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Abstract
We propose a framework for online multimodal
dialog act (DA) classification based on raw
audio and ASR-generated transcriptions of cur-
rent and past utterances. Existing multimodal
DA classification approaches are limited by
ineffective audio modeling and late-stage fu-
sion. We showcase significant improvements
in multimodal DA classification by integrating
modalities at a more granular level and incor-
porating recent advancements in large language
and audio models for audio feature extraction.
We further investigate the effectiveness of self-
attention and cross-attention mechanisms in
modeling utterances and dialogs for DA classi-
fication. We achieve a substantial increase of
3 percentage points in the F1 score relative to
current state-of-the-art models on two promi-
nent DA classification datasets, MRDA and
EMOTyDA.

1 Introduction
Dialog Acts (DAs), as described by Searle (1969),
are the minimal units of linguistic communication
that represent the speaker’s intention behind an
utterance in a conversation. Successful DA clas-
sification facilitates a range of downstream tasks
including task-oriented dialog systems (Blache et al.,
2020; Wang et al., 2020b), conversational agents
(Ahmadvand et al., 2019; Wood et al., 2020), and di-
alog summarization (Oya and Carenini, 2014; Goo
and Chen, 2018). Since DA classification is cru-
cial for understanding spontaneous dialog (Stolcke
et al., 2000), a significant amount of effort has been
put into modeling DAs computationally. However,
most of the research efforts on DA classification
heavily rely on oracle transcriptions (Ortega and
Vu, 2017; li et al., 2018; Li et al., 2019; Colombo
et al., 2020; He et al., 2021), resulting in several
limitations.

First, oracle transcriptions are typically inacces-
sible during real-time dialog processing, such as
in conversational agent systems. These systems

Speaker Utterance Dialog act

me018 I guess when Sunil gets
here he can do his last or
something.

Suggestion

me013 Yeah. Acknowledgement
me013 So we probably should

wait for him to come be-
fore we do his.

Command

me006 Okay Backchannel
me018 That’s a good idea Appreciation

Table 1: Short segment of a dialog from MRDA corpus.

depend on automatic speech recognition (ASR) for
transcriptions, which are often subject to noise and
inaccuracies. Ortega et al. (2019) demonstrated
that DA classification models trained on oracle tran-
scriptions exhibit subpar performance when applied
to noisy transcriptions.

Second, audio signals contain important acoustic
and prosodic cues, which are crucial for DA classi-
fication (Jurafsky et al., 1998), but are overlooked
when focusing solely on text transcriptions. An
example of the importance of acoustic information
for DA modeling can be found in the brief dialog
excerpt presented in Table 1. The utterances la-
beled as suggestion and command are lexically very
similar, making disambiguation based solely on
textual content difficult.

In this research, we explore real-time DA classifi-
cation, utilizing only the raw audio signals as input.
However, the presence of noise in the audio sig-
nals and potential inaccuracies in the transcriptions
generated by Automatic Speech Recognition (ASR)
systems make the setting particularly challenging.
This motivates us to investigate a multimodal frame-
work that leverages the complementary nature of
audio and textual representations, enabling reliable
DA classification despite the limitations of noisy
audio signals and imperfect ASR transcriptions.
A few previous research efforts explore the setup
but are limited by either poor dialog modeling or
ineffective use of audio. He et al. (2018) make use
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of ASR generated transcriptions and audio features
but do not consider contextual information while
modeling the utterances, resulting into drammat-
ically lower performance in comparison to using
oracle text.

We propose a novel multimodal approach that
uses a hierarchical fusion technique to combine
the two modalities at early-stage, resulting in su-
perior performance compared to utilizing individ-
ual modalities for online DA classification. Our
proposed approach leverages multimodal fusion
strategies to effectively model both the utterances
and their context. Additionally, we propose a state-
of-the-art audio feature extraction process that en-
hances audio-based modeling of dialogs, leading
to improved performance in DA classification. We
release the codes for feature extraction and experi-
ments in this repository.

2 Related Work

Dialog Act Classification Several studies have
explored different approaches to facilitate DA clas-
sification, with a focus on employing various neural
network architectures and attention mechanisms
for leveraging contextual information. Ortega and
Vu (2017) use CNNs to acquire utterance repre-
sentations and further investigate various forms
of attention mechanisms to infuse context aware-
ness into the utterance representations. Bothe et al.
(2018) propose using a pre-trained character-level
language model to generate sentence representa-
tions and a RNN to learn dialogue act from the
current utterance representation and the context
of previous utterances. li et al. (2018) introduce
CRF-attentive structured network with integrated
structured attention to simultaneously model con-
textual utterances and their corresponding DAs. Li
et al. (2019) jointly model DAs and topics using a
shared bidirectional GRU-based utterance encoder
and task-specific attention mechanisms.

Raheja and Tetreault (2019) propose a hierarchi-
cal RNN with context-aware self attention to model
various levels of utterance and dialog act seman-
tics. Wang et al. (2020a) propose Heterogeneous
User History (HUH) graph convolution network,
complemented by denoising mechanisms in order
to effectively integrate user’s historical answers
grouped by DA labels to improve DA classification.
He et al. (2021) propose a speaker turn-aware ap-
proach where the turn embedding vector, learned
based on the speaker label is combined with the

utterance vector for further processing by an RNN
to capture contextual information. Żelasko et al.
(2021) explore the effects of broader context, capi-
talization and punctuation on DA classification and
report strong result using XLNet and Longformer.

