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Abstract

As the immense opportunities enabled by large
language models become more apparent, NLP
systems will be increasingly expected to excel
in real-world settings. However, in many in-
stances, powerful models alone will not yield
translational NLP solutions, especially if the
formulated problem is not well aligned with the
real-world task. In this work, we study the case
of UMLS vocabulary insertion, an important
real-world task in which hundreds of thousands
of new terms, referred to as atoms, are added
to the UMLS, one of the most comprehensive
open-source biomedical knowledge bases (Bo-
denreider, 2004). Previous work aimed to de-
velop an automated NLP system to make this
time-consuming, costly, and error-prone task
more efficient. Nevertheless, practical progress
in this direction has been difficult to achieve
due to a problem formulation and evaluation
gap between research output and the real-world
task. In order to address this gap, we introduce
a new formulation for UMLS vocabulary inser-
tion which mirrors the real-world task, datasets
which faithfully represent it and several strong
baselines we developed through re-purposing
existing solutions. Additionally, we propose an
effective rule-enhanced biomedical language
model which enables important new model be-
havior, outperforms all strong baselines and
provides measurable qualitative improvements
to editors who carry out the UVI task. We hope
this case study provides insight into the consid-
erable importance of problem formulation for
the success of translational NLP solutions.

1 Introduction

The public release of large language model (LLM)
products like ChatGPT has triggered a wave of en-
thusiasm for NLP technologies. As more people
discover the wealth of opportunities enabled by
*Part of this work was done while interning at the NLM.

'Our code is available at https://github.com/
OSU-NLP-Group/UMLS-Vocabulary—-Insertion.
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Figure 1: The UMLS update process in (a) introduces
atoms from individual sources into the original UMLS
as synonyms of existing concepts or entirely new con-
cepts. The UVA task is formulated as binary synonymy
prediction (b) and was thus unable to tackle the real-
world update task addressed by our UVI formulation.

these technologies, NLP systems will be expected
to perform in a wide variety of real-world scenar-
ios. However, even as LLMs get increasingly more
capable, it is unlikely that they will lead to trans-
lational solutions alone. Although many aspects
are crucial for an NLP system’s success, we use
this work to highlight one key aspect of building
real-world systems which is sometimes taken for
granted: formulating a problem in a way that is
well-aligned with its real-world counterpart. To
explore the effect of this key step in building real-
world NLP systems, we provide a case study on the
important task of UMLS vocabulary insertion.

The Unified Medical Language System (UMLS)
(Bodenreider, 2004) is a large-scale biomedical
knowledge base that standardizes over 200 med-
ical vocabularies. The UMLS contains approxi-
mately 16 million source-specific terms, referred
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to as atoms, grouped into over 4 million unique
concepts, making it one of the most comprehen-
sive publicly available biomedical knowledge bases
and a crucial resource for biomedical interoperabil-
ity. Many of the vocabularies which make up the
UMLS are independently updated to keep up with
the rapidly advancing biomedical research field. In
order for this essential public resource to remain
up-to-date, a team of expert editors painstakingly
identify which new atoms should be integrated into
existing UMLS concepts or added as new concepts,
as shown in Figure la. This process, which we
refer to as UMLS vocabulary insertion (UVI), in-
volves inserting an average of over 300,000 new
atoms into the UMLS and is carried out twice a
year before each new UMLS version release.

Despite its importance, scale and complexity,
this task is accomplished by editors using lexical
information (McCray et al., 1994), synonymy in-
formation provided by the source vocabularies and
their own expertise. In order to improve this pro-
cess, much work has been done to augment it with
modern NLP techniques. In Nguyen et al. (2021),
the authors introduce datasets and models which
explore the task of UMLS vocabulary alignment
(UVA). As seen in Figure 1b, the authors formulate
the UVA task as a binary synonymy prediction task
between two UMLS atoms, while the real-world
task requires the whole UMLS to be considered
and a concept to be predicted for each new atom
(unless it is deemed a new concept atom). Un-
fortunately, while the UVA task has successfully
explored biomedical synonymy prediction, its for-
mulation has made it unable to yield practical im-
provements for the UVI process.

In this work, we attempt to address this gap with
a novel UVI problem formulation, also depicted
in Figure 1b. Our formulation follows the real-
world task exactly by predicting whether a new
atom should be associated with an existing concept
or identified as a new concept atom. We introduce
five datasets taken directly from actual UMLS up-
dates starting from the second half of 2020 until
the end of 2022. These datasets enabled us to mea-
sure the real-world practicality of our systems and
led us to findings we could not have discovered
otherwise. First, we find that adapting UVA mod-
els to perform the UVI task yields much higher
error rates than in their original task, showing that
their strong performance does not transfer to the
real-world setting. Second, contrary to previous

work (Bajaj et al., 2022), we find that biomedical
language models (LMs) outperform previous UVA
models. Thirdly, we discover that rule-based and
deep learning frameworks greatly improve each
other’s performance. Finally, inspired by biomed-
ical entity linking and the complementary nature
of our baseline systems, we propose a null-aware
and rule-enhanced re-ranking model which outper-
forms all other methods and achieves low error
rates on all five UMLS update datasets. To show
our model’s practical utility, we quantitatively eval-
uate its robustness across UMLS update versions
and semantic domains, conduct a comparative eval-
uation against the second best method and carry out
a qualitative error analysis to more deeply under-
stand its limitations. We hope that our case study
helps researchers and practitioners reflect on the
importance of problem formulation for the transla-
tional success of NLP systems.

