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Abstract

Large multilingual pretrained language models
(mPLMs) have become the de facto state of
the art for cross-lingual transfer in NLP. How-
ever, their large-scale deployment to many lan-
guages, besides pretraining data scarcity, is also
hindered by the increase in vocabulary size and
limitations in their parameter budget. In or-
der to boost the capacity of mPLMs to deal
with low-resource and unseen languages, we ex-
plore the potential of leveraging transliteration
on a massive scale. In particular, we explore
the UROMAN transliteration tool, which pro-
vides mappings from UTF-8 to Latin characters
for all the writing systems, enabling inexpen-
sive romanization for virtually any language.
We first focus on establishing how UROMAN
compares against other language-specific and
manually curated transliterators for adapting
multilingual PLMs. We then study and com-
pare a plethora of data- and parameter-efficient
strategies for adapting the mPLMs to roman-
ized and non-romanized corpora of 14 diverse
low-resource languages. Our results reveal that
UROMAN-based transliteration can offer strong
performance for many languages, with partic-
ular gains achieved in the most challenging
setups: on languages with unseen scripts and
with limited training data without any vocabu-
lary augmentation. Further analyses reveal that
an improved tokenizer based on romanized data
can even outperform non-transliteration-based
methods in the majority of languages.

1 Introduction

Massively multilingual language models (mPLMs)
such as mBERT (Devlin et al., 2019) and XLM-R
(Conneau et al., 2020) have become the driving
force for a variety of applications in multilingual
NLP (Ponti et al., 2020; Hu et al., 2020; Moghe
et al., 2023). However, guaranteeing and main-
taining strong performance for a wide spectrum
of low-resource languages is difficult due to two
crucial problems. The first issue is the vocabulary

Language Original Text Romanized Text Translation
Bhojpuri SifSfere s jorjiyan bhaasaa  Georgian language
Sinhala Cﬂd&@@-ﬂﬁ) grahalooka planets

Sindhi 3l ayran Iran

Khmer 131] Ej Aag. sedtthakicca economy

Figure 1: Romanization across different languages.

size, as the vocabulary is bound to increase with the
number of languages added if per-language perfor-
mance is to be maintained (Hu et al., 2020; Artetxe
et al., 2020; Pfeiffer et al., 2022). Second, pretrain-
ing mPLMs with a fixed model capacity improves
cross-lingual performance up to a point after which
it starts to decrease; this is the phenomenon termed
the curse of multilinguality (Conneau et al., 2020).
Transliteration refers to the process of convert-
ing language represented in one writing system
to another (Wellisch et al., 1978). Latin script-
centered transliteration or romanization is the most
common form of transliteration (Lin et al., 2018;
Amrhein and Sennrich, 2020; Demirsahin et al.,
2022) as the Latin/Roman script is by far the most
widely adopted writing script in the world (Daniels
and Bright, 1996; van Esch et al., 2022).! Adapt-
ing mPLMs via transliteration can address the two
aforementioned critical issues. 1) Since the Latin
script covers a dominant portion of the mPLM’s
vocabulary (e.g., 77% in case of mBERT, see Acs),
‘romanizing’ the remaining part of the vocabulary
might mitigate the vocabulary size issue and boost
vocabulary sharing. 2) Since no new tokens are
added during the romanization process, reusing
pretrained embeddings from the mPLM’s embed-
ding matrix helps reuse the information already
present within the mPLM, thereby allocating the
model’s parameter budget more efficiently.
However, the main drawback of transliteration
seems to be the expensive process of creating ef-
fective language-specific transliterators, as they

! According to Encyclopedia Britannica, up to 70% of the
world population is employing the Latin script.
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typically require language expertise to curate dic-
tionaries that map tokens from one language and
script to another. Therefore, previous attempts at
mPLM adaptation to unseen languages via translit-
eration (Muller et al., 2021; Chau and Smith, 2021;
Dhamecha et al., 2021; Moosa et al., 2023) were
constrained to a handful of languages due to the
limited availability of language-specific transliter-
ators, or were applied only to languages that have
‘language siblings’ with developed transliterators.

In this work, unlike previous work, we propose
to use and then evaluate the usefulness of a uni-
versal romanization tool, UROMAN (Hermjakob
et al., 2018), for quick, large-scale and effective
adaptation of mPLMs to low-resource languages.
The UROMAN tool disposes of language-specific
curated dictionaries and maps any UTF-8 charac-
ter to the Latin script, increasing the portability of
romanization, with some examples in Figure 1.