Multimodality for Dialog Modeling Multi-
modality is widely explored in multimodal sen-
timent analysis (MSA) and emotion recognition in
conversation (ERC) tasks. Hazarika et al. (2018)
propose Conversational Memory Network (CMN)
for ERC that uses GRU to model the utterances
from fused feature representations and use atten-
tion mechanism to implement the memory network.
Poria et al. (2017) present (i) CAT-LSTM, a con-
textual attention-based LSTM network for model-
ing utterance relationships and (ii) AT-Fusion, an
attention-based fusion mechanism that enhances
multimodal fusion for MSA. Tsai et al. (2019) intro-
duce the cross- attention based Multimodal Trans-
former (MulT), an end-to-end model that expands
upon the standard transformer network (Vaswani
et al., 2017) to enable learning representations di-
rectly from unaligned multimodal streams for ERC.

However, unlike ERC and MSA, multimodality
is less explored for DA classification. He et al.
(2018) combine CNN for audio feature augmenta-
tion and RNN to model utterances from individual
modalities and fuse them through concatenation.
While Ortega and Thang Vu (2018) utilize CNN
to capture intra-utterance context for both audio
and textual modalities, they only consider dialog-
level context for modeling textual representation.
Saha et al. (2020) propose a Triplet Attention Sub-
network, incorporating self and cross attention to
jointly model emotion and DA in dialogs.

3 Proposed Method
In this section, we will describe the components of
the proposed model in detail (see Figure 1)

3.1 Task Description
A dialog consists of 𝑛 utterances (𝑈) accompa-
nied by their respective labels (𝑌 ), arranged in
chronological order. Each utterance comprises a
text component (𝑥𝑡𝑖 ) and an audio component (𝑥𝑎𝑖 ).
Mathematically, a dialog with 𝑛 utterances can be
represented as:

{𝑈,𝑌 } = {(
𝑥𝑖 = ⟨𝑥𝑡𝑖 , 𝑥𝑎𝑖 ⟩, 𝑦𝑖

) |𝑖 ∈ [1, 𝑛]} . (1)

Here, 𝑥𝑖 denotes the 𝑖th utterance, where 𝑥𝑡𝑖 rep-
resents the text component and 𝑥𝑎𝑖 represents the
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audio component. A DA label 𝑦𝑖 from a predefined
set of labels (𝐶), is assigned to each utterance. Our
proposed network takes this input data and aims
to accurately classify the DA associated with each
utterance. Since, we are interested in online DA
classification, we only consider the raw speech sig-
nals as the input. We use Whisper (Radford et al.,
2022) to obtain transcriptions.

3.2 Multimodal Feature Extraction
Textual Features We use a pre-trained RoBERTa
(Liu et al., 2019) model to extract textual features.
The textual representation from each utterance 𝑥𝑡𝑖
is passed through the pre-trained RoBERTa model,
and the representations from the last hidden layer are
extracted as the token embeddings. Mathematically
𝑥𝑡𝑖 can be represented as follows:

𝑥𝑡𝑖 = {𝑤1
𝑖 , 𝑤

2
𝑖 , ..., 𝑤

𝑘
𝑖 } ∈ R𝑘×𝑑𝑡 . (2)

Here, 𝑤 𝑗
𝑖 represents the 𝑗 th token of the 𝑖th utterance,

𝑘 the total number of tokens in an utterance, and
𝑑𝑡 the embedding dimension.

Audio Features We use a pre-trained Whisper
model to extract audio features. The audio signal
corresponding with each utterance 𝑥𝑎𝑖 is passed
through a pre-trained Whisper model and the hidden
states from the last encoder layer are extracted as
the frame embeddings. Mathematically 𝑥𝑡𝑎 can be
represented as follows:

𝑥𝑡𝑎 =
{
𝑓 1
𝑖 , 𝑓

2
𝑖 , ..., 𝑓

𝑚
𝑖

} ∈ R𝑚×𝑑𝑎 . (3)

Here, 𝑓 𝑗𝑖 represents the 𝑗 th frame of the 𝑖th utterance,
𝑚 the total number of frames in an utterance, and
𝑑𝑎 the embedding dimension.

The choice of Whisper as the audio feature ex-
tractor is motivated by two key factors. First, given
the real-time nature of online DA classification, the
usage of Whisper, which is already used for tran-
scriptions, eliminates the necessity for a separate
feature extraction model. This not only reduces the
time requirements but also simplifies the inference
process by leveraging the same pre-trained model.
Second, we observe that using features extracted
by Whisper leads to better DA classification re-
sults than using other popularly used features for
similar tasks such as MFCC, eGeMAPS (Eyben
et al., 2016), and even transformer-based features
like Wav2Vec2 (Baevski et al., 2020) embeddings.
We provide a detailed comparison of the model
performance using these features in § 5.

3.3 Model Architecture

The proposed model consists of three primary com-
ponents: (1) an early-stage fusion encoder that
fuses the two modalities at the utterance level and
incorporates attention-based dialog modeling using
the fused utterances, (2) unimodal encoders that
generate context-aware representations from each
modality individually, and (3) a late-stage fusion
classifier that combines the context-aware repre-
sentations from both the early-stage fusion encoder
and the unimodal encoders and applies linear layers
to perform the final DA classification.

