-base (Sanh et al.,
2019) and trained on MS-MARCO dataset. This
DEBASE is not trained on target domains SciDocs
and HotpotQA used for running k-NN experiments.

We finetune DEBASE via distillation on the tar-
get domain to get DE

CE

BASE model. Given a set of
training queries Qtrain from the target domain, we
retrieve top-100 or top-1000 items for each query,
score the items with the cross-encoder model, and
train the dual-encoder by minimizing cross-entropy
loss between predicted query-item scores (using
DE) and target query-item scores (obtained using
cross-encoder). Training a DE

CE

BASE with 1K queries
and 100 or 1000 items per query takes around 2
hrs and 10 hrs respectively on an Nvidia RTX8000
GPU with 48GB memory. We train DE

CE

BASE for 10
epochs when using top-100 items per query and
for 4 epochs when using top-1000 items per query
using AdamW (Loshchilov and Hutter, 2019) opti-
mizer with learning rate 1e-5.

B.3 ANNCUR Implementation details

For ANNCUR, we report results for the optimal
split of cross-encoder call budget (BCE) between
scoring ki anchor items followed by retrieving
BCE − ki items for re-ranking. We experiment with
ki ∈ {iBCE/10 : 1 ≤ i ≤ 9}. If the retrieved items
contain a subset of anchor items for which exact

5msmarco-distilroberta-base-v2:
www.sbert.net/docs/pretrained-models/msmarco-v2.html

8094

https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/ms_marco/train_cross-encoder_kd.py
https://www.sbert.net/docs/pretrained-models/msmarco-v2.html
https://www.sbert.net/docs/pretrained-models/msmarco-v2.html

0.00

0.25

0.50

0.75

1.00

L
at

en
cy

B
re

ak
do

w
n

1 2 5 10
10−2

10−1

100

In
fe

re
nc

e
L

at
en

cy
(i

n
s)

CE Calls=10

1 2 5 10 20 50 100

CE Calls=100

1 2 5 10 20 50 100

CE Calls=500

Number of Rounds

Total Cross-Enc Calls Matrix Multiply Matrix Inverse

(a) Domain=Military (100K items), |Qtrain| = 500. Each CE
call takes ∼7ms on an Nvidia 2080ti GPU for a cross-encoder
parameterized using 12-layered transformer model.

0.00

0.25

0.50

0.75

1.00

L
at

en
cy

B
re

ak
do

w
n

1 2 5 10 20 50
10−2

10−1

100

In
fe

re
nc

e
L

at
en

cy
(i

n
s)

CE Calls=50

1 2 5 10 20 50 100

CE Calls=100

1 2 5 10 20 50 100

CE Calls=500

Number of Rounds

Total Cross-Enc Calls Matrix Multiply Matrix Inverse

(b) Domain=HotpotQA (5 Million items), |Qtrain| = 1000. Each
CE call takes ∼2ms on an Nvidia RTX8000 GPU for a cross-
encoder parameterized using 6-layered transformer model.

Figure 5: ADACUR inference latency versus number of rounds for two different domains. The primary bottleneck at
inference time is the time taken to compute cross-encoder (CE) scores for query-item pairs at test time, and the
overhead for ADACUR accumulates linearly as the number of rounds increases. See §B.5 for detailed discussion.

cross-encoder score has already been computed,
we retrieve more than BCE − ki items using ap-
proximate scores and compute exact cross-encoder
scores for them until we have exhausted the entire
cross-encoder call budget for the re-ranking step.

B.4 ADACUR Implementation details

For all our k-NN search experiments, we used
Nvidia 2080ti GPUs with 12GB memory for do-
mains YuGiOh (10K items), StarTrek (34K items),
Military (100K items), and SciDocs (25K items),
and we used Nvidia RTX8000 GPUs with 48GB
memory for HotpotQA (5 million items).

For HotpotQA, we restrict our k-NN search to
top-10K items wrt DEBASE for ADACURDEBASE . For
ZESHEL domains and SciDocs, we do not use any
such heuristic and search over all the items in the
corresponding domain.

B.5 Time Complexity of ADACUR

The offline indexing step for ADACUR takes
O(kq|I|Cfθ) time as it involves computing exact
cross-encoder scores for all |I| items in the target
domain against kq anchor queries, and computing
each cross-encoder score takes Cfθ units of time.

At test time, we are given a budget BCE on the
number of cross-encoder calls. Each one of the
NR rounds during inference with ADACUR in-
volves approximating all item scores for the test
query (qtest) followed by sampling the next batch
of ks = BCE/NR items using the updated approxi-
mate scores. In the jth round, the score approxima-
tion step involves computing the pseudo-inverse
of a kq × jks -dimensional matrix (line 12 in
Algo. 1), which takes O(Ckq ,jks

inv) time, followed
by a matrix multiplication step to compute up-
dated approximate scores (line 13 in Algo. 1)

which takes O(Ckq ,jks,|I|
mul) time. The time taken

to update the approximate scores in each round is
O(Ckq ,jks

inv +Ckq ,jks,|I|
mul), and the time taken to com-

pute cross-encoder scores for the next batch of ks
items is O(ksCfθ). Thus, the total inference latency
for retrieving items over NR rounds under a given
budget of BCE cross-encoder calls is

O
(NR∑

j=1

(
ksCfθ + Ckq ,jks

inv + Ckq ,jks,|I|
mul

))

=O
(
BCECfθ +

NR∑

j=1

(
Ckq ,jks
inv + Ckq ,jks,|I|

mul

)

︸ ︷︷ ︸
Overhead of ADACUR

)

Figure 5 shows the breakdown of ADACUR’s in-
ference latency in terms of time spent on computing
cross-encoder scores, and the overhead of comput-
ing matrix inverse in line 12 and updating approxi-
mate scores by multiplying matrices in line 13 of
Algorithm 1. Empirically, we observe that the pri-
mary bottleneck at inference time is the time taken
to compute cross-encoder scores for query-item
pairs at test time, and the overhead for ADACUR
accumulates linearly as the number of rounds in-
creases. The overhead is mostly dominated by com-
puting pseudo-inverse (see line 12 in Algorithm 1)
and this step is independent of the target domain
size. The matrix multiplication step (line 13 in Al-
gorithm 1) has a linear dependence on the number
of items in the target domain but it is a negligible
fraction of the overall running time as it can be
significantly sped up using GPUs.

