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Abstract

While text style transfer has many applications
across natural language processing, the core
premise of transferring from a single source
style is unrealistic in a real-world setting. In
this work, we focus on arbitrary style transfer:
rewriting a text from an arbitrary, unknown
style to a target style.

We propose STEER: Unified Style Transfer
with Expert Reinforcement, a unified frame-
work developed to overcome the challenge of
limited parallel data for style transfer. STEER
involves automatically generating a corpus of
style-transfer pairs using a product of experts
during decoding. The generated offline data
is then used to pre-train an initial policy be-
fore switching to online, off-policy reinforce-
ment learning for further improvements via
fine-grained reward signals. STEER is unified
and can transfer to multiple target styles from
an arbitrary, unknown source style, making it
particularly flexible and efficient.

Experimental results on a challenging dataset
with text from a diverse set of styles demon-
strate state-of-the-art results compared to com-
petitive baselines. Remarkably, STEER out-
performs the 175B parameter instruction-tuned
GPT-3 on overall style transfer quality, despite
being 226 times smaller in size. We also show
STEER is robust, maintaining its style transfer
capabilities on out-of-domain data, and surpass-
ing nearly all baselines across various styles.
The success of our method highlights the po-
tential of RL algorithms when augmented with
controllable decoding to overcome the chal-
lenge of limited data supervision.1

1 Introduction

Style transfer has been widely explored in the NLP
field due to its practical applications, such as mak-
ing text more formal (Rao and Tetreault, 2018),

1We release our code publicly at https://github.
com/shallinan1/STEERStyleTransfer

Figure 1: An overview of unified style transfer. In
standard style transfer, models can only transfer from a
single source style to a specified target style, struggling
to transfer from out-of-domain texts. In contrast, unified
style transfer models can transfer from an arbitrary
source style to multiple target styles.

increasing politeness (Madaan et al., 2020; Mukher-
jee et al., 2023), or anonymizing authorship (Shetty
et al., 2017; Patel et al., 2022). Previous work
has mostly focused on one-to-one style transfer
which involves rewriting text from one specific
style to another while preserving meaning and flu-
ency (Li et al., 2018; Sudhakar et al., 2019; Shen
et al., 2017a). However, this approach may be less
practical in real-world scenarios, where there are
multiple and often unknown source styles a user
wishes to transfer from.

We focus on arbitrary style transfer, a many-to-
one style transfer task, where the goal is to transfer
text from an arbitrary, unknown style to a target
style using a single model (Reif et al., 2021; Kr-
ishna et al., 2020). This is a challenging task mainly
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due to the lack of large-scale, human-curated cor-
pora for training. Furthermore, we design a frame-
work for training a unified, many-to-many style
transfer model, which can do arbitrary style trans-
fer to multiple target styles, as shown in Figure 1.
To circumvent the lack of supervised data, recent
approaches (Suzgun et al., 2022; Patel et al., 2022)
heavily rely on large language models like GPT-
Neo (Black et al., 2022) and GPT-3 (Brown et al.,
2020) in zero or few-shot settings. Though promis-
ing and convenient, these approaches are limited
by the high cost of API calls (OpenAI, 2023) and
lack of reproducibility due to over-reliance on
LLMs (Dean, 2023). Our method enhances the
effectiveness of smaller, more accessible models
for style transfer, broadening their adaptability and
utility for the wider community.

In this work, we present Unified Style Transfer
with Expert Reinforcement ( STEER), a novel,
unified framework for many-to-one style transfer
without supervision. Starting with a non-parallel
corpus of text with various styles and a general
paraphraser model, STEER first creates a diverse,
pseudo-parallel dataset of style transfer pairs using
product-of-experts decoding (Hinton, 2002; Liu
et al., 2021). This makes our framework efficient
by eliminating the need for costly human-curated
datasets. Next, STEER uses offline reinforcement
learning (RL) with this data before switching to
online, off-policy RL for further improvement. To
reflect the varied properties of style transfer, we
adapt the QUARK algorithm (Lu et al., 2022), incor-
porating multiple reward models associated with
different aspects such as style strength, fluency, and
meaning similarity. Our framework is both practi-
cal and flexible, enabling a single model to transfer
arbitrary source styles to multiple target styles.

We apply STEER to a diverse dataset of 11 styles
(Krishna et al., 2020), developing a unified style
model capable of transferring text from any of the
11 styles to any other style in the corpus. Our fi-
nal model is effective at transferring style while
preserving fluency and semantic similarity for all
source and target styles, beating strong baselines
across a suite of automatic metrics for style transfer.
In particular, across all styles our 775M parameter
model beats all baselines in overall style transfer
quality, including the instruction-tuned 175B pa-
rameter GPT-3 model (Ouyang et al., 2022). Fi-
nally, we showcase the robustness of our model
through evaluation on two out-of-domain source

styles that are unseen during training, where STEER

consistently outperforms almost all baselines for
every target style. The success of STEER demon-
strates the effectiveness of reinforcement learning
abetted by a high-quality, offline dataset in lieu of
a good initial policy.

2 Task: Unified Style Transfer

Conventionally, the goal of style transfer is to take
an input text in a known source style xsi and rewrite
it into some known target style xsj while preserv-
ing meaning and fluency. However, this setting is
unrealistic and may not cover real-world use cases
where there are multiple and often unknown source
styles. The goal of arbitrary style transfer is to
instead transfer text from an arbitrary, unknown
style to a text in the target style with meaning and
fluency preservation. Formally, given S as the set
of all possible style choices, this amounts to finding
a function f : X × S → X , which takes an input
text x and a desired target style sj , and outputs a
modified text in the target style xsj .

3 Unified Style Transfer with Expert
Reinforcement

We introduce STEER, a novel two-stage framework
for unsupervised unified style transfer. Our frame-
work is illustrated in Figure 2 and is composed of 1)
expert-guided data generation to circumvent the
challenge of obtaining supervised datasets at scale,
and 2) offline reinforcement learning followed by
online reinforcement learning to effectively align
an initial policy with multiple reward functions
related to the style transfer task.

In expert-guided data generation (§3.1), the goal
is to automatically collect a diverse high-quality
dataset Df of style transfer pairs using only a gen-
eral paraphraser Mp and a corpus of diverse styles
C. To this end, we follow an overgenerate-and-
filter approach: we first generate a large pool of
candidate pairs from the paraphraser guided by
style expert models in a product-of-expert fashion
(Hinton, 2002), then leave only pairs that qualify
for the style transfer task (i.e., accurately trans-
ferred style and semantically similar pairs). In
online off-policy reinforcement learning (§3.2), we
first update the paraphraser Mp as an initial policy
using supervised learning on the collected dataset
and then switch to online, off-policy learning for
further data exploration and model improvements
(Ramamurthy et al., 2022; Lu et al., 2022).
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Figure 2: An overview of STEER. We first use expert-guided data generation to automatically generate candidate
style-transfer pairs xsi → x̃st , mapping from an input of arbitrary style xsi to a rewrite xst in a target style, by
decoding with a product of experts using a paraphraser MP and style-expert LMs. After filtering by quality metrics,
we have a diverse, high-quality dataset Df . We then train a unified, many-to-many style transfer model, using Df

for offline RL before switching to online, off-policy RL to further optimize style transfer quality.