2 Related Work
2.1 UMLS Vocabulary Alignment

Previous work to improve UMLS editing formu-
lates the problem as biomedical synonymy predic-
tion through the UMLS vocabulary alignment task
(Nguyen et al., 2021, 2022; Wijesiriwardene et al.,
2022). These investigations find that deep learning
methods are effective at predicting synonymy for
biomedical terms, obtaining F1 scores above 90%
(Nguyen et al., 2021). Although this formulation
can help explore biomedical synonymy prediction,
it does not consider the larger UMLS updating task
and thus the strong performance of these models
does not transfer to real-world tasks such as UVI.
Apart from the clear difference in scope between
UVA and UVI shown in Figure 1b, major differ-
ences in evaluation datasets contribute to the gap
in UVA’s applicability to the UVI task. In Nguyen
et al. (2021), the authors built a synonymy pre-
diction dataset with almost 200 million training
and test synonym pairs to approximate the large-
scale nature of UMLS editing. UVA dataset statis-
tics can be found in Appendix A. Since the UVA
test set was created using lexical similarity aware
negative sampling, it does not hold the same dis-
tribution as all the negative pairs in the UMLS.
Since the UVI task considers all of the UMLS,
UVA sampling leads to a significant distribution
shift between these tasks. This unfortunately di-
minishes the usefulness of model evaluation on the
UVA dataset for the real-world task. Surprisingly,
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this gap results in biomedical language models like
BioBERT (Lee et al., 2019) and SapBERT (Liu
et al., 2021) underperforming previous UVA mod-
els in the UVA dataset Bajaj et al. (2022) while
outperforming them in our experiments.

2.2 Biomedical Entity Linking

In the task of biomedical entity linking, terms men-
tioned within text must be linked to existing con-
cepts in a knowledge base, often UMLS. Our own
task, UMLS vocabulary insertion, follows a similar
process except for three key differences: 1) relevant
terms come from biomedical vocabularies rather
than text, 2) some terms can be new to the UMLS
and 3) each term comes with source-specific infor-
mation. Many different strategies have been used
for biomedical entity linking such as expert-written
rules (D’Souza and Ng, 2015), learning-to-rank
methods (Leaman et al., 2013), models that com-
bine NER and entity-linking signals (Leaman and
Lu, 2016; Furrer et al., 2022) and language model
fine-tuning (Liu et al., 2021; Zhang et al., 2022;
Yuan et al., 2022). Due to the strong parallels be-
tween biomedical entity-linking and our task, we
leverage the best performing LM based methods
for the UVI task Liu et al. (2021); Zhang et al.
(2022); Yuan et al. (2022). These methods fine-
tune an LM to represent synonymy using embed-
ding distance, enabling a nearest neighbor search
to produce likely candidates for entity linking.

The first difference between biomedical entity
linking and UVI is addressed by ignoring textual
context as done in Liu et al. (2021), which we
adopt as a strong baseline. The second difference,
that some new atoms can be new to the UMLS,
is addressed by work which includes un-linkable
entities in the scope of their task (Ruas and Couto,
2022; Dong et al., 2023). In these, a cross-encoder
candidate module introduced by Wu et al. (2020)
is used to re-rank the nearest neighbors suggested
by embedding methods like Liu et al. (2021) with
an extra candidate which represents that the entity
is unlinkable, or in our case, a new concept atom.
The third difference has no parallel in biomedical
entity linking since mentions do not originate from
specific sources and is therefore one of our contri-
butions in §4.6.

3 UMLS Vocabulary Insertion

We refer to UMLS Vocabulary Insertion (UVI) as
the process of inserting atoms from updated or new

medical vocabularies into the UMLS. In this task,
each new term encountered in a medical source
vocabulary is introduced into the UMLS as either
a synonym of an existing UMLS concept or as an
entirely new concept. In this section, we describe
our formulation of the UVI task, the baselines we
adapted from previous work, as well as a thorough
description of our proposed approach.

3.1 Problem Formulation

First, we define the version of the UMLS before
the update as K = {cy,...,c,}, a set of unique
UMLS concepts c¢;. Each concept ¢; is defined as
¢ = {al, ... a};i} where each atom aé, as they
are referred to by the UMLS, is defined as the j**
source-specific synonym for the i** concept in the
UMLS.

In the UMLS Vocabulary Insertion (UVI) task,
a set of m new atoms @ = {qu, ..., ¢} must be
integrated into the current set of concepts K. Thus,
we can now define the UVI task as the following
function I which maps a new atom g; to its gold
labelled concept cg; if it exists in the old UMLS
K or to a null value if it is a new concept atom, as
described by the following Equation 1.

qu

if e, € K

@ otherwise

I(K,q5) :{ ey

4 Experimental Setup
4.1 Datasets

To evaluate the UVI task in the most realistic way
possible, we introduce a set of five insertion sets
() which contain all atoms which are inserted into
the UMLS from medical source vocabularies by
expert editors twice a year. Due to their real-world
nature, these datasets vary in size and new concept
distribution depending on the number and type of
atoms that are added to source vocabularies before
every update as shown in Table 1. We note that the
version of the UMLS we use contains 8.5 rather
than 16 million atoms because we follow previous
work and only use atoms that are in English, come
from active vocabularies and are non-suppressible,
features defined by UMLS editors.