For ZESHEL domains, we use a cross-encoder
parameterized using bert-base (Devlin et al.,
2019), and observe that each cross-encoder call
takes amortized time of ∼7ms on an Nvidia 2080ti

8095

https://huggingface.co/nishantyadav/emb_crossenc_zeshel
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2

GPU when the scores are computed in batches of
size 50. Computing each cross-encoder score se-
quentially i.e. with batch-size = 1 takes ∼13ms
per score. We did not observe any further reduc-
tion in amortized time to compute each score when
increasing the batch size beyond 50.

The amortized time per cross-encoder call is
approximately 6ms and 2ms for SciDocs and
HotpotQA respectively when using batch size=50
and MINI-LM-based (Wang et al., 2020) cross-
encoder. The difference in time per cross-encoder
score for SciDocs and HotpotQA is due to the dif-
ference in average query-item pair sequence length.

C Additional Results and Analysis

C.1 TopK vs SoftMax for ADACUR

Figure 6 shows Top-k-Recall for ADACUR on do-
main=YuGiOh, |Qtrain| = 500, when using TopK
and SoftMax strategies for sampling items based
on approximate scores (see §2.2 for details). TopK
sampling strategy which greedily picks top-k items
based on approximate scores results in superior re-
call as compared to sampling items using softmax
over approximate scores.

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

k=1

200 500 1000

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

adaCURSoftmax

adaCURTopK
adaCURSoftmax

DEBASE

adaCURTopK
DEBASE

Figure 6: Top-k-Recall for ADACUR on YuGiOh,
|Qtrain| = 500 for different strategies for sampling items
based on approximate scores described in §2.2.

C.2 Anchor Item Sampling with Oracle

ADACUR performs retrieval over multiple rounds
using approximate cross-encoder scores and uses
the items retrieved based on the approximate scores
as anchor items to improve the approximation and
hence retrieval in subsequent rounds. In this sec-
tion, we run experiments where the anchor item
sampling method has oracle access to exact cross-
encoder scores of all items for the given test query
to better understand the effect of anchor items
on the approximation of cross-encoder scores and

hence subsequent retrieval based on the approx-
imate scores. We experiment with the following
strategies for sampling ki anchor items for a given
test query :

• TopKOkm,ϵ : Mask out top-km items wrt ex-
act cross-encoder scores and select ki anchor
items by greedily picking (1−ϵ)ki items start-
ing from rank km + 1, and sample remaining
ϵki anchor items uniformly at random.

• SoftMaxOkm,ϵ: Mask out top-km items wrt ex-
act cross-encoder scores and select ki anchor
items by sampling (1− ϵ)ki anchor items us-
ing softmax over exact cross-encoder scores,
and sample remaining ϵki anchor items uni-
formly at random.

For a given test-time cross-encoder call budget
BCE, we select ki anchor items, compute approx-
imate cross-encoder scores using the chosen an-
chor items, and then retrieve BCE − ki items based
on the approximate scores. We experiment with
ki ∈ {iBCE/10 : 1 ≤ i ≤ 9} and report results for
the best budget split.

Top-1 Top-10 Top-100 Anchor All

Types of Items

10−2

100

A
pp

ro
xi

m
at

io
n

E
rr

or

annCUR

adaCURTopK
TopKOk,0

TopKO0,0

SoftMaxOk,0

SoftMaxO0,0

Figure 7: Average approximation error for CUR ma-
trix factorization on test-queries for domain=YuGiOh
and |Qtrain| = 500 when choosing ki = 50 anchor
items uniformly at random (ANNCUR), using oracle
strategies from §C.2 and for ADACUR when sampling
anchor items over five rounds. Approximation error is
computed as the average of absolute difference between
approximate and exact item scores.

Effect of adding k-NN items to anchor items
Figure 8a shows Top-k-Recall of anchor item
sampling strategies TopKOkm,0 and SoftMaxOkm,0 for
km ∈ {0, k}, domain=YuGiOh. Sampling strategies
SoftMaxOk,0 and TopKOk,0, which mask out top-k
items, perform significantly worse than SoftMaxO0,0
and TopKO0,0 respectively when searching for k =
1, 10 nearest neighbors. This indicates that the sig-
nificant improvement in Top-1-Recall and Top-10-
Recall for TopKO0,0 and SoftMaxO0,0 sampling strate-
gies can be attributed to the presence of top-k items
in the anchor item set. This is because CUR matrix

8096

10 50 100
0

50

100

T
op

-k
-R

ec
al

l

k=1

50 100 200
Inference Cost (Total Number of Cross-Encoder Calls)

k=10

200 500 1000

k=100

annCUR

adaCURTopK
TopKOk,0

TopKO0,0

SoftMaxOk,0

SoftMaxO0,0

(a) Sampling with and without ground-truth top-k items

10 50 100
0

50

100

T
op

-k
-R

ec
al

l

k=1

50 100 200
Inference Cost (Total Number of Cross-Encoder Calls)

k=10

200 500 1000

k=100
Epsilon 0 0.25 0.5 0.75 0.9 0.99 1.0

(b) Sampling using TopK strategy with exact CE scores while
varying ϵ, the fraction of items sampled uniformly at random

10 50 100
0

50

100

T
op

-k
-R

ec
al

l

k=1

50 100 200
Inference Cost (Total Number of Cross-Encoder Calls)

k=10

200 500 1000

k=100
Epsilon 0 0.25 0.5 0.75 0.9 0.99 1.0

(c) Sampling using SoftMax of exact CE scores while varying
ϵ, the fraction of items sampled uniformly at random

Figure 8: Top-k-Recall for ADACUR, ANNCUR, and
oracle sampling strategies (§C.2) that have oracle ac-
cess to exact cross-encoder scores for all items for do-
main=YuGiOh, |Qtrain| = 500.

factorization which is used to compute the approxi-
mate scores incurs negligible approximation error
on anchor items, and hence on top-k items when
these items are part of the anchor set as shown in
figures 7 and 9. For TopKOk,0 and SoftMaxOk,0 sam-
pling strategies, since the top-k items are not part
of the anchor set, CUR incurs a much higher ap-
proximation error for the top-k items (see examples
in Figures 9a and 9b), thus resulting in poor Top-
k-Recall as shown in Figure 8a.