3.3.1 Early-stage Fusion Encoder

In this branch of the network, every utterance 𝑥𝑖 =
⟨𝑥𝑡𝑖 , 𝑥𝑎𝑖 ⟩ within the dialog is processed by two Bi-
LSTM networks. Specifically, Bi-LSTM𝑡 is used to
model the textual utterance representation extracted
from 𝑥𝑡𝑖 , while Bi-LSTM𝑎 is used to model the audio
utterance representation extracted from 𝑥𝑎𝑖 . At any
time 𝑗 , the forward

−−−−−−→
LSTM𝑡 computes the forward

hidden vector
−→
ℎ

𝑗 ,𝑡
𝑖 based on the previous hidden

vector
−→
ℎ

𝑗−1,𝑡
𝑖 and the input token embedding, (w 𝑗

𝑖 ),
while the backward

←−−−−−−
LSTM𝑡 computes the backward

hidden vector
←−
ℎ

𝑗 ,𝑡
𝑖 based on the opposite previous

hidden vector
←−
ℎ

𝑗+1,𝑡
𝑖 and the input token embedding

(w 𝑗
𝑖 ). Subsequently, the forward and the backward

hidden vectors are concatenated into the final hidden
vector, ℎ 𝑗

𝑖 of the Bi-LSTM model. Here, ℎ 𝑗
𝑖 is a

2𝑑ℎ-dimensional vector where 𝑑ℎ is the hidden
dimension of the LSTMs. Mathematically,

−→
ℎ

𝑗 ,𝑡
𝑖 =

−−−−−−→
LSTM𝑡 (w 𝑗

𝑖 ,
−→
ℎ

𝑗−1,𝑡
𝑖 ) (1)

←−
ℎ

𝑗 ,𝑡
𝑖 =

←−−−−−−
LSTM𝑡 (w 𝑗

𝑖 ,
←−
ℎ

𝑗+1,𝑡
𝑖 ) (2)

ℎ
𝑗 ,𝑡
𝑖 = concat(−→ℎ 𝑗 ,𝑡

𝑖 ,
←−
ℎ

𝑗 ,𝑡
𝑖 ) ∈ R2𝑑ℎ (3)

We use the self-attention mechanism to calculate the
utterance embedding 𝑠𝑡𝑖 from the token embeddings
as a weighted sum of all the hidden states from
the Bi-LSTM network. To achieve this, the hidden
vector ℎ 𝑗 ,𝑡

𝑖 is passed through a simple multi-layer
perceptron (MLP) with a non-linearity function
(tanh) to generate a new hidden representation.
This, in turn, is passed through another single-
neuron MLP followed by a softmax to determine the
attention weight for each token, 𝛼 𝑗 ,𝑡

𝑖 in the utterance.
This process can be represented by the following
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Figure 1: The proposed model architecture.

set of equations:

𝑟
𝑗 ,𝑡
𝑖 = tanh(𝑊1ℎ

𝑗 ,𝑡
𝑖 + 𝑏1))) (4)

𝛼
𝑗 ,𝑡
𝑖 = softmax 𝑗 (𝑊2𝑟

𝑗 ,𝑡
𝑖 ) (5)

𝑠𝑡𝑖 =
∑︁
𝑗

𝛼
𝑗 ,𝑡
𝑖 ℎ

𝑗 ,𝑡
𝑖 ∈ R2𝑑ℎ (6)

where 𝑊i=1,2 and 𝑏1 represent the weights and bias
of the MLP layers respectively.

The audio utterance representation 𝑠𝑎𝑖 is com-
puted by the Bi-LSTM𝑎 followed by self-attention
mechanism in an identical manner. Finally the two
representations are concatenated to compute the
multimodal utterance representation 𝑠𝑖:

𝑠𝑖 = concat(𝑠𝑡𝑖 , 𝑠𝑎𝑖 ) ∈ R4𝑑ℎ (7)

As an alternative design for early-stage fusion
encoding, we investigate the integration of cross-
attention between token and frame representations
when generating the multimodal utterance repre-
sentation. The objective of incorporating cross-
attention is to learn a soft alignment score that
captures the relationship between the textual and
audio modalities within the same utterance. While
calculating cross attention, we use either the text
modality as source and audio as target or vice versa.
Two cross-attention based utterance embedding are
computed, one is 𝑠𝑡 ,𝑎𝑖 where, the attention weights
are calculated using the dot product of the two
modality representations, ℎ 𝑗 ,𝑡

𝑖 and ℎ
𝑗 ,𝑎
𝑖 and based

on the attention weights the token embeddings are
aggregated to an utterance embedding. The 𝑠𝑎,𝑡𝑖
is calculated in a similar manner. To achieve this,
the token embeddings and frame embeddings are
passed through individual simple MLP layers fol-
lowed by a tanh activation to generate intermediate

token or frame representations.

𝑝
𝑗 ,𝑡
𝑖 = tanh(𝑊3ℎ

𝑗 ,𝑡
𝑖 + 𝑏3) (8)

𝑝
𝑗 ,𝑎
𝑖 = tanh(𝑊4ℎ

𝑗 ,𝑎
𝑖 + 𝑏4) (9)

Pairwise dot-products between intermediate token
and frame representations are computed using ma-
trix multiplication. Considering, 𝑃𝑡

𝑖 ∈ R𝑘×2𝑑ℎ and
𝑃𝑎
𝑖 ∈ R𝑚×2𝑑ℎ are the two matrices of the interme-

diate token and frame representations of all the
utterances, The following matrix multiplication is
employed to compute the attention weights.