While most of our experiments focus on the
UMLS 2020AB, we use the other four as test sets
to evaluate temporal generalizability. We split the
2020AB insertion dataset into training, dev and
test sets using a 50:25:25 ratio and the other in-
sertion datasets using a 50:50 split into dev and
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Original  Insertion New

UMLS K Set Concepts
2020AB 8,521,220 430,135 260,058
2021AA 8,839,907 226,210 91,834
2021AB 8,835,147 455,493 218,933
2022AA 9,175,923 175,989 111,853
2022AB 9,082,515 275,842 188,984

Table 1: UMLS Statistics from 2020AB to 2022AB. Our
models are trained on the 2020AB insertion dataset.

test sets. We do stratified sampling to keep the
distribution of semantic groups, categories defined
by the UMLS, constant across splits within each
insertion set. This is important since the distri-
bution of semantic groups changes significantly
across insertion datasets and preliminary studies
showed that performance can vary substantially
across categories. For details regarding the number
of examples in each split and the distribution of se-
mantic groups across different insertion sets, refer
to Appendix B.

4.2 Maetrics

We report several metrics to evaluate our methods
comprehensively on the UVI task: accuracy, new
concept metrics and existing concept accuracy.

Accuracy. It measures the percentage of correct
predictions over the full insertion set Q).

New Concept Metrics. These measure how well
models predict new atoms as new concepts and
they are described in Equation 2. The terms in
Equation 2, subscripted by nc, refer to the number
of true positive (TP), false positive (FP) and false
negative (FN) examples, calculated by using the
new concept label as the positive class.

TPy
PTLC = s o
TPy + FPy 2
TPy
RTLC = T oA
TPpe+ FNpe

Existing Concept Accuracy. This metric shows
model performance on atoms in ) which were
linked by annotators to the previous version of
UMLS K, as shown in Equation 3. Let N, be
the number of concepts in () which were linked to
concepts in K.

1 Cp. = Cg.
A = 4d; 4j
“" Ne 2 {0

q;€Q

if Cq; € K
otherwise (3)

Cq; = I(K,q;)

4.3 UVA Baselines

We adapted several UVA specific system as
baselines for our UMLS vocabulary insertion task.

Rule-based Approximation (RBA). (Nguyen
et al., 2021) This system was designed to ap-
proximate the decisions made by UMLS editors
regarding atom synonymy using three simple
rules. Two atoms were deemed synonymous
if 1) they were labelled as synonyms in their
source vocabularies, 2) their strings have identical
normalized forms and compatible semantics
(McCray et al., 1994) and 3) the transitive closure
of the other two strategies. We thus define the
I function for the UVI task as follows. We first
obtain an unsorted list of atoms a; in X deemed
synonymous with g; by the RBA. We then group
these atoms by concept to make a smaller set of
unique concepts c;. Since this predicted concept
list is unsorted, if it contains more than one
potential concept, we randomly select one of them
as the predicted concept ¢,;. If the RBA synonym
list is empty, we deem the new atom as not existing
in the current UMLS version.

LexLM. (Nguyen et al.,, 2021) The Lexical-
Learning Model (LexLM) system was designed as
the deep learning alternative to the RBA and trained
for binary synonymy prediction using the UVA
training dataset. Their proposed model consists
of an LSTM encoder over BioWordVec (Zhang
etal., 2019) embeddings which encodes two strings
and calculates a similarity score between them. A
threshold is used over the similarity score to deter-
mine the final synonymy prediction.

To adapt this baseline to the UVI task, we define
the insertion function / as mapping a new atom
q; to the concept in K, ¢4;, containing the atom
with the highest similarity score to ¢; based on the
LexLM representations. To allow the function I to
predict that g; does not exist in the current UMLS
and should be mapped to the empty set &), we
select a similarity threshold for the most similar
concept under which g; is deemed a new atom. For
fairness in evaluation, the similarity threshold is
selected using the 2020AB UVI training set.

4.4 LM Baselines

Previous work finds that language models do not
improve UVA performance (Bajaj et al., 2022).
However, given our new formulation, we evaluate
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Figure 2: Overall architecture for our best performing approach on the new UVI task formulation. Our methodology
leverages the best distance-based ranking model (SapBERT) as well as RBA signal. Additionally, our design allows
new atoms to be identified as new concepts by introducing a ‘New Concept’ placeholder into the candidate list given

to the re-ranking module as shown above.

two language models in the more realistic UVI
task using the same strategy described for the
LexLLM model above. For implementation details,
we refer the interested reader to Appendix C.

PubMedBERT (Gu et al., 2021). PubMedBERT
is one of the most capable biomedical specific
language models available due to its from scratch
pre-training on biomedical data as well as its
specialized biomedical tokenizer.

SapBERT (Liu et al., 2021). SapBERT is a lan-
guage model designed for biomedical entity linking
or concept normalization. It was developed by fine-
tuning the original PubMedBERT on the 2020AA
version of UMLS using a contrastive learning ob-
jective. This objective incentivizes synonymous
entity representations in UMLS to be more similar
than non-synonymous ones.

4.5 Augmented RBA

Given that the neural representation baselines dis-
cussed above provide a ranking system missing
from the RBA, we create a strong baseline by aug-
menting the RBA system with each neural ranking
baseline. In these simple but effective baselines, the
concepts predicted by the RBA are ranked based on
their similarity to g; using each neural baseline sys-
tem. New concept prediction uses the same method
employed by the original RBA model.