We analyze language adaptation on a massive
scale via UROMAN-based romanization on a set of
14 diverse low-resource languages. We conduct ex-
periments within the standard parameter-efficient
adapter-based cross-lingual transfer setup on two
tasks: Named Entity Recognition (NER) on the
WikiANN dataset (Pan et al., 2017; Rahimi et al.,
2019), and Dependency Parsing (DP) with Univer-
sal Dependencies v2.7 (Nivre et al., 2020). Our
key results suggest that UROMAN-based transliter-
ation can offer strong performance on par or even
outperforming adaptation with language-specific
transliterators, setting up the basis for wider use of
transliteration-based mPLM adaptation techniques
in future work. The gains with romanization-based
adaptation over standard adaptation baselines are
particularly pronounced for languages with unseen
scripts (~8-22 performance points) without any
vocabulary augmentation.?

2 Background

Why UROMAN-Based Romanization? UROMAN-
based romanization is not always fully reversible,
and its usage for transliteration has thus been lim-
ited in the literature. However, due to its high
portability, UROMAN can help scale the process of
transliteration massively and as such benefit low-
resource scenarios and wider adaptation of mPLMs.
The main idea, as hinted in §1, is to (learn to) map

2Code and data available at https://github.

com/UKPLab/emnlp23_romanization_based_
adaptation

any UTF-8 character to the Latin script, without the
use of any external language-specific dictionaries
(see Hermjakob et al. (2018) for technical details).

Cross-Lingual Transfer to Low-Resource Lan-
guages. Parameter-efficient and modular fine-
tuning methods (Pfeiffer et al., 2023) such as
adapters (Houlsby et al., 2019; Pfeiffer et al.,
2020b) have been used for cross-lingual trans-
fer, putting a particular focus on enabling trans-
fer to low-resource languages and scenarios, in-
cluding languages with scripts ‘unseen’ by the
base mPLM (Pfeiffer et al., 2021). Adapters are
small lightweight components stitched into the base
mPLM, and then trained for particular languages
and tasks while keeping the parameters of the orig-
inal mPLM frozen. This circumvents the issues
of catastrophic forgetting and interference (Mc-
Closkey and Cohen, 1989) within the mPLM, and
allows for extending its reach also to unseen lan-
guages (Pfeiffer et al., 2021; Ansell et al., 2021).
For our main empirical analyses, we adopt a
state-of-the-art modular method for cross-lingual
transfer: MAD-X (Pfeiffer et al., 2020b). In short,
MAD-X is based on language adapters (LA), task
adapters (TA), and invertible adapters (INV). While
LAs are trained for specific languages relying on
masked language modeling, TAs are trained with
high-resource languages relying on task-annotated
data and task-specific objectives. At inference, the
source LA is replaced with the target LA while
the TA is kept. In order to do parameter-efficient
learning for the token-level embeddings across dif-
ferent languages and to deal with the vocabulary
mismatch between source and target languages,
Pfeiffer et al. (2020b) also propose INV adapters:
they are placed on top of the embedding layer and
their inverses precede the output embedding layer.?
We adopt the better-performing MAD-X 2.0 setup
(Pfeiffer et al., 2021) where the adapters in the last
Transformer layer are dropped at inference.*

3 Experiments and Results

As the main means of analyzing the impact of
transliteration in general and UROMAN-based ro-
manization in particular, we train different variants
of language adapters within the MAD-X frame-
work, based on transliterated and non-transliterated

They are trained together with the LAs while the rest of
the mPLM is kept frozen.

*We refer the reader to the original papers for further tech-
nical details regarding the MAD-X framework.
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Language Family Script # Sentences
Bhojpuri (bh) Indo-European  Devanagari 35,983
Buryat (bxr) Mongolic Cyrillic 41,692
Erzya (myv) Uralic Cyrilic 42,575
Meadow Mari (mhr)  Uralic Cyrillic 144,529
Min Dong (cdo) Sino-Tibetan Chinese 33,978
Mingrelian (xmf) Kartvelian Georgian 63,032
Sindhi (sd) Indo-European  Arabic 86,176
Sorani Kurdish (ckb)  Indo-European  Arabic 459,475
Uyghur (ug) Turkic Arabic 149,813
" Amharic (am) =~~~ Afro-Asiatic =~ Ge’ez 88,320
Divehi (dv) Indo-European  Thaana 34,779
Khmer (km) Austroasiatic Khmer 139,704
Sinhala (si) Indo-European  Sinhala 219,866
Tibetan (bo) Sino-Tibetan Tibetan 131,362

Table 1: Languages with their ISO 639-3 codes used in
our evaluation, along with their script, language family,
and number of sentences available for pretraining. The
dashed line separates languages with unseen scripts,
placed in the bottom part of the table.

versions of target language data, outlined here.