3.1 Expert-guided Data Generation

We first leverage expert LMs to generate a high-
quality, pseudo-parallel style transfer corpus.

Generation For each target style st ∈ S , we first
massively generate a diverse set of candidate style
transfer pairs xsi → x̃st for all si ∈ S−{st}, such
that we collect pairs of transfers from each possible
source style to the target style. To do so, we first-
pass text xsi from a candidate source style through
a general (style-agnostic) paraphraser MP , typi-
cally resulting in a normalized text x̃ = MP (xsi)
with little or no stylistic features (Krishna et al.,
2020). To ensure that the x̃ belongs to the desired
target style, we steer the paraphraser MP gener-
ation towards the target style and away from the
source style during decoding. Intuitively, we ex-
ploit the inherent capability of the paraphraser to
faithfully rewrite input texts, while injecting stylis-
tic control through guided-decoding.2

To do this, we leverage DEXPERTS decoding
(Liu et al., 2021), a controllable text generation
paradigm that enables steering towards and away
from distinct attributes. DEXPERTS combines the
distribution of a base autoregressive model Pb with
those of an “expert” Pe and/or “anti-expert” Pa

model in a product of experts, which are trained
on desirable and undesirable attributes respectively.
Given a prompt x<t, the next token probability is

2In practice, this procedure can be repeated to add any new
target style to the dataset.

obtained by a product-of-experts:

P (xt|x<t) ∝ Pb(xt|x<t)

(
Pe(xt|x<t)

Pa(xt|x<t)

)α

(1)

where α is hyperparameter controlling the strength
of control over the base model Pb.

Within our problem setting, we consider the gen-
eral paraphraser Mp as the base model, and two
language models finetuned on texts belonging to
target style st and source style si as our expert and
anti-expert models respectively. Given a text in
a candidate source style xsi , we generate text in
the target style xst via sampling from the probabil-
ity distribution obtained in Eq. 1. We repeat this
expert-guided decoding for all the source and tar-
get styles, resulting in a dataset Dinit. In practice,
we over-generate data by repeating the generation
procedure above with a vast sweep of hyperparam-
eters, such as multiple sampling temperatures and
decoding algorithms, so we can eventually filter
and attain as many high-quality rewrites possible.

Filtering Not all of the expert-guided generations
in Dinit are high-quality. We thus filter Dinit and
retain the pairs that best represent the task of style
transfer. We assess the quality of each candidate
style transfer pair in Dinit with three standard style
transfer metrics:

1. Target Style Strength (TSS) of the genera-
tion xst is measured by the probability of the
target class st with a RoBERTa-large classi-
fier (Liu et al., 2019) trained on text from all
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the styles in the corpus C. Both style strength
and style accuracy have been used in previous
work (Reif et al., 2021; Krishna et al., 2020);
we opt for style strength, as it it is more fine-
grained than a binary measurement of accu-
racy. Accordingly, we train our classifier in
a multi-label setup, such that the prediction
probability of each target style can be inde-
pendently evaluated.

2. Fluency (F) of the generation xst is measured
by the probability of being grammatically ac-
ceptable via a binary RoBERTa-large classi-
fier trained on the CoLA dataset (Warstadt
et al., 2018).

3. Meaning Similarity (MS) between the in-
put xsi and rewritten text xst is measured via
SentenceTransformers embedding distance
(Reimers and Gurevych, 2019).

Following previous work (Krishna et al., 2020),
for each candidate style transfer pair, we aggregate
the three style metrics above into a joint metric V
that captures the overall quality:

V(xsi , xst , st) = TSS(xst , st) · F(xst) ·MS(xsi , xst)

All three individual metrics are scalar values in the
interval [0, 1]3, which ensures also that V ∈ [0, 1].

Next, we filter our data to create a high-quality
pool of training data Df for subsequent model train-
ing. For each target style in Dinit, we sort the style-
transfer pairs by their combined score V , then take
the top-k examples. This sampling method ensures
that the examples in the resulting dataset are the
highest quality possible, but may also lead to lower
diversity, as it excludes lower-scoring generations.

In practice, with multiple target styles in the
initial pool of pairs Dinit, filtering is done for each
style separately, and the filtered data from each
target style is combined to form Df .

3.2 Reinforcement Learning
Next, we train a unified style transfer model by
leveraging the generated corpus Df . Concretely,
our goal is to attain a rewriting model Mθ which
accepts an input with arbitrary style xsi along with
a target style st and produces a high-quality rewrite
xst , as evaluated by the joint metric V , formally:

θ⋆ = argmaxExst∼pθ(·|xsi ,st)V(xsi , xst , st)
3SentenceTransformers occasionally outputs negative

scores; we set these to 0 to ensure a score in [0, 1]

Recently, online policy-based RL algorithms (Lu
et al., 2022; Schulman et al., 2017; Ramamurthy
et al., 2022) have been shown effective in opti-
mizing language models towards a given objective
function. In the RL framework, we refer to the
model Mθ as the policy and the objective function
V as the reward. Generally, online RL algorithms
conduct policy optimization with model-generated
outputs while assuming a reasonable degree of
alignment between the output distribution of the
initial policy and the optimal reward distribution.
This alignment is necessary to produce generations
with meaningful signals for RL training.

Due to the absence of supervision, the closest ini-
tial policy for our unified style transfer task would
be the style-agnostic paraphraser MP . However,
this initial policy is still far away from the optimal
reward distribution as the style transfer task falls
beyond the capabilities of the paraphraser MP ,
making it unable to produce useful generations for
RL optimization. To overcome this challenge, we
propose first conducting offline RL training and
then progressing to online RL training. Specifi-
cally, prior to optimizing MP with its own genera-
tions, we first perform RL optimization on the style
transfer data Df generated through expert-guidance
(§3.1). Intuitively, the offline stage equips the ini-
tial policy with a certain degree of style transfer
capability before online stage further optimizes it
towards generating rewrites with better quality.

In practice, we employ and adapt the RL algo-
rithm QUARK (Lu et al., 2022) to accomplish the
two-stage RL training. QUARK is an online, off-
policy RL algorithm that has proven effective in var-
ious text generation tasks. Notably, the off-policy
nature4 makes it possible to be adapted for the
offline RL stage. QUARK optimizes a reward func-
tion through reward conditioning. Concretely, the
algorithm alternates between 1) collecting samples
with the current language model, 2) sorting them
into quantiles based on their reward, with each
quantile identified by a reward token prepended
to the language model’s input, and 3) using stan-
dard language modeling loss on samples from each
quantile conditioned on their reward token.