4.6 Our Approach: Candidate Re-Ranking

Our candidate re-ranking approach is inspired by
some entity linking systems which use two distinct
steps: 1) candidate generation, which uses a bi-
encoder like the baselines described above, and
2) candidate re-ranking, in which a more compu-
tationally expensive model is used to rank the k
most similar concepts obtained by the bi-encoder.
Other work (Wu et al., 2020) encodes both new

atoms and candidates simultaneously using lan-
guage models, allowing for the encoding of one to
be conditioned on the other. Our cross-encoder is
based on PubMedBERT ? and we use the most sim-
ilar 50 atoms which represent unique concepts as
measured by the best baseline, the RBA system aug-
mented with SapBERT ranking. More concretely,
the atom which represents each candidate concept
ac; is appended to new atom ¢; and encoded as
follows: [CLS] q; [SEP] a.,. Since the number
of RBA candidates differs for every new atom, if
the RBA produces less that 50 candidates, the re-
maining candidates are selected from SapBERT’s
nearest neighbor candidates. We use the BLINK
codebase (Wu et al., 2020) to train our re-ranking
module. More information about our implementa-
tion can be found in Appendix C.

4.6.1 Null Injection

In contrast with standard entity linking settings
where every mention can be linked to a relevant en-
tity, UVI requires some mentions or new atoms to
be deemed absent from the relevant set of entities.
To achieve this in our re-ranking framework, we
closely follow unlinkable biomedical entity link-
ing methods (Dong et al., 2023; Ruas and Couto,
2022) and introduce a new candidate, denoted by
the NULL token, to represent the possibility that
the atom is new to the UMLS.

4.6.2 RBA Enhancement

Finally, given the high impact of the RBA system in
preliminary experiments, we integrate rule-based
information into the candidate re-ranking learning.
The RBA provides information in primarily two
ways: 1) the absence of RBA synonyms sends a
strong signal for a new atom being a novel con-
cept in the UMLS and 2) the candidate concepts

*Preliminary results showed that PubMedBERT outper-
forms SapBERT as a re-ranker.

708



Accuracy

New Concept Existing Concept

Recall Precision F1 Accuracy
Rule Based Approximation (RBA) 70.1 99.0 90.5 94.6 26.3
LexLM 63.2 89.5 92.4 90.9 22.4
PubMedBERT 68.4 99.1 67.3 80.2 20.7
SapBERT 77.4 94.1 79.2 86.0 52.0
RBA + LexILM 80.4 99.0 90.5 94.6 51.6
RBA + PubMedBERT 83.7 99.0 90.5 94.6 60.0
RBA + SapBERT 90.7 99.0 90.5 94.6 76.1
Re-Ranker (PubMedBERT) 85.5 96.3 91.6 93.9 68.4
+ RBA Signal 93.2 98.2 96.1 97.1 85.5

Table 2: Comparison for rule-based, distance-based and combined baselines against our re-ranking approaches both
with and without RBA-signal over all our metrics. All results reported above were calculated on the 2020AB UMLS
insertion dataset. We find that all improvements of our best approach over the RBA+SapBERT baseline are very
highly significant (p-value < 0.001) based on a paired t-test with bootstrap resampling.

which the RBA predicted, rather than the ones pre-
dicted based solely on lexical similarity, have a
higher chance of being the most appropriate con-
cept for the new atom. Thus, we integrate these
two information elements into the cross-encoder by
1) when no RBA synonyms exist, we append the
string "(No Preferred Candidate)" to the new atom
q;j and 2) every candidate that was predicted by the
RBA is concatenated with the string "(Preferred)".
This way, the cross-encoder obtains access to vital
RBA information while still being able to learn the
decision-making flexibility which UMLS editors
introduce through their expert knowledge.

5 Results & Discussion

In this section, we first discuss performance of
our baselines and proposed methods on the UMLS
2020AB test set. We then evaluate the generaliz-
ability of our methods across UMLS versions and
biomedical subdomains. Finally, we provide a com-
parative evaluation and a qualitative error analysis
to understand our model’s potential benefits and
limitations.

5.1 Main Results

Baselines. As seen in Table 2, previous baselines
such as RBA, LexLM and biomedical language
models like PubMedBERT and SapBERT stay
under the 80% mark in overall accuracy, with
specially low performance in the existing concept
accuracy metric. Even SapBERT, which is
fine-tuned for the biomedical entity linking
task, is unable to obtain high existing concept
and new concept prediction scores when using
a simple optimal similarity threshold method.

Nevertheless, a simple baseline which com-
bines the strengths of neural models and the
rule-based system obtains surprisingly strong
results. This is especially the case for augment-
ing the RBA with SapBERT which obtains a
num90% overall accuracy and existing concept
accuracy of 76%. We note that the new concept
recall and precision of all RBA baselines is the
same since the same rule-based mechanism is used.

Our Approach. For the PubMedBERT-based re-
ranking module, we find that the NULL injection
mechanism enables it to outperform the models that
rely solely on lexical information (LexLLM, Pub-
MedBERT and SapBERT) by a wide margin. How-
ever, it underperforms the best augmented RBA
baseline substantially, underscoring the importance
of RBA signal for the UVI task. Finally, we note
that RBA enhancement allows the re-ranking mod-
ule to obtain a 93.2% accuracy due to boosts in
existing concept accuracy and new concept preci-
sion of almost 10% and 4% respectively. These
improvements comes from several important fea-
tures of our best approach which we discuss in
more detail in §5.3, namely the ability to flexibly
determine when a new atom exists in the current
UMLS even when it has no RBA synonyms and
to apply rules used by UMLS editors seen in the
model’s training data. This substantial error reduc-
tion indicates our method’s potential as a useful
tool for supporting UMLS editors.