Effect of diversity in anchor items Figure 8a
shows that sampling items based on softmax
of exact cross-encoder scores (SoftMaxOkm,0) per-
forms better than greedily picking top-scoring
items (TopKOkm,0), for both km = 0, k. The rea-
son behind SoftMaxOkm,0 performing better than
TopKOkm,0 is that sampling based on softmax of ex-
act scores yields an anchor set with a more diverse

50 60 70 80
Exact Scores

50

60

70

80

A
pp

ro
xi

m
at

e
Sc

or
es k=1

k=10

k=100

Approximate 1-10

11-100

101-500

501+
Anchor
Items

50 60 70 80
Exact Scores

50

60

70

80

A
pp

ro
xi

m
at

e
Sc

or
es k=1

k=10

k=100

Top-k Items 1-10

11-100

101-500

501+
Anchor
Items

50 55 60 65

Exact Scores

56

58

60

62

64

A
pp

ro
xi

m
at

e
S

co
re

s

k=1

k=10k=100

(a) TopKO100,ϵ, ϵ = 0.0

50 55 60 65

Exact Scores

55

60

A
pp

ro
xi

m
at

e
S

co
re

s

k=1

k=10
k=100

(b) SoftMaxO100,ϵ, ϵ = 0.0

50 55 60 65

Exact Scores

55

60

65

A
pp

ro
xi

m
at

e
S

co
re

s

k=1

k=10

k=100

(c) TopKO0,ϵ, ϵ = 0.0

50 55 60 65

Exact Scores

55

60

65

A
pp

ro
xi

m
at

e
S

co
re

s

k=1

k=10

k=100

(d) SoftMaxO0,ϵ, ϵ = 0.0

50 55 60 65

Exact Scores

50

55

60

65

A
pp

ro
xi

m
at

e
S

co
re

s

k=1

k=10

k=100

(e) TopKO0,ϵ, ϵ = 0.75

50 55 60 65

Exact Scores

50

55

60

65

A
pp

ro
xi

m
at

e
S

co
re

s

k=1

k=10

k=100

(f) SoftMaxO0,ϵ, ϵ = 0.75

Figure 9: Scatter plot showing approximate versus exact
cross-encoder scores for a query from domain=YuGiOh,
when choosing ki = 50 anchor items using oracle
strategies from §C.2 and |Qtrain| = 500. Top-k for
k=1,10,100 wrt exact cross-encoder scores are anno-
tated with text along with vertical lines, different color
bands indicate the ordering of items wrt approximate
scores, and anchor items are shown in blue.

score distribution whereas greedily selecting top-
scoring items using exact scores results in an an-
chor set with items having similar cross-encoder
scores. However, as shown in Figures 9c and 9d,
both of these sampling strategies can result in over-
estimating scores for all items, even the irrelevant
ones (i.e. items beyond top-k items) due to insuf-
ficient representation of the irrelevant items in the
anchor set. Thus retrieving based on approximated
scores may struggle to retrieve relevant k-NN items,
especially for larger values of k such as k = 100
when the anchor items are chosen using oracle
strategies such as TopKOkm,0.

Figures 9e and 9f, where ϵ = 75% of 50 items
are sampled uniformly at random, show that over-
estimating scores of irrelevant items can be avoided
by sampling a fraction of anchor items uniformly
at random to increase the diversity of the anchor
item set. As shown in Figures 8b and 8c, Top-k-
Recall for both SoftMaxO0,ϵ and TopKO0,ϵ generally
improves with an increase in ϵ, the fraction of ran-

8097

dom items in the anchor set, due to increased di-
versity in the anchor item set. Since SoftMaxO0,ϵ
already samples a diverse set of anchor items, in-
creasing ϵ yields only marginal improvement while
for TopKO0,ϵ, increasing ϵ yields significant improve-
ments due to increased diversity of the anchor set.
A small drop in performance is observed for larger
values of ϵ as increasing ϵ beyond a threshold re-
sults in some of the top-k items to be excluded from
the anchor item set. This results in a poorer approx-
imation of scores for the missing top-k items and
hence poor retrieval recall as the retrieval is done
using the approximate scores.

Finally, the optimal strategy for choosing the set
of anchor items is the one that strikes a balance
between selecting anchor items with diverse cross-
encoder scores and greedily picking top-k items.
Our proposed strategy ADACUR improves over
ANNCUR as greedily picking top-scoring items
according to approximate scores to expand set of
anchor items increases the likelihood of picking
ground-truth k-NN items to be part of the anchor
set, with this likelihood improving after each round
with improvement in the score approximation, and
ADACUR achieves diversity in the anchor items as
a result of sampling items uniformly at random in
the first round and due to error in the approximate
scores, as shown in Figure 11.

C.3 Comparison with Multi-Vector Models

Multi-vector models (Khattab and Zaharia, 2020;
Ma et al., 2021) produce multiple embeddings for
each query and item. For a given query q and item
i, the query-item score is computed using simple
functions such as average similarity or sum-of-
maximum similarities between the set of embed-
dings for query q and item i.

Figure 10 shows Top-k-Recall for DEBASE,
DE

CE

BASE, ADACURDEBASE , and MUVER (Ma et al.,
2021), a recent multi-vector model trained on
ZESHEL dataset. For MUVER, we use the pre-
trained checkpoint released by Ma et al. (2021)
with the view-merging inference strategy as de-
scribed in Ma et al. (2021). While MUVER can
be more accurate than DEBASE, DE

CE

BASE obtained
by finetuning DEBASE model on the target domain
outperforms MUVER and our proposed method
ADACURDEBASE yields the best Top-k-Recall versus
inference cost trade-offs for all values of k.

We would also like to note that while multi-
vector models such as MUVER can be more accu-
rate than single-embedding models such as DEBASE,

50 100 200
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

k=1

100 200

k=50

Inference Cost (Total Number of Cross-Encoder Calls)

DEbase DE
ce
base Muver adaCUR

DEBASE

(a) YuGiOh

50 100 200
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

k=1

100 200

k=50

Inference Cost (Total Number of Cross-Encoder Calls)

DEbase DE
ce
base Muver adaCUR

DEBASE

(b) StarTrek

Figure 10: Top-k-Recall for ADACURDEBASE and base-
lines including multi-vector models on ZESHEL do-
mains, |Qtrain| = 2000. See §C.3 for discussion.

such multi-vector models incur significant mem-
ory overhead for storing query/item embeddings.
For instance, using 15 embeddings per item with
768-dimensional embeddings would take around
250GB space for 5 million items for HotpotQA.

C.4 Results for TF-IDF baseline
TF-IDF: All queries and items are embedded using
a TF-IDF vectorizer trained on item descriptions
and top-k items are retrieved using the dot-product
of sparse query and item embeddings.