𝑆 = 𝑃𝑡
𝑖 × (𝑃𝑎

𝑖 )𝑇 ∈ R𝑘×𝑚 (10)

Here, 𝑘 and 𝑚 represents the number of tokens in
each utterance and the number of frames in each
utterance, respectively, and 2𝑑ℎ is the embedding
dimension. Another MLP transformation is applied
on the audio frame embedding matrix and finally
multiplied with the with the attention weights to
calculate the attended token embeddings,

𝑃𝑡 ′
𝑖 = 𝑆 × 𝑀𝐿𝑃(𝑃𝑎

𝑖 ) ∈ R𝑘×2𝑑ℎ (11)

Finally, the average of all the cross-attended token
embeddings per utterance is computed to gener-
ate the utterance embedding, 𝑠𝑡 ,𝑎𝑖 . Another cross-
attended utterance embedding 𝑠𝑎,𝑡𝑖 is also calculated
in a similar manner. The final utterance represen-
tation is the concatenation of the self and cross
attended utterance representations.

𝑠𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑠𝑡𝑖 , 𝑠𝑎𝑖 , 𝑠𝑡 ,𝑎𝑖 , 𝑠𝑎,𝑡𝑖 ) ∈ R8𝑑ℎ (12)
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This utterance representation is then passed through
a single-layer MLP that projects it to a lower-
dimensional space for further processing.

Once we have generated the multimodal utter-
ance representations, we incorporate contextual
information from the previous utterances into the
utterance representation. To achieve this, we use
a window of width w that includes the current ut-
terance representation and w-1 previous utterance
representations for modeling the context-aware ut-
terance representation. The context modeling pro-
cess follows a similar approach to the utterance
modeling. The context encoder consists of a Bi-
LSTM and attention mechanism. The Bi-LSTM
encodes the utterance representations into hidden
states 𝑔𝑖 , while the attention mechanism calculates
the attention weight 𝛽𝑖 for each of the hidden states.
The final context-aware utterance representation is
calculated as follows:

𝑐𝑖 =
∑︁
𝑤

𝛽𝑖𝑔𝑖 (13)

The context-aware utterance representation is finally
passed through a single-layer MLP that projects it
to a lower-dimensional space.

3.3.2 Unimodal Encoders

While the early-stage fusion encoder focuses on
fusing modalities effectively, our approach also
incorporates two modality-specific encoders that
model context-aware utterance representations from
text and audio individually. To develop these uni-
modal encoders, we augment the model proposed
by Ortega and Thang Vu (2018).

First, we use a 1D CNN followed by max-pooling
to effectively model utterance representations from
the token or frame vectors of an utterance. The
kernel size and number of filters for CNN are two
hyperparameters that we tune for the best perfor-
mance of the model. Finally, we contextualize the
utterance representations in a similar manner as
described in the context modeling for early-stage fu-
sion. To achieve this, we use an LSTM model with
an attention mechanism, which generates contextu-
alized textual utterance representations by attending
to past utterance representations in a given window.
The process of generating utterance representation

from token vectors can be summarized as follows:

𝑢𝑡𝑖 = maxpool(CNN( [𝑤1,𝑡
𝑖 , 𝑤2,𝑡

𝑖 , . . . , 𝑤𝑘,𝑡
𝑖 ]))

(14)

𝑐𝑡𝑖 =
∑︁
𝑤

𝛾𝑖LSTM(𝑢𝑡𝑖 ) ∈ R𝑑ℎ (15)

Similarly, we compute a contextualized audio rep-
resentation 𝑐𝑎𝑖 for each utterance and pass both
representations to the final late-stage fusion classi-
fier module.

While the early-stage fusion encoder is structured
with a Bi-LSTM and attention-based design, the uni-
modal encoder is designed using convolution and
maxpooling to model utterances based on token or
frame embeddings. The 1D convolution essentially
functions as a temporal convolution, facilitating
the integration of local context when generating
utterance embeddings. Our experimental findings
have demonstrated that the alternative encoder de-
sign, featuring convolutional filters, outperforms
the use of a similar LSTM-based architecture in the
unimodal-encoder branches. Our hypothesis is that
the convolutional filters employed in the unimodal
branches capture unique utterance representations
compared to the LSTMs used in early-stage fusion
encoders, resulting in this performance improve-
ment.

3.3.3 Late-stage Fusion Classifier
This module integrates the multimodal and uni-
modal contextualized representations from the pre-
ceding layers by concatenating them, thereby pro-
ducing a combined representation, which is subse-
quently fed into a two-layer MLP to perform DA
classification.