5.2 Model Generalization

In this section, we note the robust generalization of
our re-ranking module across both UMLS versions
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and semantic groups (semantic categories defined
by the UMLS).

Across Versions. In Figure 3, we see that the best
performing baseline RBA + SapBERT and our best
method obtain strong performance across all five
UMLS insertion datasets. Even though our pro-
posed approach obtains the largest gains in the
2020AB set in which it was trained, it achieves
stable existing concept accuracy and new concept
F1 score improvements across all sets and shows
no obvious deterioration over time, demonstrating
its practicality for future UMLS updates. Unfor-
tunately, we do observe a significant dip in new
concept F1 for all models in the 2021 AA dataset
mainly due to the unusually poor performance of
the RBA in one specific source, Current Procedural
Terminology (CPT), for that version.

Existing Concept Accuracy New Concept F1

100

100

75 75
50 50
25 25

0 0
20AB 21AA 21AB 22AA 22AB 20AB 21AA 91AB 22AA 92AB

RBA I RBA + SapBERT
SapBERT I Re-Ranker + RBA Signal

Figure 3: Existing concept accuracy (left) and new con-
cept F1 (right) of the best model from each baseline
type and our best approach across 5 UVI datasets from
2020AB to 2022AB. All improvements over the best
baseline are very highly significant (p-value < 0.001).

Across Subdomains. Apart from evaluating
whether our proposed approach generalizes across
UMLS versions, we evaluate how model perfor-
mance changes across different semantic groups.
Table 3 shows the results of our best baseline (RBA
+ SapBERT) compared against our best proposed
approach (Re-Ranker + RBA Signal) on the nine
most frequent semantic groups averaged over all
development insertion sets. We report the results
in detail over all insertion sets in Appendix E. Our
evaluation reveals that even though our best base-
line performs quite well across several semantic
groups, performance drops in challenging cate-
gories like Drugs, Genes, Procedures and the more
general Concepts & Ideas category. Our approach
is able to improve performance across most groups
to above 90%, with the exception of Genes and Pro-
cedures. Since the distribution of semantic groups
can vary widely across UMLS updates, as seen in

RBA Re-Ranker
Semantic Group + +
SapBERT RBA Signal
Living Beings 97.2 98.0
Chemicals & Drugs 81.1 93.7
Genes & Molecular Seq. 74.3 7.7
Disorders 92.1 97.7
Procedures 82.6 84.3
Physiology 92.8 99.0
Concepts & Ideas 89.1 97.2
Devices 90.7 97.4
Anatomy 95.1 98.3

Table 3: Accuracy by semantic group for the two highest
performing UVI systems averaged over all development
insertion sets from 2020AB to 2022AB.

the dataset details in Appendix B, our model’s im-
proved semantic group robustness is vital for its
potential in improving the efficiency of the UMLS
update process.

As for the categories in which our approach re-
mained below 90% like Genes and Procedures, we
find that they are mainly due to outlier insertion
sets. Both the Genes and Procedures categories
have one insertion set, 2022AA and 2021AA re-
spectively, in which the performance of both sys-
tems drops dramatically due to a weak RBA signal
which our methodology was unable to correct for.
We refer the interested reader to Appendix E for
these results and a more detailed discussion around
this limitation.

5.3 Comparative Evaluation

As mentioned in the main results, our best model
outperforms the best baseline mainly through im-
provements in existing concept accuracy and new
concept precision. In Table 4, we report the distri-
bution of 2,943 examples incorrectly predicted by
RBA + SapBERT amended by our best approach.
We note that a large majority, around 60%, of the
corrections are concept linking corrections, new
atoms which are linked to an existing concept cor-
rectly while they were wrongly predicted as new
concept atoms by the baseline. Most of the remain-

Correction Type Correction %
Concept Linking 59.5
Re-Ranking 35.9
New Concept Identification 4.6