For domains in ZESHEL, we report re-
sults for TF-IDF baseline, for ANNCUR when
anchor items are chosen using TF-IDF base-
line (ANNCURTF-IDF), and for ADACUR when
the first batch of anchor items is chosen
using TF-IDF baseline (ADACURTF-IDF). Fig-
ures 13, 14, and 15 show Top-k-Recall for domains
YuGiOh, StarTrek, and Military respectively for
|Qtrain| ∈ {100, 500, 2000}. For each baseline re-
trieval method, ADACUR always performs better
than ANNCUR which in turn generally performs
better than merely re-ranking items retrieved us-
ing the corresponding baseline retrieval method. In
most cases, Top-k-Recall for ADACURDEBASE > AN-
NCURDEBASE> DEBASE, and ADACURTF-IDF> AN-
NCURTF-IDF> TF-IDF.

8098

50 60 70 80
Exact Scores

50

60

70

80

A
pp

ro
xi

m
at

e
Sc

or
es k=1

k=10

k=100

Approximate 1-10

11-100

101-500

501+
Anchor
Items

50 60 70 80
Exact Scores

50

60

70

80

A
pp

ro
xi

m
at

e
Sc

or
es k=1

k=10

k=100

Top-k Items 1-10

11-100

101-500

501+
Anchor
Items

50 55 60 65

Exact Scores

50

55

60

A
pp

ro
xi

m
at

e
S

co
re

s

k=1

k=10

k=100

(a-1) ADACUR Round 1.
Total 10 anchor items.

50 55 60 65

Exact Scores

50

55

60

65

A
pp

ro
xi

m
at

e
S

co
re

s k=1

k=10

k=100

(a-2) ADACUR Round 2.
Total 20 anchor items.

50 55 60 65

Exact Scores

50

55

60

65

A
pp

ro
xi

m
at

e
S

co
re

s k=1

k=10

k=100

(a-3) ADACUR Round 3.
Total 30 anchor items.

50 55 60 65

Exact Scores

50

55

60

65

A
pp

ro
xi

m
at

e
S

co
re

s k=1

k=10

k=100

(a-4) ADACUR Round 4.
Total 40 anchor items.

50 55 60 65

Exact Scores

50

55

60

65

A
pp

ro
xi

m
at

e
S

co
re

s k=1

k=10

k=100

(a-5) ADACUR Round 5.
Total 50 anchor items.

50 55 60 65

Exact Scores

50

55

60

A
pp

ro
xi

m
at

e
S

co
re

s

k=1

k=10
k=100

(a-6) ANNCUR- Sampling all 50 an-
chor items uniformly at random.

(a) Sampling 50 anchor items adaptively for ADACUR (over five rounds) and for ANNCUR (uniformly at random).

50 55 60 65

Exact Scores

50

55

60

A
pp

ro
xi

m
at

e
S

co
re

s

k=1

k=10
k=100

(b-1) ADACUR Round 1.
Total 40 anchor items.

50 55 60 65

Exact Scores

50

55

60

65

A
pp

ro
xi

m
at

e
S

co
re

s

k=1

k=10

k=100

(b-2) ADACUR Round 2.
Total 80 anchor items.

50 55 60 65

Exact Scores

50

55

60

65
A

pp
ro

xi
m

at
e

S
co

re
s k=1

k=10

k=100

(b-3) ADACUR Round 3.
Total 120 anchor items.

50 55 60 65

Exact Scores

50

55

60

65

A
pp

ro
xi

m
at

e
S

co
re

s k=1

k=10

k=100

(b-4) ADACUR Round 4.
Total 160 anchor items.

50 55 60 65

Exact Scores

50

55

60

65

A
pp

ro
xi

m
at

e
S

co
re

s k=1

k=10

k=100

(b-5) ADACUR Round 5.
Total 200 anchor items.

50 55 60 65

Exact Scores

50

55

60

65

A
pp

ro
xi

m
at

e
S

co
re

s

k=1

k=10
k=100

(b-6) ANNCUR- Sampling all 200 an-
chor items uniformly at random.

(b) Sampling 200 anchor items adaptively for ADACUR (over five rounds) and for ANNCUR (uniformly at random).

Figure 11: Scatter plot showing approximate versus exact cross-encoder scores for a query from do-
main=YuGiOh,|Qtrain| = 500 when choosing ki = 50 and 200 anchor items with ADACUR over five rounds,
and uniformly at random with ANNCUR. Top-k for k=1,10,100 wrt exact cross-encoder scores are annotated with
text, different color bands indicate the ordering of items wrt approximate scores, and anchor items are shown in blue.
With ADACUR, the first batch containing anchor items in Figure 11a-1 and 11b-1 is chosen uniformly at random
and in subsequent rounds, items with highest approximate scores are chosen. Note that the approximation error
for top-scoring items improves significantly when the 50 anchor items are chosen adaptively (see Figure 11a-5)
with the improvement being much more significant than merely increasing the number of anchor items sampled
uniformly at random from 50 in Figure 11a-6 to 200 in Figure 11b-6.

8099

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

71
.6 78

.9 84
.4 90

.5

82
.7 87

.9 92
.3 95

.9

5.
8

18
.3

40
.1

77
.7

70
.3

83
.9 91

.7 97
.2

19
.7

51
.8

78
.8

92
.0

69
.6

84
.5

93
.8 98

.1

k=1

50 100 200 500

49
.0

59
.6

69
.2

80
.4

64
.8

74
.6

82
.9

90
.9

5.
0

14
.0

34
.7

69
.7

39
.5

62
.3

80
.1

92
.6

17
.0

45
.5

72
.4

88
.5

53
.3

72
.7

86
.5

95
.1

k=10

200 500 1000

38
.4

53
.9

65
.6

54
.9

71
.2

81
.1

25
.4

56
.8

78
.6

37
.3

66
.9

82
.4

52
.0

74
.3

83
.7

60
.9

81
.5 89

.3

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

DEbase DE
ce
base annCUR annCUR

DEBASE

Proposed Approaches adaCUR adaCUR
DEBASE

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

71
.6 78

.9 84
.4 90

.5

82
.7 87

.9 92
.3 95

.9

5.
8

18
.3

40
.1

77
.7

70
.3

83
.9 91

.7 97
.2

19
.7

51
.8

78
.8

92
.0

69
.6

84
.5

93
.8 98

.1

k=1

50 100 200 500

49
.0

59
.6

69
.2

80
.4

64
.8

74
.6

82
.9

90
.9

5.
0

14
.0

34
.7

69
.7

39
.5

62
.3

80
.1

92
.6

17
.0

45
.5

72
.4

88
.5

53
.3

72
.7

86
.5

95
.1

k=10

200 500 1000

38
.4

53
.9

65
.6

54
.9

71
.2

81
.1

25
.4

56
.8

78
.6

37
.3

66
.9

82
.4

52
.0

74
.3

83
.7

60
.9

81
.5 89

.3

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

DEbase DE
ce
base annCUR annCUR

DEBASE

Proposed Approaches adaCUR adaCUR
DEBASE

(a) SciDocs

50 100 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

70
.9 75

.6

84
.0

75
.5 78

.3 84
.3

1.
4 3.
5

20
.1

18
.4

31
.7

58
.8

8.
4

20
.5

73
.3

64
.4

75
.9

89
.0

k=1

50 100 500

33
.3 39

.5

55
.0

38
.9 45

.0

58
.2

0.
9

2.
2

13
.5

3.
5 7.