When adapting QUARK to offline RL, we start
by initializing the data pool with the style trans-
fer corpus Df generated through expert-guidance
rather than gathering generations from the initial

4Off-policy RL evaluates and improves a policy different
from the policy used for action selection (i.e. data generation).
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GPT-2 Large GPT-3 (text-davincii-003)

Target Style STEER STRAP P-A-R k = 0 k = 1 k = 5 k = 10

AAE Twitter 42.6 7.4 3.8 23.2 11.2 25.4 22.7
Bible 44.0 26.9 6.6 5.2 16.0 20.2 21.0
1810-1820s 30.2 11.1 3.5 14.7 15.9 17.4 17.0
1890-1900s 35.9 12.3 4.4 8.6 9.1 10.4 10.1
1990-2000s 42.3 16.6 4.3 7.9 13.0 17.5 17.2
English Twitter 41.2 8.0 5.5 35.0 23.6 32.0 29.5
James Joyce 20.4 11.8 5.4 3.4 1.3 1.6 2.6
Song Lyrics 33.3 20.2 7.7 12.2 15.4 11.2 13.2
Romantic Poetry 20.4 15.7 2.8 1.1 3.4 6.2 4.9
Shakespeare 13.6 9.1 2.5 9.6 10.0 9.7 9.7
Switchboard 52.9 21.1 1.7 0.1 0.3 5.3 13.7

Overall 34.3 14.6 4.4 11.0 10.8 14.3 14.7

Table 1: Comparison of 11-way style transfer on the CDS dataset measured by aggregate score V with different
methods, including STRAP (Krishna et al., 2020) and P-A-R (Suzgun et al., 2022), using GPT-2 Large (774M), and
GPT-3 (175B). Bold and underline denote the highest and the second-highest score respectively in each row.

policy. Afterward, we carry out the quantization
and learning steps in the same manner as the origi-
nal QUARK. After completing the offline RL stage,
we proceed with the online QUARK training by al-
ternating between data generation with the updated
policy, quantization and learning. In both stages,
our training objective can be written as:

θ⋆ = max
θ

E(xsi ,xst )∼D log pθ(xst |xsi , st, rV(xsi ,xst ,st)
)

where rV(·) denotes the quantized reward token
corresponding to the reward score V(·) of the gen-
erated rewrite. In online RL, D is expanded with
samples from the improved policy at each iteration.

Additionally, we also explore integrating a vec-
torized reward function v(xsi , xst , st) into the
QUARK algorithm, rather than using the joint mul-
tiplied scalar score V as the reward function. In
this case, instead of conditioning on one reward
token that corresponds to a quantized scalar score,
we condition on a reward vector composed of three
reward tokens. These reward tokens represent quan-
tized scores from the style, fluency and similarity
metrics respectively. As we will show in the experi-
ment section, we observe a noticeable performance
boost brought by vectorized QUARK in terms of
reward optimization. We believe this is likely be-
cause the vectorized reward provides additional
fine-grained signals for optimization, which reflect
the quality of each generated output with respect to
individual evaluation metrics.

4 Experiments

We detail our experiment setup, including the
datasets (§4.1), baselines (§4.2), evaluation metrics

(§4.3), experimental details (§4.4), main results
(§4.5), ablations (§4.6), and analysis of Df (§4.7).

4.1 Datasets

We use the following datasets in our experiments:
1) the Corpus of Diverse Styles (CDS; Krishna
et al., 2020) is a non-parallel, diverse text corpus
with 11 distinct styles such as Shakespeare and the
Bible, 2) Grammarly’s Yahoo Answers Formal-
ity Corpus (GYAFC; Rao and Tetreault, 2018) is
a parallel corpus of formal and informal responses
collected from the Yahoo Answers forum, and 3)
the Yelp Review Dataset (Yelp; Shen et al., 2017a)
is a non-parallel corpus of user-reviews on various
businesses and services from the Yelp with binary
sentiment ratings of positive or negative. For more
details on the datasets see Appendix B.

4.2 Baselines

We use three competitive style-transfer baselines.
Method-specific details are located in Appendix C:

Style Transfer via Paraphrasing (STRAP; Kr-
ishna et al., 2020) is an unsupervised approach for
arbitrary style transfer, which uses GPT-2 Large
(Radford et al., 2019) inverse paraphrasers.

Prompt-and-Rerank (P-A-R; Suzgun et al.,
2022) prompts some language model to generate
k candidate style transfer texts, ranks them based
on quality, and returns the best one. We use P-A-R

with GPT-2 Large.

GPT-3 (Brown et al., 2020; Ouyang et al., 2022)
is a highly-capable class of decoder-only models,
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GPT2-Large GPT-3 (text-davincii-003)

STEER STRAP P-A-R k = 0 k = 1 k = 5 k = 10
Target Style Inf. For. Inf. For. Inf. For. Inf. For. Inf. For. Inf. For. Inf. For.

AAE Twitter 44.0 47.7 18.7 13.2 25.6 10.6 31.7 29.2 21.5 17.9 30 28.8 30.2 27.6
Bible 36.1 38.8 22 22.9 0.3 1.6 4.3 4.4 15.7 15.9 18.0 19.0 19.8 19.5
1810-1820s 26.3 29.5 5.9 10.0 1.2 4.7 12.4 15.6 14.3 16.9 17.6 21.6 16.9 20.1
1890-1900s 33.5 34.7 10.0 13.4 4.4 11.0 9.9 11.8 13.9 13.8 14.6 14.4 13.8 13.3
1990-200s 50.2 56.2 22.6 32.1 11.8 31.4 16.7 20.7 28.5 32.5 31.5 34.7 28.4 32.8
English Twitter 46.1 54.1 20.1 22.1 32.4 33.5 37.4 41.8 30.1 29.5 34.9 36.4 32.5 35.0
James Joyce 22.3 22.8 10.9 13.2 3.2 7.9 2.9 3.3 2.7 2.3 3.1 2.5 3.3 2.8
Song Lyrics 42.6 40.5 22.1 23.2 10.3 12.4 19.3 12.9 22.3 18.4 19.3 16.2 24.2 20.1
Romantic Poetry 13.5 12.9 8.9 10.8 0.8 0.9 2.0 1.1 5.2 4.3 7.0 4.7 6.0 3.9
Shakespeare 11.8 11.6 11.1 10.4 1.3 4.1 12.9 15.1 15.3 14.7 13.4 15.2 13.8 15.2
Switchboard 54.6 59.3 29.7 35.1 5.2 6.1 0.1 0.1 0.3 0.1 9.7 13.4 15.6 23.0

Overall 34.6 37.1 16.5 18.8 8.8 11.3 13.6 14.2 15.4 15.1 18.1 18.8 18.6 19.4

Table 2: Comparison of style transfer to each of the 11 styles in the CDS dataset measured by aggregate score
V from two out-of-domain styles from the GYAFC corpus. For. and Inf. denote the formal and informal styles
respectively. Bold and underline denote the highest and the second-highest score respectively in each row.

particularly showing strong zero- and few-shot per-
formance. We utilize GPT-3 as baseline both in
a zero-shot and few-shot (k = 1, 5, 10) setting.
Specifically, we use the instruction-tuned, 175B
parameter engine text-davinci-003.5

4.3 Evaluation Metrics

To evaluate the quality of each style transfer pair,
we use the same metrics introduced in §3.1: target
style strength (TSS), fluency (F), meaning similar-
ity (MS), and the aggregate metric V . For a set
of style transfer pairs (i.e., over an entire data cor-
pus), we report the average V .6 To ensure that the
improvement from STEER is meaningful (i.e., to
make sure our model is not reward hacking), we
also report evaluation using alternative metrics un-
seen during training in Appendix F; these results
corroborate our main findings in §4.5.