Table 4: Distribution of examples incorrectly predicted
by the best baseline amended by our best model.
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Correction Top 5 RBA + SapBERT Error Type New Atom Top 5 Best Model
Type New Atoms Candidates
Left orbital region (Preferred)
Amorpha <mmh> (Prci"crrcd) Left orbital [NEW CONCEPT]
Amorpha Amorpha <angiosperm> (Preferred) exion Structure of periorbital region of left eye
<eudicots> Aﬁ‘:()rl}‘)hvué UMLS & Left orbital cavity proper
Tpaus Sp. Error Left orbital content
Re- Amorphotheca (Duplicate
Ranking cytarabine/thioguanine (Preferred) Concepts) (J? nos?omall.ttaey (}:referre{d)
. Cytarabine-Thioguanine Regimen (Preferred) Gonostomatidae Gonostomatidae (Preferred)
Cytarabine- svclophosphamide/cytarabine/thioguani jon [NEW CONCEPT]
Thioguanine cyclophosphamide/cytarabine/thioguanine <ciliates> -
Cytarabine/Mitoxantrone/Thioguanine anlchlhys .
Cytarabine/Doxorubicin/Thioguanine Protrodiplostomatidae
total [NEW CONCEPT] [NEW CONCEPT]
hysterectomy 7?){(!/ hysterectomy \t'f//.l right m)/)/zm'z'z.’mm\ Urea 400 mg/mL cutaneous lotion
with removal abdominal hysterectomy with removal of right ovary urea 400 MG/ML urea@50 % @TOPICAL@SOLUTION
of right ovai Total hysterectomy with right salpingo-oophorectomy urea 40%
C(.)nkc‘epl e ™ Total hysterectomy with removal of both tubes and ovaries True UREA 40% TOP GEL
Linking WARFARIN [NEW CONCEPT] Errors [NEW CONCEPT]
NA Warfarin Sodium 7.5 MG Oral Tablet [JANTOVEN] . S i
(JANTOVEN) WARFARIN NA (TARO) 7.5MG TAB bE’lfl"‘ml,’em Ck“‘”b.ed ~ VIRUSES ACCOMIZ/;NIED BIY EXANTHEM
7.5MG TAB Warfarin Sodium 7.5 MG Oral Tablet [COUMADIN] y uman echiovirus exanthems vira

Table 5: Some examples which were incorrectly pre-
dicted by our best baseline (RBA + SapBERT), shown
above in red, but corrected by our best proposed re-
ranking model, shown above in green.

ing corrections, 35.9%, are re-ranking corrections
based on our model’s ability to re-rank gold con-
cept over other candidate concepts. The final 5%
comes from new concept identification corrections
in which a new atom is correctly identified as a new
concept atom when it was incorrectly linked to an
existing one by the best baseline.

The examples shown in Table 5 illustrate the
benefits of our proposed approach more clearly. In
the first two rows, we see two re-ranking correc-
tions. In the first example, SapBERT incorrectly
identifies ‘<eudicots>’ as being closer to ‘<moth>’
than ‘<angiosperm>’ but our model has learned
to interpret the disambiguation tags and correctly
associates ‘eudicots’ with ‘angiosperm’ as levels
of plant family classifications. In the second ex-
ample, we observe that our trained model learns
to link new atoms to concepts which have more
comprehensive information such as the addition of
the "Regimen" phrase. Although this is an editorial
rule rather than an objective one, it is important to
note that our model can adequately encode these.

The final two rows in Table 5 show concept link-
ing corrections. These examples illustrate the most
important feature of our proposed model, the abil-
ity to link new atoms to concepts even when the
RBA would consider them a new concept atom. In
these instances, the model must determine whether
all the features in the new atom are present in any
potential candidates without support from the RBA.
In these two examples, the model is able to cor-
rectly identify synonymy by mapping ‘removal of
the right ovary’ to ‘right oophorectomy’, ‘NA’ to
‘Sodium’ and ‘TAB’ to ‘Oral Tablet.

Exanthem
viral exanthem due to echovirus

(disorder)

Table 6: Some examples which were incorrectly pre-
dicted by our best proposed model, shown in red. Gold
label concepts are marked with green. The first two
rows show two errors caused by UMLS annotations
while the final two are legitimate errors caused by com-
plexity and ambiguity.

5.4 Error Analysis

Given that our work focuses on a specific practical
application, in this section, we aim to more deeply
understand how our approach can be effectively
adopted by UMLS editors in their vocabulary in-
sertion task. To this end, we recruited a biomedical
terminology expert familiar with the UMLS vo-
cabulary insertion process to analyze the practical
effectiveness and limitations of our system.

We first studied the calibration of our best
model’s output as a way to understand its error
detection abilities. As shown in detail in Appendix
F, we see a substantial drop in performance when
model confidence, a softmax over candidate logit
scores, drops below 90%. This drop could indi-
cate that our model is well calibrated, however,
our qualitative experiments reveal that this signal
comes from a large number of annotation errors in
the UMLS which are easily detected by our prob-
lem formulation.

We discovered this through a qualitative error
analysis carried out with the help of the aforemen-
tioned biomedical terminology expert. We chose
three sets of 30 randomly chosen example errors
with different model confidence scores: high (90%-
100%), medium (60%-70%) and low (30%-40%).
Our expert editor reports several important findings.
First, there was no substantial difference in exam-
ple difficulty between different model confidence
bins. Second, 70% of model errors are caused
by the existence of UMLS concepts which have
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phrases that are equivalent to the new atoms, lead-
ing to ambiguous examples which can be found
in the first section of Table 6. This arises from
two types of annotation errors within the UMLS,
either the new atom was incorrectly introduced
into the UMLS or the phrase that is representing
that concept was previouly introduced into UMLS
incorrectly. Out of this study, the expert found
15 out of the 90 instances where our model’s sug-
gestions lead to detecting incorrect associations in
the original UMLS vocabulary insertion process.
This evaluation suggests that our model could be
quite useful in supporting quality assurance for the
UMLS.