𝑧𝑖 = concat(𝑐𝑖 , 𝑐𝑡𝑖 , 𝑐𝑎𝑖 ) (16)
𝑧𝑖 = ReLU(𝑊𝑐1𝑧

𝑖 + 𝑏𝑐1) (17)
�̂�𝑖 = argmax(softmax(𝑊𝑐2𝑧

𝑖 + 𝑏𝑐2)) (18)

Here, 𝑊{𝑐1,𝑐2} , and 𝑏{𝑐1,𝑐2} represent the weights
and biases of the MLP layers in the classifier, re-
spectively. The final MLP layer projects the joint
representation to a𝐶-dimensional embedding space,
where 𝐶 is the number of classes. Softmax acti-
vation is applied to calculate the probability of
the utterance belonging to each class. Finally, the
argmax operation is applied to predict the DA cor-
responding to the utterance.
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Dialogs Utterances

Dataset |𝐶 | |𝑙 | Train Val Test Train Val Test

MRDA 52 1442.5 51 12 12 75K 16.4K 16.7K
EMOTyDA 12 9.6 727 104 208 6.9K 1K 2.1K

Table 2: Number of classes |𝐶 |, utterances per dialog |𝑙 |, and number of dialogs and utterances in each split.

4 Experimental Setup

4.1 Datasets
We conduct experiments and present our findings
based on two publicly available benchmark datasets
that contain audio recordings of multi-party conver-
sations: the Meeting Recorder Dialog Act (MRDA)
corpus (Shriberg et al., 2004) and the EMOTyDA
dataset (Saha et al., 2020). We provide the statistics
of the datasets in Table 2.

MRDA The MRDA corpus consists of 75 multi-
party meetings, each of which is considered a sin-
gle dialog. The dialogs are on average of 1442.5
utterances in length. The dataset provides both
oracle transcriptions and corresponding audio sig-
nals, enabling online DA classification. We split
the meetings into 51 train, 12 validation and 12 test
meetings. The MRDA corpus adopts a DA labeling
scheme comprised of 52 distinct DA tags (Dhillon
et al., 2004) that can be further clustered at different
levels of granularity.

Specifically, these dialog acts are grouped into
a general set of 12 tags and a basic set of 5 tags.
The “basic-tags” grouping scheme introduced by
Ang et al. (2005) has been widely adopted by subse-
quent studies, including Ortega and Vu (2017); Li
et al. (2019); Raheja and Tetreault (2019); He et al.
(2021). However, we contend that relying solely on
the 5 basic tags limits our ability to capture the nu-
anced roles of utterances in the dialog. Hence, we
use the full set of DA tags for a more fine-grained
analysis.1

EMOTyDA The EMOTYDA dataset contains
DA annotations for two popular datasets for emotion
recognition in conversations: MELD (Poria et al.,
2019) and IEMOCAP (Busso et al., 2008). For
consistency with the choice of our first dataset, we
choose the multiparty split of the EMOTyDA data
which is the DA adaptation of the MELD corpus.
We refer to this split as EMOTyDA in the rest of the

1Different granularities of DA labels are available here:
https://github.com/NathanDuran/MRDA-Corpus

paper. The dataset consists of 1039 short dialogs
with an average length of 9.6 utterances. The 12
most commonly occurring DA tags out of the 42
SWBD-DAMSL (Jurafsky and Shriberg, 1997) tags
were used to annotate utterances of the EMOTyDA
dataset. Saha et al. (2020) argue that, given the
short nature of the dialogs, 12 tags are enough to
capture the granular roles of the utterances in the
dialogs, and use 831 dialogs for training and 208
dialogs for testing. We further split the original
training set into 727 training and 104 validation
dialogs and kept the original test set intact for a fair
comparison.

4.2 Evaluation Metric
Both the MRDA and the EMOTyDA datasets con-
tain a high degree of class imbalance, as evi-
dent from the label distributions presented in Ap-
pendix A. The problem is more severe in the
MRDA dataset, where the five most frequent la-
bels, namely Statement (s), Backchannel (b), Floor
Holder (fh), Acknowledgement (bk), and Accept
(aa), collectively account for approximately 65% of
the total utterances. In contrast, the least frequent
12 tags constitute just 1% of the dataset. Simi-
larly, in the EMOTyDA dataset, the top 5 classes,
namely Statement-NonOpinion (s), Question (q),
Answer (ans), Statement-Opinion (o), and Others
(oth), make up approximately 80% of the data.

Thus, we argue that while previous works have
predominantly used accuracy as a metric for report-
ing model performance, it is not the most suitable
metric for evaluating the performance of models
trained on these imbalanced datasets. An accuracy-
based evaluation can be misleading, as a model that
performs well on the majority classes may achieve
an overall higher accuracy while neglecting the mi-
nority classes. To address this limitation, we use the
macro F1 score as our primary evaluation metric.
This metric provides a more balanced assessment
of model performance in this highly imbalanced
setting. We also report the accuracy of the models
to be consistent with prior work.
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4.3 Implementation Details
We employ Huggingface 2 to utilize pre-trained
RoBERTa and Whisper models for our feature ex-
traction modules. The proposed models are trained
using Categorical Cross-entropy loss function and
optimized using the Adam optimizer. Appendix D
provides detailed descriptions on hyperparameters,
and Appendix E provides descriptions on compute
hardware used and time requirements.

5 Results and Analysis

5.1 Baseline and Model Variants
We have evaluated our proposed Hierarchical Fu-
sion (HF) model for online DA classification by
comparing it against three strong related baselines
and four variants of our own model.