4.4 Experimental Details

For all non-GPT-3 baselines, we use GPT-2 large as
the base language model. Specifically, for STEER,
we use GPT-2 large for the paraphraser and for
the expert models. Our main STEER results are
with the vectorized QUARK variant (i.e., using fine-
grained reward). More details are in Appendix A.3.

4.5 Style Transfer on CDS

To evaluate STEER’s capability on arbitrary style
transfer, we use CDS, as it has 11 diverse styles.

5Most capable model during conducting this work.
6Though for each style transfer pair, V is equal to the

product of TSS, F, and MS, once we take the corpus-average
of these metrics we lose this equality guarantee

Specifically, we train a unified model that can trans-
fer arbitrary text to each style in the corpus C. We
use top-200K filtering for each target style, result-
ing in |Df | = 2.2M. Finally, we evaluate style
transfer to each target style by transferring from
1000 test-set examples from every other style ∈ C;
this results in a total test-set size of 10,000 for each
target style.

Automatic Results We demonstrate automatic
results on the CDS in Table 1. Across all tar-
get styles, STEER outperforms all baselines on
V , the aggregate style transfer quality, including
GPT-3, a model 226 times larger, and STRAP,
a comparably-sized, non-unified baseline. This
shows that with expert-guided data generation and
offline-then-online RL, a unified model can outper-
form other models of the same or even much larger
size. The full results, including individual style
transfer metrics, are in Appendix G.1.

GPT-3 has its best relative performance on the
Twitter and Shakespeare styles, but struggles other-
wise. This shows the limitations of relying on large-
scale general-purpose LLMs: in this case, GPT-3
excels transferring to styles most likely to be highly
prevalent in it’s internet text corpus (Brown et al.,
2020) However, it is unlikely to generalize to more
obscure styles unseen during training, even with
few-shot examples. The poor performance of the
GPT-2-based P-A-R reinforces this, showing the un-
reliability of prompting general-domain, pretrained
LMs for style transfer, especially at smaller scales.

We also conduct an out-of-domain evaluation
to assess the robustness of each method to unseen
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Figure 3: Style transfer quality V∼H on CDS, averaged
across all 11 styles, with fluency and meaning similarity
human evaluation. TSS is automatically computed.10

inputs. Specifically, we use text from the two styles
in GYAFC as inputs at testing time,7 employing the
previously trained CDS model without further fine-
tuning, and transfer to each of the 11 styles in CDS.
Our results are shown in Table 2: overall, STEER

is the most robust method, outperforming all oth-
ers in total score, V , for almost all target styles.
STEER loses only to GPT-3 on the Shakespeare
style; this may be due to the inherent knowledge of
Shakespeare stored in GPT-3.

Human Evaluation We also conduct a human
evaluation to verify the quality of the generations.
We use a 3-point Likert Scale to evaluate style
transfers (Iyyer et al., 2018) on both meaning sim-
ilarity (MSH) and fluency (FH).8Afterwards, we
scale MSH and FH down to [0, 1] and multiply
them by the automatically-computed TSS to attain
V∼H ∈ [0, 1], a partially human aggregate metric.
Three NLP experts annotate 10 examples per 11
target styles from 3 models (330 total examples).9

Figure 3 shows our human evaluation results. In
terms of individual metrics, STEER has better flu-
ency than STRAP and maintains competitive fluency
to GPT-3, which is known to excel at generating
human-like text (Brown et al., 2020). STEER also
performs slightly better in meaning similarity than
STRAP, but GPT-3 outperforms both of them signif-
icantly. However, the TSS of STEER makes up for
this and dwarves both the baselines. We think this
is a reasonable trade-off: STEER sacrifices much
less fluency and meaning preservation for much
more style transfer strength.

Previous work has also demonstrated this trade-
7We use 1000 examples from each class
8As in Krishna et al., 2020, we do not conduct human

evaluation for target style strength, as the task is to complex
for untrained annotators unfamiliar with the target styles. Ap-
pendix D.1 details an experiment we conducted which verifies
this task’s hardness for annotators

9We omit P-A-R from human evaluation due to its low
performance in automatic metrics. See Appendix D for details.

Figure 4: Plots of the style transfer quality on CDS
averaged across all 11 styles with varying k, the hyper-
parameter used in the Top−k sampling strategy.

Input: Can’t sleep at all. Smh. Transfer: AAE → 1990s-2000s
STEER I mean, I can’t sleep at all.
GPT-3 I am unable to obtain any rest; shaking my head in disbelief.
STRAP I don’t want to sleep.
P-A-R Can’t sleep at all, smh.

Input: Yeah one one way or another Transfer: switchboard → rom. poetry
STEER One way, or another, or both
GPT-3 Aye, one mayhap will find the way.
STRAP And one way or the other
P-A-R Yeah one one way or another

Input: In his fear, he dare not face me Transfer: lyrics → bible
STEER And he will not dare to face me: for fear of me is in his eyes.
GPT-3 And his fear was great, so that he could not stand before me.
STRAP For he that is afraid of me is of me; but he that is of me is of him.
P-A-R In fear he came and hid himself, because God was near to him

Table 3: Examples of style transfer pairs generated by
STEER and other methods. GPT-3 is run with 10-shot.

off between style transfer accuracy and meaning
preservation, both through empirical results (Suz-
gun et al., 2022; Malmi et al., 2020; Wu et al., 2019;
Li et al., 2018) and explicit mentions in discussions
(Li et al., 2018; Xu et al., 2019; Wu et al., 2019;
Hallinan et al., 2023). Intuitively, when transfer-
ring from one style to another, some amount of
semantic changes is unavoidable; as a simple exam-
ple, meaning similarity will be maximized when
the input is naively copied.

Overall, human evaluation validates our main
findings: STEER still beats both baselines in overall
score V . These results show that GPT-3 is excellent
at paraphrasing - creating fluent and semantically
similar rewrites, but not at transferring to multi-
ple diverse styles, as it often struggles to convert
to the target style. On the other hand, STEER is
more versatile, maintaining moderate-to-strong per-
formance on all individual metrics, making it the
strongest overall method.