2

22
.5

5.
6

16
.3

57
.6

30
.8

44
.3

70
.2

k=10

500 1000

28
.5 35

.8

32
.4 39

.3

10
.0 16

.6

4.
7 7.

4

39
.0

51
.7

44
.8

55
.0

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

DEbase DE
ce
base annCUR annCUR

DEBASE

Proposed Approaches adaCUR adaCUR
DEBASE

(b) HotpotQA

Figure 12: Top-k-Recall for ADACUR (using ten rounds) and baselines for SciDocs and HotpotQA, |Qtrain| = 1000.

8100

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

3
8

.1

4
6

.7

5
7

.1

6
8

.47
4

.9 7
9

.4 8
3

.9 9
0

.5

7
9

.6 8
4

.3 8
7

.9 9
2

.6

1
8

.3

2
9

.9

4
2

.6

6
9

.3

3
3

.2

4
4

.9

5
5

.0

8
6

.1

5
4

.2

6
9

.4

7
9

.3

9
4

.6

2
6

.5

3
3

.2

4
9

.1

7
5

.7

4
4

.6

5
2

.1

6
6

.4

8
7

.5

8
2

.7 8
5

.7 9
1

.1 9
7

.5

k=1

50 100 200 500

2
3

.7

3
1

.9

4
1

.9

5
3

.7

4
7

.4

5
4

.6

6
2

.5

7
3

.8

4
5

.8

5
3

.8

6
2

.2

7
3

.8

1
7

.1

2
8

.4

4
2

.9

6
7

.9

1
9

.9

3
0

.1

4
0

.1

7
6

.4

2
3

.7

3
5

.3

4
7

.0

8
1

.3

2
6

.5 3
2

.7

4
9

.7

7
7

.5

3
3

.3 3
9

.4

5
6

.8

8
4

.7

5
2

.2

5
8

.9

7
3

.0

9
1

.9

k=10

200 500 1000

2
6

.6

3
9

.2

5
0

.0

2
9

.0

4
3

.5

5
7

.6

2
6

.3

4
0

.1

5
3

.7

3
7

.6

6
4

.8

8
2

.3

2
7

.1

5
5

.6

8
2

.1

2
6

.9

5
6

.5

8
1

.7

3
7

.3

7
4

.2

8
8

.8

3
4

.3

7
5

.7

9
0

.9

3
6

.8

7
6

.5

9
1

.6

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

TF-IDF DEbase DE
ce
base

annCUR annCUR
TFIDF

annCUR
DEBASE

Proposed Approaches adaCUR adaCUR
TFIDF

adaCUR
DEBASE

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

3
8

.1

4
6

.7

5
7

.1

6
8

.47
4

.9 7
9

.4 8
3

.9 9
0

.5

7
9

.6 8
4

.3 8
7

.9 9
2

.6

1
8

.3

2
9

.9

4
2

.6

6
9

.3

3
3

.2

4
4

.9

5
5

.0

8
6

.1

5
4

.2

6
9

.4

7
9

.3

9
4

.6

2
6

.5

3
3

.2

4
9

.1

7
5

.7

4
4

.6

5
2

.1

6
6

.4

8
7

.5

8
2

.7 8
5

.7 9
1

.1 9
7

.5

k=1

50 100 200 500

2
3

.7

3
1

.9

4
1

.9

5
3

.7

4
7

.4

5
4

.6

6
2

.5

7
3

.8

4
5

.8

5
3

.8

6
2

.2

7
3

.8

1
7

.1

2
8

.4

4
2

.9

6
7

.9

1
9

.9

3
0

.1

4
0

.1

7
6

.4

2
3

.7

3
5

.3

4
7

.0

8
1

.3

2
6

.5 3
2

.7

4
9

.7

7
7

.5

3
3

.3 3
9

.4

5
6

.8

8
4

.7

5
2

.2

5
8

.9

7
3

.0

9
1

.9

k=10

200 500 1000

2
6

.6

3
9

.2

5
0

.0

2
9

.0

4
3

.5

5
7

.6

2
6

.3

4
0

.1

5
3

.7

3
7

.6

6
4

.8

8
2

.3

2
7

.1

5
5

.6

8
2

.1

2
6

.9

5
6

.5

8
1

.7

3
7

.3

7
4

.2

8
8

.8

3
4

.3

7
5

.7

9
0

.9

3
6

.8

7
6

.5

9
1

.6

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

TF-IDF DEbase DE
ce
base

annCUR annCUR
TFIDF

annCUR
DEBASE

Proposed Approaches adaCUR adaCUR
TFIDF

adaCUR
DEBASE

(a) Number of train/anchor queries |Qtrain| = 100.

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

3
8

.5

4
7

.1

5
7

.1

6
8

.77
4

.5 7
9

.4 8
3

.8

9
0

.5

8
8

.0 9
1

.0 9
3

.6 9
6

.2

2
2

.1

3
8

.2

6
0

.7

8
4

.8

5
2

.4

7
0

.3

8
3

.8

9
3

.1

8
0

.2

9
0

.5 9
6

.0 9
8

.5

3
8

.8

6
1

.5

7
9

.7

9
0

.0

6
1

.5

7
8

.4

8
8

.5

9
5

.7

8
8

.8 9
3

.9 9
6

.3

9
8

.6

k=1

50 100 200 500

2
3

.6

3
1

.7

4
1

.9

5
3

.7

4
7

.1

5
4

.3

6
2

.2

7
3

.5

5
5

.4

6
3

.9

7
2

.0

8
1

.9

2
0

.2

3
6

.4

5
8

.0

8
1

.7

3
5

.1

5
4

.2

7
0

.8

8
5

.7

4
3

.5

6
3

.5

7
9

.0

9
0

.7

3
8

.9

6
1

.2

7
9

.3

8
9

.3

5
3

.4

7
1

.6

8
4

.3

9
2

.4

6
8

.3

8
1

.1

8
9

.1 9
4

.3

k=10

200 500 1000

2
6

.6

3
9

.3

5
0

.1

2
8

.9

4
3

.5

5
7

.6

3
1

.2

4
6

.7

6
0

.9

4
9

.5

7
7

.3

8
9

.0

4
5

.7

6
8

.4

8
4

.1

4
6

.6

6
9

.3

8
3

.5

6
5

.2

8
1

.5

9
4

.2

6
4

.0

7
9

.7

9
3

.9

6
3

.8

7
9

.0

9
3

.3

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

TF-IDF DEbase DE
ce
base

annCUR annCUR
TFIDF

annCUR
DEBASE

Proposed Approaches adaCUR adaCUR
TFIDF

adaCUR
DEBASE

(b) Number of train/anchor queries |Qtrain| = 500.