Variants with Non-Transliterated Data. For the
Non-Transp o, ny Vvariant, we train LAs and INV
adapters together. This variant serves to examine
the extent to which mPLMs can adapt to unseen
languages without any vocabulary extension.” We
compare this to Non-Transy s +gmb, ., Which trains
a new tokenizer for the target language (Pfeiffer
et al., 2021): the so-called ‘lexically overlapping’
tokens are initialized with mPLM’s trained embed-
dings, while the remaining embeddings are initial-
ized randomly. All these embeddings (Emby ¢ ) are
fine-tuned along with LAs.

Variants with Transliterated Data. We evaluate a
Transy Ny variant, which uses the same setup as
Non-Trans; ao4+nv but now with transliterated data.
We again note that in this efficient setup, we do not
extend the vocabulary size, and use the fewest train-
able parameters. In the Transpa.mpLM, variant,
we train LAs along with fine-tuning the pretrained
embeddings of mPLM (mPLMg). This further en-
hances the model capacity by fine-tuning the em-
bedding layer instead of using invertible adapters.
For both variants, transliterated data can be pro-
duced via different transliterators: (i) language-
specific ones; (ii) the ones from ‘language siblings’
(e.g., using a Georgian transliterator for Mingre-
lian), or (iii) UROMAN.

SSince LAs without INV typically perform worse than with
INV (Pfeiffer et al., 2020b), also confirmed in our preliminary
experiments, we do not ablate to the setup without INV.

We do not have this setup for non-transliterated data since,
for languages with unseen scripts, most of the tokens are re-
placed by the generic ‘UNK’ token, and fine-tuning embed-
dings hardly benefit downstream performance.

3.1 Experimental Setup

Data, Languages and Tasks. Following Pfeiffer
et al. (2021), we select mBERT as our base mPLM.
We experiment with 14 typologically diverse low-
resource languages that are not part of mBERT’s
pretraining corpora, with 5/14 languages written
in distinct scripts (see Table 1 for details). For LA
training, we use Wikipedia dumps for the target
languages, which we also transliterate (using dif-
ferent transliterators). Evaluation is conducted on
two standard cross-lingual transfer tasks in zero-
shot setups: 1) the WikiAnn NER dataset (Pan
et al., 2017) with the train, dev, and test splits from
(Rahimi et al., 2019); 2) for dependency parsing,
we rely on the UD Dataset v2.7 (Nivre et al., 2020).

LAs and TAs. English is the source language in all
experiments, and is used for training TAs. The En-
glish LA is obtained directly from Adapterhub.ml
(Pfeiffer et al., 2020a), LAs and embeddings (when
needed) are only trained for target languages.

Finally, for the Non-Transp a+gmp, ., variant, we
train a WordPiece tokenizer on the target language
data with a vocabulary size of 10K.

Training of Language and Task Adapters. We
train all the language adapters for 50 epochs or
~ 50K update steps based on the corpus size. The
batch size is set to 64 and the learning rate is 1e — 4.

We train English task adapters following the
setup from (Pfeiffer et al., 2020b). For NER, we di-
rectly obtain the task adapter from Adapterhub.ml
which is trained with a learning rate of le — 4 for
10 epochs. For DP, we train a Transformer-based
(Glavas and Vuli¢, 2021) biaffine attention depen-
dency parser (Dozat and Manning, 2017). We use
a learning rate of 5e — 4 and train for 10 epochs as
in (Pfeiffer et al., 2021).

All the reported results in both tasks (NER and
DP) are reported as averages over 6 random seeds.
All the models have been trained on A100 or V100
GPUs. None of the training methods consumed
more than 36 hours. As the main means of analyz-
ing the impact of transliteration in general and URO-
MAN-based romanization in particular, we train
different variants of language adapters within the
MAD-X framework, based on transliterated and
non-transliterated versions of target language data,
outlined here.