Finally, we show qualitative examples of gen-
erations from different models in Table 3. In the
examples, STEER produces style transfers that op-
timize across all dimensions, while other methods

10Pairwise agreements are 94.8% and 98.8% for fluency
and similarity respectively.
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Reward Type V TSS F MS

Coarse 19.9 42.8 79.0 62.6
Fine-grained 27.4 47.0 83.6 71.5

Table 4: Style transfer quality on CDS, averaged across
11 target styles using STEER with a coarse vs a fine-
grained reward. The highest values are denoted in bold.

optimize for only one or two.

4.6 Ablations

We perform two ablation studies to analyze the
effect of dataset size and reward design in STEER.
All models are compared after 15K training steps:

Dataset Size We investigate the effect of differ-
ent dataset sizes on the performance of STEER.
Using the top-k sampling strategy, we vary k with
k = 100K, 200K, and 400K and compare style
transfer on CDS. Figure 4 shows the average re-
sults transferring to 11 target styles in CDS from
all other styles.

Interestingly, we do not observe direct scaling of
style transfer performance with increasing dataset
size; as the top-k value increases, the aggregate
score V , target style strength TSS, and fluency F
all follow a reverse U-shape curve.

These results may indicate a trade-off between
diversity and quality in the dataset Df used to train
STEER: as the k value increases with top-k sam-
pling, Df becomes more diverse, but also includes
samples with lower-quality, which may hurt model
performance downstream. On the other hand, when
k is too small, though the average quality of each
example in Df is higher, fewer diverse examples
may hurt generalization. The optimal dataset has
examples with sufficient variety and quality, en-
abling the model to learn a high-quality policy
while staying resilient to various inputs.

Coarse vs Fine-grained Reward We also di-
rectly compare the use of coarse or fine-grained
reward tokens in the RL stages of STEER. As men-
tioned in §3.2, rather than using a product of the
style metrics and a single reward token, we can use
a vectorized reward function that outputs each of
the three style metrics individually and correspond-
ingly condition on each of these specific metrics.

Results are shown in Table 4. Incorporating a
fine-grained reward improves performance across
all dimensions, including V . This shows that con-
ditioning on fine-grained rewards can lead to more

n-gram entropy, n =

MSTTR 1 2 3 F MS

Df (STEER) 0.912 8.8 15.0 19.3 86.8 67.2
GYAFC 0.931 9.1 15.0 17.8 86.2 78.4
Yelp 0.958 9.6 16.4 21.3 87.2 –
CDS 0.946 10.0 17.0 20.4 83.2 –

Table 5: Data metrics on Df (STEER) and other datasets.

control across each desired attribute, resulting in
much better style transfers overall.

4.7 Analysis of Df

We analyze Df , the dataset resulting from the
expert-guided dataset generation. First, we com-
pare the lexical diversity of Df against existing
style transfer corpora. Following Gehrmann et al.
(2021), we gauge the mean segmented token-type
ratio over segemented length of N = 10 (MSTTR)
and the 1/2/3-gram entropy of the training split of
each corpus. We also assess the quality of style-
transferred outputs in each corpus by assessing
fluency (F) and meaning similarity (MS).

Table 5 shows comparisons of these metrics. The
automatically-created Df is comparable to existing
human-created datasets in diversity and in fluency.
The average meaning similarity is also promis-
ing, as it is within 85% of the value of GYAFC.
This shows the potential of machine-generated data
when aided with creative decoding algorithms.

5 Related Work

Style Transfer Due to the absence of large-scale
parallel corpora for text style transfer (TST), prior
work has focused on unsupervised methods de-
signed for non-parallel datasets (Dai et al., 2019;
Luo et al., 2019). Most of these efforts focus on
disentangling the representation of content and the
style of a given text, either through an auxiliary
discriminator to classify text attributes (Hu et al.,
2018; Shen et al., 2017b), or by training with a
policy gradient (Xu et al., 2018; Gong et al., 2019).

Recent work has leveraged the generation capa-
bilities of LMs for TST: Krishna et al. (2020), cre-
ate a pseudo-parallel corpus by paraphrasing text
from a style, then training an inverse paraphraser to
convert text to that style. Other work automatically
align pairs of sentences in different styles, either in
the representation-level (Prabhumoye et al., 2018)
or corpus-level (Liu et al., 2022b).

Others have attempted TST by prompting LMs
(Reif et al., 2021; Suzgun et al., 2022). How-
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ever, these approaches often rely on a strong initial
model, either already fine-tuned on TST-related
tasks (e.g. paraphrasing), or a large LM capable of
few-shot generalization. In contrast, our framework
does not assume strong capabilities of the initial
model, making it applicable in a realistic setting.

RL for NLP Recent work has shown the poten-
tial of RL to align with arbitrary natural language
objective functions across areas such as summa-
rization (Paulus et al., 2017), open-ended text gen-
eration (Lu et al., 2022), dialogue (Li et al., 2016;
Zhou et al., 2017), question-answering (Liu et al.,
2022a), machine translation (Nguyen et al., 2017;
Wu et al., 2016), and dataset generation (Pyatkin
et al., 2022; Kim et al., 2023). For unified style
transfer, a setting where the desired output can be
directly correlated to automatic metrics, RL is a
promising avenue.

Data Generation with LMs LM-generated data
have been increasingly used across a wide range
of tasks, such as commonsense reasoning (West
et al., 2022; Zelikman et al., 2022), NLI (Ye et al.,
2022) and dialogue generation (Kim et al., 2023).
While previous approaches rely on the task-solving
capability of LLMs, recent work show that small
LMs can also generate high-quality datasets with-
out supervision (Jung et al., 2023; Brahman et al.,
2023). Building on top of these, our work pushes
further on machine-generated data by incorporating
1) inference-time decoding algorithms and 2) tar-
geted filtering, yielding an effective pseudo-parallel
corpus to initialize offline reinforcement learning.

6 Conclusion

We propose STEER, a unified framework to over-
come the challenge of limited parallel data in style
transfer, by leveraging expert-guided decoding and
two-stage reinforcement learning. We focus on
a more realistic use case: rewriting text from an
arbitrary, unknown style to a desired target style.
Through extensive experiments, we demonstrate
the effectiveness and robustness of STEER on both
in- and out-of-domain style transfer, outperforming
competitive baselines. The success of STEER un-
derscores the potential of RL algorithms when com-
bined with controllable decoding and encourages
future algorithmic innovation that fully unleash the
power of RL for real-world NLP applications.