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

3
6

.9

4
3

.9

5
5

.6

6
6

.97
3

.4 7
8

.2 8
2

.6

9
0

.0

9
2

.1

9
4

.2

9
6

.0

9
8

.1

2
1

.8

4
0

.6

6
4

.1

8
7

.2

5
6

.9

7
4

.4

8
8

.3

9
5

.9

8
4

.6

9
2

.9 9
6

.7

9
8

.9

3
9

.2

6
6

.5

8
5

.5

9
5

.8

6
4

.5

8
2

.5

9
2

.9 9
7

.2

8
9

.1 9
4

.5 9
7

.7

9
9

.1

k=1

50 100 200 500

2
3

.5

3
1

.4

4
1

.6

5
3

.4

4
6

.4

5
3

.5

6
1

.6

7
3

.0

6
2

.6

7
0

.8

7
7

.8

8
6

.5

2
0

.9

3
7

.7

6
0

.6

8
5

.5

4
0

.6

6
3

.4

8
1

.6

9
4

.2

5
1

.6

7
2

.7

8
7

.9

9
7

.0

4
0

.6

6
7

.6

8
5

.8

9
6

.7

5
9

.2

7
9

.6

9
1

.6 9
7

.7

7
3

.9

8
7

.1

9
4

.2 9
8

.3

k=10

200 500 1000

2
6

.7

3
9

.2

5
0

.0

2
8

.9

4
3

.4

5
7

.5

3
5

.6

5
1

.7

6
5

.8

5
1

.5

8
2

.1

9
3

.1

5
4

.9

8
5

.0

9
5

.8

5
6

.1

8
5

.4

9
5

.9

7
4

.8

9
4

.1 9
8

.2

7
6

.2

9
4

.2 9
8

.6

7
6

.1

9
3

.7 9
8

.4

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

TF-IDF DEbase DE
ce
base

annCUR annCUR
TFIDF

annCUR
DEBASE

Proposed Approaches adaCUR adaCUR
TFIDF

adaCUR
DEBASE

(c) Number of train/anchor queries |Qtrain| = 2000.

Figure 13: Top-k-Recall for ADACUR (using five rounds) and baselines for domain=YuGiOh. Each subfigure
corresponds to a different value of the number of train/anchor queries (|Qtrain|).

8101

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

3
5

.2 4
0

.3 4
5

.1

5
2

.6

9
0

.1

9
2

.2

9
3

.7

9
5

.8

8
9

.8

9
2

.0

9
3

.8

9
5

.9

6
.9

1
7

.1

2
9

.1

5
3

.8

1
8

.8

2
8

.2

3
9

.0

7
2

.6

4
5

.6

5
9

.4

6
9

.5

8
8

.4

1
5

.1

2
2

.0

3
8

.3

6
6

.0

3
2

.2

4
0

.0

5
5

.7

8
0

.88
6

.0 8
8

.9 9
2

.4 9
7

.8

k=1

50 100 200 500

1
7

.2 2
1

.2 2
5

.7

3
2

.6

5
4

.9

6
2

.5

6
9

.6

7
8

.0

5
4

.3

6
2

.1

6
9

.5

7
8

.2

7
.1

1
5

.8

2
8

.6

5
1

.4

8
.4

1
4

.6

2
1

.8

5
8

.1

1
1

.2

1
8

.2

2
5

.9

6
5

.7

1
4

.5 2
0

.4

3
5

.8

6
5

.0

1
8

.8 2
3

.6

3
9

.5

7
3

.2

4
3

.6

5
1

.2

6
4

.5

8
5

.8

k=10

200 500 1000

1
2

.2 1
8

.1 2
4

.0

3
3

.8

4
6

.9

5
7

.2

3
3

.7

4
7

.1

5
7

.8

2
4

.7

4
8

.4

6
7

.6

1
4

.0

4
0

.2

6
6

.8

1
1

.5

3
8

.9

6
8

.0

2
5

.9

6
1

.6

7
9

.2

2
0

.9

6
2

.1

8
1

.7

2
7

.9

6
6

.8

8
4

.9

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

TF-IDF DEbase DE
ce
base

annCUR annCUR
TFIDF

annCUR
DEBASE

Proposed Approaches adaCUR adaCUR
TFIDF

adaCUR
DEBASE

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

3
5

.2 4
0

.3 4
5

.1

5
2

.6

9
0

.1

9
2

.2

9
3

.7

9
5

.8

8
9

.8

9
2

.0

9
3

.8

9
5

.9

6
.9

1
7

.1

2
9

.1

5
3

.8

1
8

.8

2
8

.2

3
9

.0

7
2

.6

4
5

.6

5
9

.4

6
9

.5

8
8

.4

1
5

.1

2
2

.0

3
8

.3

6
6

.0

3
2

.2

4
0

.0

5
5

.7

8
0

.88
6

.0 8
8

.9 9
2

.4 9
7

.8

k=1

50 100 200 500

1
7

.2 2
1

.2 2
5

.7

3
2

.6

5
4

.9

6
2

.5

6
9

.6

7
8

.0

5
4

.3

6
2

.1

6
9

.5

7
8

.2

7
.1

1
5

.8

2
8

.6

5
1

.4

8
.4

1
4

.6

2
1

.8

5
8

.1

1
1

.2

1
8

.2

2
5

.9

6
5

.7

1
4

.5 2
0

.4

3
5

.8

6
5

.0

1
8

.8 2
3

.6

3
9

.5

7
3

.2

4
3

.6

5
1

.2

6
4

.5

8
5

.8

k=10

200 500 1000

1
2

.2 1
8

.1 2
4

.0

3
3

.8

4
6

.9

5
7

.2

3
3

.7

4
7

.1

5
7

.8

2
4

.7

4
8

.4

6
7

.6

1
4

.0

4
0

.2

6
6

.8

1
1

.5

3
8

.9

6
8

.0

2
5

.9

6
1

.6

7
9

.2

2
0

.9

6
2

.1

8
1

.7

2
7

.9

6
6

.8

8
4

.9

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

TF-IDF DEbase DE
ce
base

annCUR annCUR
TFIDF

annCUR
DEBASE

Proposed Approaches adaCUR adaCUR
TFIDF

adaCUR
DEBASE

(a) Number of train/anchor queries |Qtrain| = 100.