Even though most model errors are caused by
annotation issues in the UMLS, there are still some
which are due to complexity and ambiguity. In
the bottom half of Table 6, we see examples that
our model still struggles with. First, the new atom
“area 400 MG/ML” should have been mapped to
“urea 40%” since the percentage is calculated as
the number of grams in 100 mL. However, this
decision requires not only the knowledge of this
definition but also mathematical reasoning abilities.
Finally, the last error in our table is caused by the
ambiguity in deciding whether “human echovirus’
and “echovirus” should be deemed equivalent. We
note that both of these error types as well as the
previously mentioned annotation errors show that
our model’s errors are occurring on scenarios which
are either unsolvable or very challenging, shedding
light on its potential as a practical system to support
UMLS editors.

i

6 Conclusion

In conclusion, this paper emphasizes the impor-
tance of formulating NLP problems that align well
with real-world scenarios in the midst of growing
enthusiasm for NLP technologies. Focusing on
the real-world task of UMLS vocabulary insertion,
we demonstrate the importance of problem formu-
lation by showcasing the differences between the
UMLS vocabulary alignment formulation and our
own UVI formulation. We evaluate existing UVA
models as baselines and find that their performance
differs significantly in the real-world setting. Addi-
tionally, we show that our formulation allows us to
not only discover straightforward but exceptionally
strong new baselines but also develop a novel null-
aware and rule-enhanced re-ranking model which
outperforms all other methods. Finally, we show

that our proposed approach is highly translational
by providing evidence for its robustness across
UMLS versions and biomedical subdomains, ex-
ploring the reasons behind its superior performance
over our baselines and carrying out a qualitative er-
ror analysis to understand its limitations. We hope
our case study highlights the significance of prob-
lem formulation and offers valuable insights for
researchers and practitioners for building effective
and practical NLP systems.

7 Limitations

We acknowledge several limitations to our investi-
gation, which we propose to address in future work.
First, while our formulation aligns exactly with part
of the insertion process, there are aspects of the full
insertion of new terms into the UMLS which are
out of our scope. While we do identify terms that
are not linked to existing UMLS concepts, we do
not attempt to group these terms into new concepts.
The identification of synonymous terms for new
concepts will be addressed in future work. Second,
except for the RBA approach that leverages lexical
information and source synonymy, our approach
does not take advantage of contextual information
available for new terms (e.g., hierarchical informa-
tion provided by the source vocabulary). We plan
to follow (Nguyen et al., 2022) and integrate this
kind of information that has been shown to increase
precision without detrimental effect on recall in the
UVA task. Third, our approach uses a single term,
the term closest to the new atom, as the represen-
tative for the concept for linking purposes. While
this approach drastically simplifies processing, it
also restricts access to the rich set of synonyms
available for the concept. We plan to explore al-
ternative trade offs in performance when including
more concept synonyms. Finally, reliance on the
RBA information had the potential for incorrectly
identifying new concepts when RBA signal is not
complete. Even though RBA signal is quite useful
for this task, it is important to build systems robust
to its absence. We plan to explore this robustness
more actively in future work by including such
incomplete signal in the training process.
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A Original UVA Dataset

Table 7 lists the basic statistics for the UMLS vo-
cabulary alignment datasets. Since the UVA task
was formulated and evaluated only as a binary clas-
sification task, the dataset is divided into positive
and negative pairs. For more details about how the
negative pairs were sampled from the UMLS, we
refer the interested reader to §4.2 of Nguyen et al.
(2021).

UVA Pairs Positive Pairs Negative Pairs
Train 192,400,462 22,324,834 170,075,628
Test 173,035,862 5,581,209 167,454,653

Table 7: Original UVA dataset statistics.

B UVI Dataset Details

In Table 8, we report the size of our five UMLS
vocabulary insertion dataset splits. We note that
only the 2020AB version contains a training set, all
other insertion sets only have development and test
sets.

Train Dev Test
2020AB 215,402 105,796 108,937
2021AA — 112,647 113,563
2021AB — 227,440 228,053
2022AA — 88,186 87,803
2022AB — 138,107 137,735

Table 8: Experimental split statistics for UMLS inser-
tion dataset () from 2,020 to 2,022.

In terms of dataset construction, we reiterate that
stratified sampling based on semantic groups was
used to keep the original distributions intact. We
adopt this technique due to the substantial changes

Semantic Group Distribution

BN 2020AB
0.47 2021AA
E 2021AB
0.3 B 2022AA
E 2022AB
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Figure 4: This figure shows the incidence of each of the
most frequent 8 semantic groups across the 5 insertion
sets explored in this work.

in semantic group distribution across insertion sets,
as seen in 4, as well as the high variance in model
performance across semantic categories, as seen in
§5.2 and Appendix E.

C Implementation Details

In this section we discuss the implementation de-
tails for our baselines as well as our proposed ap-
proach. For the UMLS vocabulary alignment base-
lines, we use the same implementation of the Rule-
Based Approximation (RBA) and LexLLM used by
the authors in Nguyen et al. (2021). To imple-
ment our language model baselines we use the Hug-
gingFace Transformers library (Wolf et al., 2020).
We use the FAISS library (Johnson et al., 2021)
to speed up nearest neighbor search using GPUs
when experimenting with LexLM, SapBERT and
PubMedBERT embeddings (Johnson et al., 2021).
We train our cross-encoder re-ranking module us-
ing BLINK (Wu et al., 2020), which uses a cross-
entropy loss to maximize the score of the correct
candidate over the rest of the candidates. We use
default hyperparameters listed in Table 9 to train
our re-ranking module but perform early stopping
using the accuracy metric on our 2020AB valida-
tion set. All experiments used an NVIDIA V100
GPU with 16 GB of VRAM. The models we used
and the approximate amount of GPU hours used
for each is listed in Table 10.