5.1.1 Model variants
EF Model consists solely of the Early-stage Fu-
sion Encoder component of our proposed model.
Audio-Only Model is a variant of our model that
exclusively utilizes audio as input. In this config-
uration, the textual utterance encoder from the EF
Model is removed. Text-Only Model is the text
counterpart of the Audio-Only Model, using only
text as input. LF Model is a late-stage fusion vari-
ant that leverages the Audio-Only and Text-Only
models to generate contextualized unimodal repre-
sentations. In this variant of the model, modality
fusion occurs after contextualization while in the EF
Model, the contextualization occurs after modality
fusion. Finally the HF Model comprises of both
the Early-stage Fusion Encoder and convolution
based Unimodal Encoders.

5.1.2 Related baselines
Related baselines we compare our model with are:

Lexico-acoustic Model: Ortega and Thang Vu
(2018) is one of the very few related works that per-
forms multimodal DA classification which creates
an even ground for comparison with our proposed
multimodal DA classification approach. MulT:
Tsai et al. (2019) is originally proposed for multi-
modal emotion recognition which uses transformer
architecture and cross-modal attention. We adapt
the model for online DA classification due to its
reproducibility and popularity as a relevant baseline
in recent works. Speaker Turn Modeling: He et al.

2https://huggingface.co/

(2021) is the most recent baseline for DA classifica-
tion . We adapt it for online DA classification by
training it with only ASR generated transcriptions.

5.2 Audio Features
Various types of acoustic features have been ex-
plored in the literature for different audio process-
ing tasks such as emotion recognition, sentiment
analysis and DA classification. Mel Spectrograms
and MFCC (Mel-Frequency Cepstral Coefficients)
are most prominently used (Ortega and Thang Vu,
2018; He et al., 2018; Saha et al., 2020; Rejaibi et al.,
2022; Chudasama et al., 2022). In recent years, the
extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS), an expert knowledge-based compi-
lation of 88 acoustic features (Li et al., 2020; Meng
et al., 2022; Haider et al., 2021) and transformer-
based acoustic feature extraction method using
wav2vec2 (Pepino et al., 2021; Sharma, 2022) have
gained attention for modeling emotions from audio
signals. For our proposed approach, we extract
the last hidden states of Whisper encoder as our
acoustic features for input utterances.

Audio Feature Accuracy ↑ Macro F1 ↑
MFCC 49.55 8.42

eGeMAPs 48.95 8.31
Wav2Vec2 52.52 18.92

Whisper Encoder 55.63 25.44

Table 3: Performance of the Audio-Only model using
various audio features on MRDA dataset.

We have evaluated the performance of our Audio-
Only model on the MRDA dataset, employing the
aforementioned feature sets. As shown in Table 3,
audio features extracted from the Whisper encoder
yield the highest performance in terms of both
accuracy and F1. An improvement of∼6 percentage
points is achieved over the nearest feature.

5.3 Online DA classification
Given that we are exploring a novel setup of online
DA classification, which involves a fine-grained
analysis of MRDA, we lack directly comparable
results from existing systems. Therefore, we adapt
three relevant baselines to suit the requirements
of online DA classification. To ensure a fair com-
parison, we use Whisper-generated transcripts and
Whisper encoder features for training and evalu-
ating all the baseline models on the two datasets.
The results in Table 4 indicate the promising per-
formance improvements achieved by the proposed
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MRDA EMOTyDA

Model Accuracy↑ Macro F1↑ Accuracy↑ Macro F1↑
Lexico-acoustic Model (Ortega and Thang Vu, 2018) 59.71 25.52 54.88 38.72
MulT (Tsai et al., 2019) 58.18 24.06 47.22 36.68
Speaker Turn Modeling (He et al., 2021) 54.46 25.31 50.24 38.93

HF Model 59.86 29.11 55.58 41.95

Table 4: Performance comparison of the proposed and baseline models on MRDA and EMOTyDA datasets.

MRDA EMOTyDA

Model Accuracy↑ Macro F1↑ Accuracy↑ Macro F1↑
Audio-Only Model 55.63 25.44 49.06 36.71
Text-Only Model 54.39 23.72 52.07 36.86

LF Model 55.66 25.78 50.82 37.44

EF Model 57.69 28.73 53.03 39.5
EF Model + Cross Attention 57.9 28.63 52.28 37.96

HF Model 59.86 29.11 55.58 41.95
HF Model + Cross Attention 60.26 28.9 55.25 41.4

Table 5: Ablation study of the proposed model.

model in online DA classification. Compared to
the relevant baselines, our model demonstrates an
increase in F1 score of ∼3.5 percentage points on
the MRDA dataset and ∼3 percentage points on the
EMOTyDA dataset.

Notably, while the other baseline models incor-
porate both audio signals and noisy transcriptions,
the Speaker Turn Model stands out by achieving a
higher F1 score for the EMOTyDA dataset, despite
being trained only on the noisy transcriptions. This
can be attributed to the fact that the ASR generated
transcriptions on EMOTyDA are cleaner. Audio
signals in the MRDA dataset are inherently noisy,
susceptible to inter-channel interferences, leading
to even noisier ASR transcriptions.

Overall, the similar performance gain on both
the datasets using the proposed model indicates the
robustness of our approach.

5.4 Ablation Study
To further analyze the impact of the individual
components of our proposed model we perform a
comprehensive ablation analysis (see Table 5). We
compare the results of the complete HF model with
the other variants described in subsubsection 5.1.1.