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

3
5

.0 4
0

.2 4
5

.0

5
2

.7

9
0

.2

9
2

.3

9
3

.8

9
6

.0

8
8

.6

9
0

.8 9
3

.3 9
5

.7

9
.1

2
6

.8

5
0

.5

7
5

.4

3
7

.6

5
5

.9

7
1

.4

8
4

.8

8
3

.3

9
2

.7 9
6

.8

9
8

.6

2
7

.3

5
4

.0

7
2

.4

8
4

.5

4
7

.6

6
8

.4

8
2

.7

9
1

.3

9
1

.1 9
4

.7 9
7

.4

9
8

.8

k=1

50 100 200 500

1
7

.0 2
1

.1 2
5

.4

3
2

.2

5
5

.2

6
2

.7

6
9

.8

7
8

.3

5
0

.9

5
8

.7

6
6

.3

7
5

.2

9
.7

2
4

.6

4
3

.7

6
9

.2

1
8

.2

3
3

.5

5
1

.8

7
2

.1

3
0

.2

5
0

.9

6
9

.0

8
3

.5

2
5

.4

4
9

.9

6
9

.2

8
0

.8

3
4

.8

5
5

.6

7
2

.3

8
3

.5

5
9

.8

7
3

.5

8
3

.2

9
0

.1

k=10

200 500 1000

1
2

.2 1
8

.1 2
3

.9

3
4

.0

4
7

.1

5
7

.5

3
2

.8

4
5

.1

5
4

.3

3
6

.1

6
6

.0

8
0

.8

3
0

.2

5
4

.1

7
2

.2

3
0

.7

5
5

.2

7
6

.1

5
4

.3

7
2

.6

8
9

.5

4
8

.6

6
6

.5

8
8

.9

5
3

.5

7
0

.9

8
9

.6

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

TF-IDF DEbase DE
ce
base

annCUR annCUR
TFIDF

annCUR
DEBASE

Proposed Approaches adaCUR adaCUR
TFIDF

adaCUR
DEBASE

(b) Number of train/anchor queries |Qtrain| = 500.

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

3
4

.7 4
0

.0 4
5

.3

5
2

.8

9
0

.3

9
2

.5

9
4

.0

9
6

.0

9
1

.5 9
4

.1

9
5

.7

9
7

.7

9
.8

2
8

.4

5
2

.4

7
8

.5

4
2

.7

5
9

.5

7
7

.3

9
0

.7

8
7

.4

9
4

.5 9
7

.6

9
9

.5

2
9

.0

5
5

.5

7
7

.5

9
0

.7

5
1

.4

7
3

.2

8
8

.2

9
5

.5

9
2

.0 9
5

.8 9
8

.2

9
9

.5

k=1

50 100 200 500

1
7

.1 2
1

.2 2
5

.7

3
2

.8

5
5

.0

6
2

.5

6
9

.6

7
8

.0

5
7

.1

6
5

.6

7
2

.7

8
1

.6

1
0

.6

2
7

.1

4
7

.1

7
3

.8

2
1

.5

3
9

.2

6
1

.3

8
4

.4

3
7

.4

6
1

.0

7
9

.6

9
3

.7

2
7

.9

5
4

.3

7
6

.1

9
0

.1

4
0

.9

6
4

.6

8
2

.5

9
3

.6

6
5

.3

7
9

.6

8
9

.4

9
6

.0

k=10

200 500 1000

1
2

.3 1
8

.2 2
4

.1

3
3

.9

4
7

.0

5
7

.3

3
4

.5

4
8

.6

5
9

.9

3
8

.4

7
0

.0

8
6

.0

3
6

.4

6
8

.5

8
8

.7

4
1

.0

7
5

.3

9
1

.7

6
3

.2

8
8

.2

9
5

.1

6
1

.1

8
8

.5

9
6

.2

6
5

.2

8
8

.9

9
6

.4

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

TF-IDF DEbase DE
ce
base

annCUR annCUR
TFIDF

annCUR
DEBASE

Proposed Approaches adaCUR adaCUR
TFIDF

adaCUR
DEBASE

(c) Number of train/anchor queries |Qtrain| = 2000.

Figure 14: Top-k-Recall for ADACUR (using five rounds) and baselines for domain=StarTrek. Each subfigure
corresponds to a different value of the number of train/anchor queries (|Qtrain|).