7 Limitations, Ethical Considerations,
and Broader Impacts

While STEER demonstrates promising results for
arbitrary-to-many style transfer, there are several
limitations. Firstly, in our experiments, we rely
heavily on the availability of a corpus containing
text from diverse styles to act as source styles for
the expert-guided creation of Df ; however, not
every corpus will have as diverse a set of styles
to create a Df from. Instead, in data-limited set-
tings, it may be required to gather source text from
other locations, like other corpora, in order to cre-
ate candidate style-transfer pairs. Secondly, while
we tested the generalization of STEER to out-of-
domain source style, adaption to new target styles
through continual learning requires further investi-
gation and experimentation.

Additionally, like many other natural language
systems, STEER could unintentionally introduce
harmful stereotypes or engage in malicious content
generation. Specially the use of fine-grained re-
ward signals during online training may be used to
reinforce undesired behaviors potentially leading to
the generation of biased or unethical outputs. Fur-
thermore, bad actors may try to intentionally utilize
style transfer systems like STEER to create harm or
to harass marginalized communities by using toxic
output styles. This is a common misuse case in
generation (McGuffie and Newhouse, 2020), and
an application which we strongly condemn.

On the positive side, STEER allows for training
memory and cost-efficient training of unified style
transfer models using existing corpora. Our method
is thus beneficial for somewhat reducing the carbon
footprint by reducing the reliance on training large
language models (LLMs) to achieve desired results
(Strubell et al., 2019).
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A Modeling Details

A.1 Out-of-the-Box Modeling
For this work, we use the publicly-available
HuggingFace Transformers library (Wolf et al.,
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2019), to fine-tune GPT2-models and run in-
ference. The HuggingFace code is available
at https://github.com/huggingface/
transformers. and is licensed under the
Apache License 2.0. We also use the OpenAI
library (documented at https://platform.
openai.com/docs/libraries) to make
queries to GPT-3 for some of our style transfer
baselines.

A.2 Generation of Df

We first train GPT2-large experts using the training
data from CDS. See Krishna et al., 2020 for more
details. For each style expert, we train with the
following parameters, shown in Table 6.

Hyperparameter Assignment

model GPT2-large
number of gpus 1
effective batch size 32
total steps 50,000
steps per evaluation 1000
learning rate optimizer AdamW
AdamW initial learning rate 1e-05
AdamW epsilon 1e-05
learning rate schedule linear with no warmup
weight decay 0.0
max sequence length 50
max generation length 100
padding sequences to max seq length

Table 6: Hyperparameters used to finetune the expert
models

We also include an early stopping criteria based
on repeatedly increasing loss. Each model was
trained on a single Nvidia RTX6K with 24GB of
memory for less than 24 hours.

After these experts are created, for every pair
of styles in CDS, we generate 10,000 candidate
rewrite pairs. Each source text is randomly selected
from the train set of a CDS style, and used as the
input text for all other target styles with a variety
of hyperparameters. Specifically, we employ the
DEXPERTS decoding framework for each of these
generations. DEXPERTS has one hyperparameter,
α, which we vary. We attempt the following hy-
perparameters for each generation, shown in Table
7:

Hyperparameter Tested

α [0.2,0.4,0.6]
temperature [0.7, 1.0, 1.3]

Table 7: Hyperparameters tested and used for STEER
for data over-generation

Besides these hyperparameters, we use the same
max sequence and generation length as in §6, and
use a no-repeat ngram value of 3 to avoid repetition.
After creating Di, we filter the dataset down to
2.2M rows by doing top-200K sampling for each
of the 11 target styles in CDS. Next, we use this
data to train the unified model:

A.3 Training the Unified Model

We train our online RL for 30,000 steps with early
stopping based on the overall score V . We use 4
RTX-A100 GPUs with 80GB of memory, and this
takes about 120 hours to train. We use a batch size
of 256 and the Adam optimizer with learning rate
of 1e-5. The full hyperparameters are reported in
Table 8.

Hyperparameter Assignment

model GPT2-large
number of gpus 4
effective batch size 1024
total steps 30,000
steps per evaluation 2500
learning rate optimizer AdamW
AdamW initial learning rate 1e-05
AdamW epsilon 1e-05
learning rate schedule linear with no warmup
weight decay 0.0
max sequence length 50
max generation length 100
padding sequences to max seq length

QUARK hypers

sample steps 2500
KL penalty 0.025
entropy coef 0.00
policy temp. 1.0
vectorized reward token True
number of buckets 5

Table 8: Hyperparameters used for unified model train-
ing, including for QUARK

B Dataset Details

B.1 The Corpus of Diverse Styles (CDS)

CDS is collected and ensembled from online
archives and previous academic datasets; we list
each style and the train/val/test splits in Table 9.
The dataset contains no parallel data, only text
from each respective style. We use CDS as the
primary dataset for unified style transfer, as it has
11 distinct styles that we can train and evaluate on.
See Krishna et al., 2020 for a full explanation of
the styles.
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Style Train Validation Test

AAE 720K 7.3K 7.3K
Bible 31K 1.7K 1.7K
Coha 1810 205K 5.3K 5.3K
Coha 1890 1.2M 32K 32K
Coha 1990 1.9M 49K 49K
English Tweet 5.2M 40K 40K
Joyce 37K 2.0K 2.0K
Lyrics 4.5M 252K 252K
Romantic Poetry 27K 1.5K 1.5K
Shakespeare 25K 1.3K 1.3K
Switchboard 146K 1.5K 1.5K

Table 9: Styles and dataset sizes in CDS

C Baseline Details

C.1 Style Transfer via Paraphrasing
We retrieve the diverse paraphraser and the inverse
style transfer models from the repository in the
original paper; please see Krishna et al., 2020 for
more details. At inference, we use greedy decoding
as this led to the best results in the original paper.

C.2 Prompt-and-Rerank
Prompt-and-Rerank has two prompting strategies
that do not require knowledge of the source style
and are therefore suitable for arbitrary style trans-
fer. The two strategies are vanilla prompting and
contrastive prompting. See Reif et al., 2021 for full
details on the exact prompts.

We test out both prompts with a small subset
of data, and find that contrastive prompting works
much better, so we use this going forward. We
also try generating k = 3 samples and k = 5
samples per input, and find that k = 3 works the
best. Following the original paper, we use nucleus
sampling (Holtzman et al., 2019) with p = 0.9 and
a temperature of 1.0. Finally, we use GPT-2 Large
for fair comparison with STEER.

C.3 GPT-3
We prompt GPT-3 using nucleus sampling (Holtz-
man et al., 2019) with p = 0.9 and a temperature
of 1.0. We include further details on zero-shot and
few-shot prompting below.

C.3.1 Zero-shot
We use the following prompt setup for zero-shot
style transfer:
Rewite the following sentence

into the style of [target style]
Original Sentence: [original

sentence]
Rewritten Sentence:

C.3.2 Few-shot
For few-shot style transfer, we randomly show k
examples of the target style sampled from the train
set, and prepending them before the 0-shot prompt
as follows.
Here are some examples of

sentences in the style of [target
style]:
[example 1]
[example 2]
[example 3]
...