3.2 Results and Discussion

UROMAN versus Other Transliterators and
Transliteration Strategies. In order to estab-
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Task Transliterator am ar ka ru hi sd avg
. UROMAN 25.6 24.8 61.4 66.5 48.6 35.3 43.7
NER (Macro F1) Other 25.5 237 573 639 567 359 438
77777777777777 UROMAN ~ 36.1/6.6 33.0/19.8 -~ 4737324 338/17.8 - 37.5/19.1
UD (UAS /LAS) Other 299/54 32.6/199 - 450/199 332/179 - 352/158
Table 2: Comparison of UROMAN with language-specific transliterators.
Seen Script Unseen Script
Method bh cdo ckb mhr sd ug xmf am bo dv km si avg
UROMAN 3259 27.34 61.73 64.68 35.33 28.10 52.58 25.69 3595 29.99 4176 31.83 26.89
BORROW 5342 (hi) - 12.46 (ar) 45.86 (ru) 16.79 (ar) 12.85 (ar) 24.77 (ru) - - - - - -
RAND 25.42 19.51 53.55 42.02 27.20 25.18 35.82 18.00 1895 21.19 3275 20.01 21.59
Table 3: Comparison of various transliteration strategies on the NER task (Macro-F1).
Seen Script Unseen Script
Variant bh cdo sd xmf  mhr  ckb ug am bo dv km si avg
Non-Transpa+INv 55.14 24.19 3131 49.74 7031 4554 3353 3.26 19.86 1872 13.81 23.14 18.39
Transpa + INV 3259 27.34 3533 5258 64.68 67.73 28.10 25.69 3595 2999 41.76 31.83 26.89

Non-Transp A+Emby.e
Transp A + mPLM

60.00 2891 4247 5199 61.05 79.12" 50.42 47.60 40.96 31.21 5394 4589 49.01
49.05 3692 39.16 57.99 69.85 7392 3343 37.09 33.82 4040 5239 4524 4744

Table 4: Results (Macro-F1 scores) on WikiAnn NER averaged over 6 random seeds.

Seen Script Unseen Script

Variant bh myv ug bxr am avg
Non-Transpa+Nnv 28.46/11.53 45.28/26.27 33.44/15.28 39.75/19.77 19.08/1.85 33.20/10.81
Transp A + NV 25.12/10.17 45.74/26.64 32.30/15.10 37.92/17.23 36.07/7.58 35.43/12.41

Non-TranSpA+Emby .
Transg A + mpLMy

26.68/10.10 ~ 48.34/25.34 412072281 39.51/16.02 36477839 =~ 38.44/1220
28.04/11.13 41.97/20.29 50.89/16.56 35.03/20.29 39.10/9.00

39.01/14.65

Table 5: Results (UAS / LAS scores) in the DP task with UD, averaged over 6 random seeds.

lish the utility of UROMAN as a viable translit-
erator, especially for low-resource languages, we
compare its performance with transliteration op-
tions using the Transy o + nv setup as the most ef-
ficient scenario. First, we compare UROMAN with
language-specific transliterators available for se-
lected languages: amseg (Yimam et al., 2021) for
Ambharic, ai4bharat-transliteration (Madhani et al.,
2022) for Hindi and Sindhi, lang-trans for Ara-
bic, and transliterate for Russian and Georgian’.
The transliterators used in this work are outlined
in Table 6. The results are provided in Table 2.
On average, UROMAN performs better or compa-
rable to the language-specific transliterators. This
provides justification to use UROMAN for massive
transliteration at scale.

Second, we compare UROMAN to two other
transliteration strategies. (i) BORROW refers to
borrowing transliterators from languages within
the same language family and written in the same
script.®  Since building transliterators are costly,
this gives us an estimate of whether it is possible to
rely on the related transliterators when we do not
have a language-specific one at hand. (ii) RAND

"For reproducibility, the links to the language-specific
transliterators are available in Appendix A

8E.g., a Hindi transliterator can be borrowed for Bhojpuri
since the two are related and written in Devanagari.

refers to a random setting where we associate any
non-ASCII character with any ASCII character,
giving us an estimate of whether we actually need
knowledge of the language to build transliterators.
The results are provided in Table 3: UROMAN is
largely and consistently outperforming both BOR-
ROW and RAND, where the single exception is
BORROW (from Hindi to Bhojpuri). Surprisingly,
RAND also yields reasonable performance and
on average even outperforms the Non-Transy o+1nv
variant with non-transliterated data (21.59 vs 18.39
in Table 4 later). This provides further evidence
towards the utility of transliteration in general and
UROMAN-based romanization in particular to assist
and improve language adaptation.