8102

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

3
0

.2 3
5

.8 4
0

.6

4
8

.0

9
8

.6

9
8

.8

9
9

.2

9
9

.5

9
8

.2

9
8

.6

9
8

.8

9
9

.4

6
.6

1
5

.4

2
7

.9

5
1

.9

6
.5

2
0

.3

3
2

.6

7
2

.2

2
4

.9

3
7

.5

4
8

.0

8
9

.8

1
0

.2 1
5

.9

2
9

.0

6
3

.2

2
7

.0

3
3

.6

4
9

.9

7
9

.3

9
7

.7

9
8

.4

9
8

.8

9
9

.4

k=1

50 100 200 500

1
3

.2 1
6

.3 1
9

.7 2
5

.4

6
3

.1

7
1

.1

7
8

.5

8
6

.2

5
8

.3

6
6

.7

7
3

.9

8
2

.7

8
.7

1
7

.3

2
8

.0

4
7

.8

4
.3

9
.9

1
8

.3

4
9

.9

4
.6 7

.8 1
1

.8

5
7

.5

1
1

.0 1
5

.6

2
7

.5

5
9

.1

1
4

.4 1
8

.6

3
2

.5

6
7

.6

4
4

.4

5
3

.6

6
5

.9

8
7

.0

k=10

200 500 1000

9
.0 1

3
.0 1
7

.3

4
1

.2

5
6

.8

6
8

.2

3
7

.6

5
2

.6

6
4

.0

3
1

.3

5
3

.0

7
0

.9

1
2

.8

3
7

.9

7
0

.4

4
.3

2
8

.3

6
5

.8

2
3

.8

6
1

.9

8
1

.5

1
8

.4

6
2

.1

8
3

.5

2
4

.1

6
6

.9

8
7

.8

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

TF-IDF DEbase DE
ce
base

annCUR annCUR
TFIDF

annCUR
DEBASE

Proposed Approaches adaCUR adaCUR
TFIDF

adaCUR
DEBASE

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

3
0

.2 3
5

.8 4
0

.6

4
8

.0

9
8

.6

9
8

.8

9
9

.2

9
9

.5

9
8

.2

9
8

.6

9
8

.8

9
9

.4

6
.6

1
5

.4

2
7

.9

5
1

.9

6
.5

2
0

.3

3
2

.6

7
2

.2

2
4

.9

3
7

.5

4
8

.0

8
9

.8

1
0

.2 1
5

.9

2
9

.0

6
3

.2

2
7

.0

3
3

.6

4
9

.9

7
9

.3

9
7

.7

9
8

.4

9
8

.8

9
9

.4

k=1

50 100 200 500

1
3

.2 1
6

.3 1
9

.7 2
5

.4

6
3

.1

7
1

.1

7
8

.5

8
6

.2

5
8

.3

6
6

.7

7
3

.9

8
2

.7

8
.7

1
7

.3

2
8

.0

4
7

.8

4
.3

9
.9

1
8

.3

4
9

.9

4
.6 7

.8 1
1

.8

5
7

.5

1
1

.0 1
5

.6

2
7

.5

5
9

.1

1
4

.4 1
8

.6

3
2

.5

6
7

.6

4
4

.4

5
3

.6

6
5

.9

8
7

.0

k=10

200 500 1000

9
.0 1

3
.0 1
7

.3

4
1

.2

5
6

.8

6
8

.2

3
7

.6

5
2

.6

6
4

.0

3
1

.3

5
3

.0

7
0

.9

1
2

.8

3
7

.9

7
0

.4

4
.3

2
8

.3

6
5

.8

2
3

.8

6
1

.9

8
1

.5

1
8

.4

6
2

.1

8
3

.5

2
4

.1

6
6

.9

8
7

.8

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

TF-IDF DEbase DE
ce
base

annCUR annCUR
TFIDF

annCUR
DEBASE

Proposed Approaches adaCUR adaCUR
TFIDF

adaCUR
DEBASE

(a) Number of train/anchor queries |Qtrain| = 100.

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

3
0

.8 3
6

.0 4
0

.8

4
7

.5

9
8

.7

9
8

.9

9
9

.3

9
9

.5

9
8

.3

9
8

.8

9
9

.0

9
9

.2

8
.8

2
2

.6

4
2

.5

6
7

.8

1
0

.3

4
8

.1

6
8

.1

8
3

.7

6
5

.3

8
9

.2

9
7

.3 9
9

.7

2
3

.4

4
8

.5

6
8

.7

8
4

.2

4
3

.5

6
6

.8

8
1

.2

9
0

.7

9
8

.5

9
9

.0

9
9

.5

9
9

.5

k=1

50 100 200 500

1
3

.5 1
6

.6 1
9

.9 2
5

.5

6
3

.0

7
1

.0

7
8

.4

8
6

.1

5
6

.4

6
4

.3

7
1

.8

8
0

.2

1
0

.3

2
2

.0

3
8

.8

5
9

.7

6
.5

2
6

.9

4
4

.3

6
3

.4

1
4

.9

3
0

.0

4
6

.8

6
5

.4

2
3

.1

4
3

.5

5
9

.8

7
3

.5

3
0

.6

4
9

.7

6
5

.0

7
7

.6

5
5

.2

6
8

.8

7
9

.1

8
8

.3

k=10

200 500 1000

9
.0 1

3
.0 1
7

.2

4
1

.2

5
6

.8

6
8

.2

3
3

.8

4
7

.7

5
8

.9

4
1

.0

6
5

.5

7
8

.9

2
8

.3

5
0

.1

6
6

.5

1
4

.4

3
0

.4

6
9

.9

5
0

.5

6
8

.4

8
8

.2

4
3

.1

6
1

.8

8
7

.4

4
4

.1

6
5

.3

8
8

.6

k=100

Inference Cost (Total Number of Cross-Encoder Calls)

TF-IDF DEbase DE
ce
base

annCUR annCUR
TFIDF

annCUR
DEBASE

Proposed Approaches adaCUR adaCUR
TFIDF

adaCUR
DEBASE

(b) Number of train/anchor queries |Qtrain| = 500.

50 100 200 500
0

20

40

60

80

100

T
op

-k
-R

ec
al

l

3
1

.8 3
6

.2 4
2

.6

5
1

.4

9
9

.2

9
9

.2

9
9

.6

9
9

.6

9
9

.0

9
9

.2

9
9

.6

9
9

.8

9
.0

2
4

.4

4
2

.2

6
8

.8

1
3

.2

5
6

.0

7
5

.2

8
8

.8

7
8

.6

9
6

.4 9
9

.2

9
9

.8

2
6

.0

5
2

.8

7
6

.0

9
1

.8

4
8

.4

7
2

.6

8
8

.2

9
5

.89
9

.0

9
9

.2

9
9

.6

9
9

.6

k=1

50 100 200 500

1
4

.2 1
7

.1 2
0

.8 2
6

.9

6
3

.0

7
1

.6

7
9

.1

8
7

.1

6
2

.6

7
0

.7

7
8

.3

8
6

.0

1
0

.5

2
3

.6

4
0

.0

6
1

.3

7
.3

3
1

.7

5
3

.7

7
7

.0

2
2

.0

4
4

.8

7
0

.8

9
0

.3

2
5

.7

4
9

.9

7
0

.4

8
7

.3

3
7

.3

6
0

.0

7
7

.8

9
0

.0

6
1

.7

7
6

.0

8
6

.2

9
5

.1

k=10

200 500 1000

9
.4 1

3
.6 1

8
.0

4
0

.9

5
6

.5

6
8

.0

3
9

.6

5
5

.0

6
6

.4

4
2

.6

6
7

.8

8
1

.6

3
5

.3

6
6

.5

8
5

.3

2
5

.4

6
6

.7

8
8

.6

6
2

.1

8
7

.3 9
3

.8

5
7

.0

8
6

.3

9
4

.5

5
6

.8

8
5

.9

9
5

.5
k=100

Inference Cost (Total Number of Cross-Encoder Calls)

TF-IDF DEbase DE
ce
base

annCUR annCUR
TFIDF

annCUR
DEBASE

Proposed Approaches adaCUR adaCUR
TFIDF

adaCUR
DEBASE

(c) Number of train/anchor queries |Qtrain| = 2000.

Figure 15: Top-k-Recall for ADACUR (using five rounds) and baselines for domain=Military. Each subfigure
corresponds to a different value of the number of train/anchor queries (|Qtrain|). Note that DEBASE has high Top-1-
Recall values as domain=Military is included in the set of train domains in ZESHEL which are used to train both
DEBASE and the cross-encoder model.

8103