Learning Total Batch Warmup
Rate Epochs  Size Ratio
2e—5 3 1 0.1

Table 9: Hyperparameters selected for our cross-encoder
re-ranking training for reproducibility.

# of Parameters Total GPU
(millions) Hours
LexLM 0.2 5
PubMedBERT 100 140
SapBERT 100 40

Table 10: Total GPU Hours associated with our experi-
ments. PubMedBERT GPU hours include both UMLS
encoding and fine-tuning for our re-ranking module.

D Latency Comparison

In Table 11, we report the inference latency for
each baseline as well as our proposed approaches
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on the UVI task. As seen in the table, our ap-
proach has significantly slower inference than pre-
vious baselines. Nevertheless, since the UMLS
insertion task happens only twice a year, variations
in inference latency are not a significant concern
as long as the process can be run within a rea-
sonable amount of time on available computing
resources. We hope that these numbers can help
other researchers and practitioners understand the
computing requirements on this or similar tasks.

Inference Time for
Model 300k Atoms
Latency (ms) .
(mins)
RBA 0.01 0.05
LexILM 1.28 6.40
SapBERT 2.50 12.50
RBA + LexLM 1.29 6.45
RBA + SapBERT 2.51 12.55
Re-Ranker (RBA Signal) 35.51 177.5

Table 11: Time spent on inference for each baseline as
well as our proposed approach.

E Detailed Semantic Group Evaluation

As mentioned in 5.2, different UMLS updates often
contain completely different semantic group distri-
butions since they depend entirely on independent
source updates. Due to this, generalization across
different semantic categories (semantic groups in
the UMLYS) is a crucial feature for a system to be
successful in real-world UMLS vocabulary inser-
tion. Table 13 provides a detailed report of the
performance of our strongest baseline and our best
proposed approach on all development insertion
sets across the 9 most frequent semantic groups.
As seen in these detailed results, our proposed ap-
proach obtains stronger and more consistent results
across all semantic groups compared to our best
baseline.

Nevertheless, as discussed in the main text, our
approach remained below 90% on average in cat-
egories like Genes and Procedures. In the broken
down results in Table 13, we can more clearly see
that these averaged results are caused by outlier
insertion sets. For the Genes semantic group, our
proposed approach improves performance consid-
erably for all insertion sets except for 2022AA,
in which its performance drops by more than 10
points. We note that the performance of the best
baseline is also much lower than usual, potentially
indicating a weak RBA signal and challenging

atoms to link. For the Procedures category, we
see a similar pattern in the 2021 AA insertion set
while the other sets see small but regular improve-
ments with our system. These results indicate
that, although our proposed approach can lever-
age the RBA signal more consistently when it is
sufficiently strong, it fails to correct for it when it is
very weak to begin with. It is therefore important
to continue working on ways to correct or at least
alert annotators about potential system failures in
specific concept sub-groups.

F Model Calibration Details

As discussed above, our re-ranker model’s output
confidence, defined as a softmax over candidate
logit scores produced by our model, seemed corre-
lated with model accuracy. In Table 12, we show
model accuracy across different model confidence
scores. We find that model confidence score is
highly correlated with model accuracy, which drops
to around 50% when model confidence drops be-
low 90% and continues to drop after that. Through
qualitative analysis, we find that this does not in-
dicate successful model calibration but is actually
mainly caused by annotation errors within UMLS
which result in duplicate and ambiguous concepts.

Model Number
Confidence of Accuracy
(%) Examples
0 23 8.7
10 80 22.5
20 206 32.5
30 397 36.0
40 1,282 56.0
50 964 55.1
60 511 48.7
70 411 50.6
80 590 55.3
920 38,076 92.1
100 62,743 99.8

Table 12: The output probability of our best re-ranking
approach (the probability of the highest scoring candi-
date concept) seemed to be correlated with high predic-
tion accuracy but actually indicates annotation errors.
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2020AB 2021AA 2021AB 2022AA 2022AB
RBA Re-Ranker RBA Re-Ranker RBA Re-Ranker RBA Re-Ranker RBA Re-Ranker

Semantic Group

+ + + + + + + + + +
SapBERT RBA Signal SapBERT RBA Signal SapBERT RBA Signal SapBERT RBA Signal SapBERT RBA Signal
Living Beings 99.2 99.8 98.6 95.8 96.8 99.7 933 95.3 97.9 99.6
Chemicals & Drugs 87.7 94.8 73.8 89.2 87.9 95.3 81.5 96.6 74.8 92.4
Genes & Molecular Sequences 86.8 97.0 76.2 82.6 78.2 87.4 58.9 42.5 71.2 79.2
Disorders 91.7 98.0 90.2 97.2 96.0 98.3 91.8 97.0 90.8 98.0
Procedures 94.1 96.9 54.6 54.8 95.3 97.6 95.0 97.0 74.2 75.0
Physiology 95.1 99.2 98.8 98.9 84.3 99.1 97.1 99.3 88.7 98.4
Concepts & Ideas 91.6 97.4 70.5 96.1 98.4 98.5 92.6 96.4 92.5 97.5
Devices 934 97.8 89.4 95.5 94.3 97.1 90.3 99.7 86.2 96.9
Anatomy 92.7 96.4 94.2 97.9 92.2 98.4 98.3 99.0 97.8 99.4

Table 13: Breakdown for Table 3 over all insertion development sets and the 9 most frequent semantic groups.
These detailed results can help us more closely understand model failures across semantic groups compared to the
aggregated results.
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