Performance on Low-Resource Languages is
summarized in Table 4 and Table 5.° We note that
Transy a+nv outperforms Non-Transy a4nv for all
the languages with unseen scripts, and achieves
that with huge margins (~ 8-22 points for NER and
~ 17 points in UAS scores). We observe similar
trends for some of the languages with seen scripts
such as Min Dong (cdo), Sindhi (sd), Mingrelian

®We also compare the performance of these methods with
the standard cross-lingual transfer setup for finetuning an out-
of-the-box mBERT for languages with unseen scripts in Ap-
pendix B. All the adapter-based methods massively outper-
form an out-of-the-box mBERT in this scenario.
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Figure 2: Sample efficiency in the NER task.
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Figure 3: Sample efficiency in the DP task.

(xmf) on NER tasks and Erzya (myv) on DP. The
less efficient Transp o+mpLM,, as expected, further
improves the performance for all the languages
except for Tibetan (b0).10 Non-Transy A+Emby ., »
however, now outperforms UROMAN-based meth-
ods for a majority of the languages. This ob-
servation can be attributed to various factors re-
lated to mBERT’s tokenizer, and we provide an
in-depth analysis later in Appendix C. Nonetheless,
we observe strong and competitive performance
of Transy A + mpLM, in both tasks, again indicating
that more attention should be put on transliteration-
based language adaptation in future work.

Sample Efficiency. Finally, we simulate a few-shot
setup to study the effectiveness of using transliter-
ated versus non-transliterated data in data-scarce
scenarios. For NER, we evaluate performance on
all the languages and on languages with unseen
scripts; for DP, we evaluate on all the languages.
Figure 2 indicates that Transy a+iny On average per-
forms better than all the other methods at sample
sizes 100 (i.e., 100 sentences in the target language)
and 1,000. However, from 10, 000 sentences on-
ward, Non-Transp A+Emb,,, takes the lead. We ob-
serve similar trends in the DP task (see Fig 3).
This establishes the utility of transliteration for (ex-
tremely) low-resource scenarios.

For Tibetan, longer words are composed using shorter
words separated by zsek (““.”) which is not a valid space de-
limiter for the mBERT tokenizer; the number of produced
subwords is thus much higher than for the other languages.

4 Conclusion

In this work, we have systematically analyzed and
confirmed the potential of romanization, imple-
mented via the UROMAN tool, to help with adap-
tation of multilingual pretrained language models.
Given (i) its broad applicability and (ii) strong per-
formance overall and for languages with unseen
scripts, we hope our study will inspire more work
on transliteration-based adaptation.

Limitations

In this paper, we work with UROMAN (Hermjakob
et al., 2018) which is an unsupervised romaniza-
tion tool. While it is an effective tool for roman-
ization at scale, it still has potential drawbacks.
Since it is only based on lexical substitution, its
transliterations may not semantically or phoneti-
cally align with the source content and may dif-
fer from transliterations preferred by native speak-
ers. Moreover, UROMAN is not invertible—as
we have highlighted—and may thus be less ap-
pealing when text in the original script needs to
be exactly reproduced. Our proposed method,
while it is parameter-efficient and effective—
particularly for low-resource languages—still
underperforms language-specific tokenizer-based
non-transliteration methods. Future work may fo-
cus on developing an improved and more efficient
tokenizer for transliteration-based methods as we
highlight in the Appendix.

While there is now a growing body of available
evaluation resources for low-resource languages
(Ebrahimi et al., 2022; Mhaske et al., 2023; Winata
et al., 2023, among others), our final selection of
tasks, resources and languages has been driven and
constrained by the specific concrete goal of our
short paper: studying and evaluating if and how
transliteration/romanization can help with adapta-
tion of languages with scripts unseen by the pre-
trained multilingual language model. We thus
closely follow the experimental setup of Pfeiffer
et al. (2021) which used the same set of tasks and
languages with unseen scripts.

Finally, romanization can be seen as a step to-
wards providing more universal, or rather language-
agnostic, input text representation. Full-fledged
comparisons against other approaches that aim
to strike language independence at the input or
feature level, such as byte-level models (e.g.,
ByT5 (Xue et al., 2022)) and pixel-based mod-
els (e.g., PIXEL (Rust et al., 2023)) go beyond
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the scope of this particular work, but we point
out to this as a very interesting future research av-
enue. Moreover, the integration of these language-
agnostic representations with ‘romanization’-based
approaches might yield additional benefits, and
should also be attested in future research.
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A Transliterators in Evaluation

Besides UROMAN, we also employ various
language-specific transliterators which are publicly
available. We list them in Table 6.