First, we examine the performance of the
modality-specific models on both datasets. The
Audio-Only model outperforms the Text-Only
model on the MRDA dataset, while the reverse
scenario is observed for the EMOTyDA dataset.
This discrepancy can be attributed to the noisy na-

ture of the MRDA audio signals, which introduces
inherent challenges in accurate transcription by the
ASR system. Furthermore, the LF model demon-
strated a minor improvement over the individual
modalities in terms of F1 score for both datasets.

The most significant performance improvement
was achieved by using early stage fusion (EF). The
EF model exhibited almost 2 percentage points of
improvement in F1 score over the LF model for both
the datasets. This component addresses the major
limitation of the previous DA classification research
efforts which used multimodality at a later stage
of dialog modeling. Finally, by incorporating the
unimodal encoders into the EF model, we observe
an increased overall accuracy of the model by ap-
proximately 2 percentage points without sacrificing
the F1 score.

We do not observe any notable improvement
of the model performance by incorporating cross-
attention while utterance encoding. This observa-
tion is aligned with the findings of Rajan et al. (2022)
for a similar task. Overall, we obtain approximately
5.5 F1 points and 4.5 F1 points improvement over
the textual model for the MRDA and EMOTyDA
datasets respectively.

5.5 Class-wise Performance
To understand the effectiveness of our multimodal
HF model, We compare the performance of our HF
model and Text-only model on individual classes.
Out of 52 MRDA classes, We achieve a performance
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Figure 2: Impact of HF model on individual classes.

gain for 32 classes. Among the 7 question classes,
the HF model experiences a performance gain on 5
question classes with 24 F1 points improvement for
Or Question (qr). We can see the performance boost
on a selected set of classes in Figure 2. For some
classes like, Negative Answer (ng), Third-party Talk
(t3) the Text-Only model fails to correctly classify
any utterance, while HF model achieves an F1 score
of 8 and 69 for these 2 classes. Similar trends have
been observed for the EMOTyDA dataset, where
the HF model achieves a performance gain on 10
out of 12 classes.

5.6 Comparison with SOTA Models

While our research primarily focuses on designing
an efficient DA classification model for an online
setup, we also measure the performance of our
model using oracle transcriptions. This allows us
to assess the effectiveness and robustness of our
proposed approach in comparison to the state-of-
the-art DA classification models. From Table 6,
we can observe that, our proposed HF model out-
performs all but two existing models when trained
with oracle transcriptions. Notably, Li et al. (2019)
achieves higher performance by jointly modeling
DAs and topics, leveraging the complementary
information from both tasks. From the ablation
studies of the corresponding paper, it is evident
that without employing the topic modeling jointly
with DA classification, the model performance de-
creases by 2% and falls below the performance of
our proposed model. Additionally, Chapuis et al.
(2020) is a large model pre-trained on OpenSubti-
tles, a massive corpus of spoken conversations and
fine-tuned on relevant datasets for DA classifica-
tion. The superior performance can be attributed
to the pre-training on relevant corpus and hence
performs slightly better than our approach which is

Model Multimodal Accuracy

Ortega and Thang Vu (2018) Y 84.7
Ravi and Kozareva (2018) N 86.7
Raheja and Tetreault (2019) N 91.1
He et al. (2021) N 91.4
Colombo et al. (2020) N 91.6
li et al. (2018) N 91.7
Li et al. (2019) N 92.2
Chapuis et al. (2020) N 92.4
HF Model (online) Y 82.6
HF Model (oracle) Y 91.8

Table 6: Comparison with state-of-the-art models on
MRDA dataset trained with basic tags.

Model Accuracy F1 Score

Saha et al. (2020)
DA only (Text + Audio) 40.30 41.16
DA + ER (Text + Audio) 49.42 41.69
DA + ER (Text + Video) 51.00 44.52
HF Model (online) 55.58 41.95
HF Model (oracle) 63.42 50.3

Table 7: Comparison with state-of-the-art models on
EMOTyDA dataset

only trained on DA classification dataset. We con-
duct similar experiments for the EMOTyDA dataset.
The only state-of-the-art model for this dataset is
Saha et al. (2020), which jointly models DA and
emotion (ER). Our proposed model outperforms
their best model, jointly trained on DA and ER with
text and video, by 12% in terms of accuracy and 6
F1 points.

6 Conclusion
We have put forward a Hierarchical Fusion Model
for online Dialogue Act (DA) classification. The
early-stage fusion encoder component of the pro-
posed model generates multimodal utterance rep-
resentations more effectively. We also propose a
novel audio feature extraction method using Whis-
per. Our detailed examination of different parts of
our model confirms their relative importance and
explains the effectiveness of our appraoch. The
proposed Hierarchical Fusion Model yields a re-
markable 3% improvement in the F1 score over the
related baseline, and a noteworthy 5% improvement
over using a text based model for online DA classi-
fication. Inspired by our exciting results from early
fusion, in future we want to investigate even more
granular fusion of the modalities at word level from
unaligned data.
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Limitations

One of the major limitations that we face is the
GPU memory restrictions. We employ two large
language models RoBERTa and Whisper for feature
extraction. However, we have not tuned the param-
eters of these models while extracting features. We
believe an end-to-end training by incorporating
these feature extraction models in the training will
produce better features fordialog modeling. How-
ever, having a limited access to GPUs restrict us
from doing so.

Another limitation that we have faced while
working with the MRDA corpus is the inherent
alignment issues of the dataset. For some of the
meeting recordings, the audio signal was not per-
fectly aligned with the provided timestamps for
utterances.