D Human Evaluation

Since automatic metrics alone have been shown in-
sufficient for evaluating text generations (Novikova
et al., 2017), we conduct human evaluation. An-
notators rate meaning similarity of a style transfer
pair, and the fluency of the style-transferred text.

For fluency, annotators choose between: 0 for
not fluent, 1 for somewhat fluent, and 2 for fluent.
For meaning similarity, annotators choose between:
0 for not similar, 1 for somewhat similar, and 2
for similar. We discard annotations where all three
annotators disagree on a label for either fluency
or similarity, resulting in a final human evaluation
labeled size of 310 (from an initial size of 330).

To reduce labor cost, we only run our human
evaluations on the top three methods from Table 1,
meaning we exclude P-A-R. In addition, following
previous work, we do not run human evaluation on
target style strength. Further details are explained
in Appendix D.1.

D.1 Style Identification Task Difficulty

The target styles in the CDS dataset are extremely
complex. Previous work from Krishna et al., 2020
mention that this is too challenging of a task, even
for experienced annotators.

We verify the difficulty of the text style iden-
tification task reported in Krishna et al., 2020 by
performing an additional human evaluation. From
the CDS test set, we randomly sample 10 exam-
ples from each of the 11 styles (110 total examples
with ground truth styles). Next, we use the same
three annotators from our previous human evalua-
tion (NLP experts), and provide them with a natural
language description of each of the 11 styles and
20 random examples from the train set of each to
familiarize them with text from different styles. We
ask them to assign a style label to each of the 110
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examples, given their knowledge of the styles, and
calculate their accuracy and agreement. On aver-
age, the annotators only have a 40.0% classification
accuracy with an inter-annotator agreement of 0.39
(Fleiss’ kappa). In contrast, on the same samples
(unseen by the classifier), our classifier obtains a
84.5% classification accuracy. These results vali-
date the difficulty of the task and suggest that an
automatic classifier is more suited for this task.

E The Cold Start Problem in RL

Reinforcement learning often involves optimizing
a policy model towards an optimal distribution that
maximizes some expected reward. This paradigm
works well out-of-the-box for a variety of tasks in
NLP, such as model detoxification and sentiment
control (Lu et al., 2022) where the output distribu-
tion of the initial policy already aligns, to a reason-
able degree, with the optimal reward distribution
However, in a cold-start, reinforcement-learning
setting, the initial policy output distribution is dras-
tically different than the optimal reward distribu-
tion; this may be the case when the reward is linked
to a specific task outside the capabilities of the orig-
inal policy.

Adjusting to cold-start has been mostly explored
in the context of recommender systems, where it
is difficult to determine user-preferences without
any initial data (Ding and Soricut, 2017; Ji et al.,
2021; Du et al., 2022), but has been sparsely pur-
sued in reinforcement learning for NLP. Ding and
Soricut (2017) introduce softmax policy gradients
for cold-start reinforcement-learning, but the ap-
proach is limited to only one class of reinforcement
learning algorithms (policy-gradient approaches)
and includes mathematical assumptions not widely
applicable to various NLP applications.

F Alternative Evaluation Metrics

To ensure that the model improvement from STEER

is meaningful (i.e., to make sure our model is not
reward hacking), we use a set of alternative metrics
for target style strength, meaning similarity, and
fluency, and re-run evaluation on all results from
Tables 1 and 2. These are metrics unused during
training time for STEER.

For the fluency model, we use a different binary
CoLA classifier (https://huggingface.
co/textattack/roberta-base-CoLA),
and again use the raw probability score of the
linguistically acceptable class. To assess meaning

similarity, we use the embedding-based SIM
model of Wieting et al., 2019 as used in Krishna
et al., 2020. Finally, for the style classifier model,
given limited data quantity, we train another
RoBERTa-Large classifier with the same CDS data
but with a different seed. As before, we compute
the aggregate metric V by taking the product of the
three automatic metrics for each style transfer pair
in the corpus, and report the average V value.

Our results using the alternative metrics to re-
run evaluation on both in-domain style transfer and
out-of-domain style transfer using the CDS-trained
STEER mode are shown in Table 10 and Table 11
respectively. Overall, this corroborates our main
findings by showing that our relative results are
largely unchanged: on the in-domain styles, STEER

beats all baselines, including impressive gains on
target style strength as well as improved fluency
and meaning similarity. On the out-of-domain task,
STEER continues to excel, once again beating all
other baselines other than GPT-3 on Shakespeare.

G Full Experimental Results

We detail the full experimental results for the main
experiments in this section, including all style eval-
uation metrics.

G.1 Main Experiments
We include the full results for the main experiment
from Table 1, testing out style transfer on the CDS
dataset to each target style from all other source
styles. Table 12 has the results for STEER, Table 13
has the results for STRAP, Table 14 has the results
for P-A-R, and Tables 15-18 have the results for
GPT-3 0-shot, 1-shot, 5-shot, and 10-shot.
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GPT-2 Large GPT-3 (text-davincii-003)

Target Style STEER STRAP P-A-R k = 0 k = 1 k = 5 k = 10

AAE Twitter 38.2 7.8 1.6 18.1 9.4 20.7 17.6
Bible 34.4 22 2.0 4.0 12.3 14.4 13.6
1810-1820s 23.1 9.2 1.0 12.8 11.5 12.3 12.6
1890-1900s 34.3 13.6 2.2 8.0 8.0 10.3 10.3
1990-200s 39.0 16.1 1.7 8.7 13.1 15.6 15.8
English Twitter 37.7 8.7 2.5 28.2 16.6 24.2 19.8
James Joyce 17.6 10.7 1.9 1.9 1.5 1.5 2.2
Song Lyrics 29.3 20.1 2.9 10.3 13.6 9.4 11.7
Romantic Poetry 16.8 14.8 0.9 0.5 2.6 4.2 3.9
Shakespeare 11.4 8.0 0.8 5.9 7.3 6.6 6.9
Switchboard 41.4 15.2 0.5 0.0 0.2 3.0 6.9

Overall 29.4 13.3 1.6 8.9 8.7 11.1 11.0

Table 10: Comparison of 11-way style transfer on the CDS dataset measured by aggregate score V using the
alternative evaluation metrics (replication of Table 1). Bold and underline denote the highest and the second-highest
score respectively in each row.

GPT2-Large GPT-3 (text-davincii-003)

STEER STRAP P-A-R k = 0 k = 1 k = 5 k = 10
Target Style Inf. For. Inf. For. Inf. For. Inf. For. Inf. For. Inf. For. Inf. For.