B Performance comparison of mBERT

We adapt the standard cross-lingual transfer setup
for mBERT. The model is finetuned on the task
data for a source language (high-resource) and is
used to perform inference on the target language
(low-resource). We report the performance com-
parison of the standard cross-lingual transfer setup
for mBERT on the NER task for languages with
unseen scripts with the adapter-based methods in
Table 7. We observe that the adapter-based meth-
ods outperform mBERT by huge margins.

C Further Analyses

Following previous work (Acs; Rust et al., 2021;
Moosa et al., 2023), we further analyze tokeniza-
tion quality of the mBERT tokenizer using the fol-
lowing established metrics: 1) % of “UNK”’s mea-
sures the % of “UNK” tokens produced by the
tokenizer, and our aim is to compare their rate
before and after transliteration; 2) fertility mea-
sures the number of subwords that are produced
per tokenized word; 3) proportion of continued
subwords measures the proportion of words for
which the tokenized word is split across at least
two subwords (denoted by the symbol ##).

From the results summarized in Figure 4, it is
apparent that transliteration drastically reduces %
of UNKs. However, mBERT’s tokenizer under-
performs as compared to monolingual tokenizers
based on fertility and the proportion of continued
subwords (Rust et al., 2021). Transliteration per-
forms better for some languages where the quality
of the mBERT tokenizer is similar to the monolin-
gual tokenizer such as for dv, km, and cdo. On the
other hand, transliteration methods perform worse
on languages where the quality of the underlying
mBERT tokenizer is relatively poor.

In order to test the hypothesis that the tokenizer
quality might be the principal reason for the perfor-
mance gap for the transliteration-based methods in
comparison to the non-transliteration based meth-
ods, we carried out an additional experiment. For
the experiment, we adapt the Non-Transp A+Emby,,
to operate on transliterated data, and call this vari-
ant Transp A+Empb, - Here, we train a new tokenizer

on the transliterated data and initialize lexically
overlapping embeddings with mBERT’s pretrained
embeddings.

We plot the performance in Figure 5. The new
method, Transp A+Emb, ., now outperforms the non-
transliteration-based variant on 8/12 languages and
also on average. Consequently, this validates our
hypothesis and is in line with the previous work
(Moosa et al., 2023). However, we found a drop
in performance in the case of mhr (-10.71) and
cdo (-10.14) when compared to Transpa + mpLMmy,-
These drops may be attributed to the lower degree
of lexical overlap with mBERT’s vocabulary, and
consequently a higher number of randomly initial-
ized embeddings for those target languages.
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Transliterator

Used for languages

Available at

UROMAN

github.com/isi-nlp/uroman

amseg

transliterate
ai4bharat-transliteration
lang-trans

i .org/project/amseg/

i .org/project/transliterate/

i .org/project/aidbharat-transliteration/
i.org/project/lang-trans/

W Before Transl.

am bh bo bxr cdo ckb dv km mhrmyv sd si ug xmf

(a)

Table 6: Transliterators used in this work.

Adter Trans|.

Fertility

10
8
6
1
ik
0

am  bh

o cdo

b ™ 0.0

s mBERT

W mBERT
monoTok

monoTok

= 5 &

Prop. Of Contd Words

m sd s xmf mhr ckb ug myv bxr am bh bo cdo dv km sd si xmfmhr ckb ug myv bxr

(b) (©

Figure 4: Tokenizer quality analysis. a) % of UNKs before and after transliteration, b) Fertility, and ¢) Proportion of
continued subwords for mBERT vs monolingual tokenizer.

Unseen Scripts

Variant am bo dv km si
mBERT 091 1740 130 10.71 2.50
Non-Transp a+INv 326 19.86 18.72 13.81 23.14
Transpa + INV 25.69 3595 29.99 41.76 31.83
Non-Transp a+Emb., 47.60 40.96 31.21 53.94 45.89
Transpa + mPLMj 37.09 3382 4040 5239 4524

Table 7: Performance Comparison of mBERT with
adapter-based finetuning methods for unseen scripts on

the NER task.

BN Transpaspms,,,

Non-Transy 4+ iy

0 am bh bo cdo ckb dv km mhr sd si ug xmf

am bh bxr

myv

Figure 5: Comparison of Non-Trans;s+gmb,, With
Trans; A+Emb, ., on NER (left) and DP (right).
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