AAE Twitter 38.7 43.8 18.7 14.1 14.5 5.7 25.7 23.5 16.7 15 25.5 24.8 23.8 22.9
Bible 29.6 32.4 19.4 20.1 0.3 0.5 3.9 3.9 10.8 11.3 13.6 15.5 15.3 15.4
1810-1820s 19.6 22.3 5.2 8.4 0.2 1.5 9.9 12.6 11.2 14.1 12.6 16.7 12.1 15.7
1890-1900s 29.2 32.3 10.9 14.2 2.0 5.3 8.5 10.2 11.3 12.6 12.4 12.8 11.4 11.2
1990-200s 44.9 51.9 22.1 31.6 6.7 17.9 15.3 18.9 26.3 30.6 30.1 32.6 26.8 31.0
English Twitter 44.4 51.2 20.6 22.1 23.6 22.5 28.0 32.3 20.3 19.8 24.7 26.0 22.8 24.5
James Joyce 19.0 21.5 11.7 13.2 1.5 3.5 2.0 2.6 2.9 3.1 2.9 2.3 3.0 3.1
Song Lyrics 36.4 36.1 21.3 23.6 6.0 4.3 15.3 10.0 19.0 14.6 15.7 13.3 19.2 16.1
Romantic Poetry 11.2 11.4 10.0 11.2 0.2 0.3 1.4 0.7 3.7 2.9 4.7 3.5 4.2 2.8
Shakespeare 10.1 9.7 9.9 9.4 0.3 1.6 10.2 12.4 11.3 12.5 11.1 12.5 11.5 12.8
Switchboard 42.5 47.3 22.6 27.7 2.1 1.7 0.1 0.0 0.3 0.0 4.8 6.6 8.1 12.4

Overall 29.6 32.7 15.7 17.9 5.2 5.9 10.9 11.6 12.2 12.4 14.4 15.1 14.4 15.3

Table 11: Comparison of style transfer to each of the 11 styles in the CDS dataset measured by aggregate score
V using the alternative evaluation metrics from two out-of-domain styles from the GYAFC corpus (replication of
Table 2). For. and Inf. denote the formal and informal styles respectively. Bold and underline denote the highest
and the second-highest score respectively in each row.

V TSS F MS

AAE Twitter 42.6 68.2 87.0 72.5
Bible 44.0 80.9 85.9 63.9
1810-1820s 30.2 49.8 81.9 74.7
1890-1900s 35.9 56.6 85.4 74.6
1990-200s 42.3 63.0 83.9 77.8
English Twitter 41.2 62.6 87.7 74.5
James Joyce 20.4 34.1 81.8 76.7
Song Lyrics 33.3 51.6 87.2 74.7
Romantic Poetry 20.4 35.3 80.5 74.7
Shakespeare 13.6 24.7 83.7 72.7
Switchboard 52.9 92.0 87.0 66.1
Overall 34.3 56.3 84.7 73.0

Table 12: Full results on CDS test set with STEER

V TSS F MS

AAE Twitter 7.4 21.8 65.7 66.2
Bible 26.9 70.5 79.4 51.7
1810-1820s 11.1 22.5 78.6 64.9
1890-1900s 12.3 22.6 82.6 65.0
1990-2000s 16.6 29.1 82.8 65.0
English Twitter 8.0 36.9 76.8 49.8
James Joyce 11.8 26.4 78.8 66.7
Song Lyrics 20.2 39.4 80.2 67.3
Romantic Poetry 15.7 46.5 64.5 62.1
Shakespeare 9.1 27.8 68.0 62.2
Switchboard 21.1 52.0 69.3 65.2
Overall 14.6 36.0 75.2 62.4

Table 13: Full results on CDS test set with the STRAP
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V TSS F MS

AAE Twitter 3.8 10.3 76.1 68.5
Bible 6.6 24 79.1 67.3
1810-1820s 3.5 8.7 74.4 78.9
1890-1900s 4.4 10 76 77.7
1990-2000s 4.3 9.1 75.4 79.2
English Twitter 5.5 12.5 74.1 82.1
James Joyce 5.4 13.6 76.9 75.3
Song Lyrics 7.7 23.2 78.2 65.3
Romantic Poetry 2.8 7.6 77.1 76.1
Shakespeare 2.5 8.2 77 72
Switchboard 1.7 3.9 75.1 84.5
Overall 4.4 11.9 76.3 75.2

Table 14: Full results on CDS test set with PAR

V TSS F MS

AAE Twitter 23.2 58.4 63.1 65.7
Bible 5.2 10.4 85 70.4
1810-1820s 14.7 27.6 79.4 67
1890-1900s 8.6 15 83.1 65
1990-2000s 7.9 12.6 83.8 68.8
English Twitter 35 58.3 82 70
James Joyce 3.4 7.4 77.1 66
Song Lyrics 12.2 25.4 73.7 72.2
Romantic Poetry 1.1 3.5 61.7 61.5
Shakespeare 9.6 27.7 64.3 68.6
Switchboard 0.1 0.1 92.2 74.5
Overall 11 22.4 76.9 68.2

Table 15: Full results on CDS test set for GPT-3 0-shot.

V TSS F MS

AAE Twitter 11.2 30.9 67.3 64.8
Bible 16 40.2 79 59.5
1810-1820s 15.9 29.4 82 65.3
1890-1900s 9.1 16 82.4 63.3
1990-2000s 13 25.2 86.2 65.3
English Twitter 23.6 47 71.3 68
James Joyce 1.3 11 46.1 63.2
Song Lyrics 15.4 40.1 71.8 62.4
Romantic Poetry 3.4 15.3 51.7 59.1
Shakespeare 10 29.5 61.9 69
Switchboard 0.3 0.6 90.3 75.4
Overall 10.8 25.9 71.8 65

Table 16: Full results on CDS test set for GPT-3 1-shot.

V TSS F MS

AAE Twitter 25.4 79.1 58.4 59
Bible 20.2 43.6 78.8 65.6
1810-1820s 17.4 35.6 80.4 62.4
1890-1900s 10.4 17.2 84.6 66.8
1990-2000s 17.5 26.9 89.1 71
English Twitter 32 55.9 80.2 68.4
James Joyce 1.6 10.9 48.6 63.2
Song Lyrics 11.2 25.8 74.7 66
Romantic Poetry 6.2 28.5 44.6 57.4
Shakespeare 9.7 28 62.8 68.4
Switchboard 5.3 10.7 85.4 71.2
Overall 14.3 32.9 71.6 65.4

Table 17: Full results on CDS test set for GPT-3 5-shot.

V TSS F MS

AAE Twitter 22.7 65.4 57.9 64.9
Bible 21 43.8 81.4 65.7
1810-1820s 17 33.1 81 66.2
1890-1900s 10.1 16.9 83.1 68.8
1990-2000s 17.2 25.7 88.2 72.1
English Twitter 29.5 51.4 77.8 69.9
James Joyce 2.6 20.9 33.9 62.4
Song Lyrics 13.2 30.8 69.5 69.5
Romantic Poetry 4.9 23.2 43.9 58.9
Shakespeare 9.7 28.7 60.8 69.5
Switchboard 13.7 24.8 82.2 73.5
Overall 14.7 33.2 69.1 67.4

Table 18: Full results on CDS test set for GPT-3 10-shot.
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