Ethics Statement

Online DA classification plays a vital role in con-
versational agents and chatbots. The accurate iden-
tification and categorization of Dialogue Acts are
vital for understanding the intentions, queries, and
responses within a conversation. If the Dialogue
Act recognition systems falter or generate unreli-
able outcomes, it can result in misunderstandings,
misinterpretations, and flawed responses from the
conversational agents. Hence, it is crucial to exer-
cise caution when integrating Dialogue Act clas-
sification systems into real-world applications. A
comprehensive evaluation of their performance, de-
pendability, and resilience becomes essential before
widespread deployment. Rigorous testing, valida-
tion, and ongoing improvement efforts should be
undertaken to enhance their accuracy, adaptabil-
ity, and applicability in real-world conversational
contexts. By ensuring the quality and reliability of
Dialogue Act recognition systems, we can mitigate
the potential negative impacts on end users and
elevate the overall user experience in interactions
with conversational agents.

Acknowledgements

We would like to thank the anonymous reviewers
for their valuable feedback and input. Research was
sponsored by the Army Research Office and was
accomplished under Grant Number W911NF-20-1-
0002. The views and conclusions contained in this
document are those of the authors and should not
be interpreted as representing the official policies,

either expressed or implied, of the Army Research
Office or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Government purposes notwithstanding
any copyright notation herein.

References
Ali Ahmadvand, Jason Ingyu Choi, and Eugene

Agichtein. 2019. Contextual dialogue act classifi-
cation for open-domain conversational agents. In
Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, SIGIR’19, page 1273–1276, New York,
NY, USA. Association for Computing Machinery.

Jeremy Ang, Yang Liu, and Elizabeth Shriberg. 2005.
Automatic dialog act segmentation and classification
in multiparty meetings. Proceedings. (ICASSP ’05).
IEEE International Conference on Acoustics, Speech,
and Signal Processing, 2005., 1:I/1061–I/1064 Vol.
1.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.

Philippe Blache, Massina Abderrahmane, Stéphane
Rauzy, Magalie Ochs, and Houda Oufaida. 2020.
Two-level classification for dialogue act recognition
in task-oriented dialogues. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 4915–4925, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Chandrakant Bothe, Cornelius Weber, Sven Magg, and
Stefan Wermter. 2018. A context-based approach
for dialogue act recognition using simple recurrent
neural networks. In Proceedings of the Eleventh
International Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe
Kazemzadeh, Emily Mower Provost, Samuel Kim,
Jeannette Chang, Sungbok Lee, and Shrikanth
Narayanan. 2008. Iemocap: Interactive emotional
dyadic motion capture database. Language Resources
and Evaluation, 42:335–359.

Emile Chapuis, Pierre Colombo, Matteo Manica,
Matthieu Labeau, and Chloé Clavel. 2020. Hier-
archical pre-training for sequence labelling in spoken
dialog. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 2636–2648,
Online. Association for Computational Linguistics.

Vishal Chudasama, Purbayan Kar, Ashish Gudmalwar,
Nirmesh Shah, Pankaj Wasnik, and Naoyuki Onoe.
2022. M2fnet: Multi-modal fusion network for emo-
tion recognition in conversation.

7541

https://doi.org/10.1145/3331184.3331375
https://doi.org/10.1145/3331184.3331375
http://arxiv.org/abs/2006.11477
http://arxiv.org/abs/2006.11477
https://doi.org/10.18653/v1/2020.coling-main.431
https://doi.org/10.18653/v1/2020.coling-main.431
https://aclanthology.org/L18-1307
https://aclanthology.org/L18-1307
https://aclanthology.org/L18-1307
https://doi.org/10.1007/s10579-008-9076-6
https://doi.org/10.1007/s10579-008-9076-6
https://doi.org/10.18653/v1/2020.findings-emnlp.239
https://doi.org/10.18653/v1/2020.findings-emnlp.239
https://doi.org/10.18653/v1/2020.findings-emnlp.239
http://arxiv.org/abs/2206.02187
http://arxiv.org/abs/2206.02187


Pierre Colombo, Emile Chapuis, Matteo Manica, Em-
manuel Vignon, Giovanna Varni, and Chloe Clavel.
2020. Guiding attention in sequence-to-sequence
models for dialogue act prediction. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):7594–7601.

Rajdip Dhillon, Sonali Bhagat, Hannah Carvey, and
Elizabeth Shriberg. 2004. Meeting recorder project:
Dialog act labeling guide.

Florian Eyben, Klaus R. Scherer, Björn W. Schuller,
Johan Sundberg, Elisabeth André, Carlos Busso,
Laurence Y. Devillers, Julien Epps, Petri Laukka,
Shrikanth S. Narayanan, and Khiet P. Truong. 2016.
The geneva minimalistic acoustic parameter set
(gemaps) for voice research and affective comput-
ing. IEEE Transactions on Affective Computing,
7(2):190–202.

Chih-Wen Goo and Yun-Nung (Vivian) Chen. 2018.
Abstractive dialogue summarization with sentence-
gated modeling optimized by dialogue acts. 2018
IEEE Spoken Language Technology Workshop (SLT),
pages 735–742.

Fasih Haider, Senja Pollak, Pierre Albert, and Saturnino
Luz. 2021. Emotion recognition in low-resource
settings: An evaluation of automatic feature selection
methods. Computer Speech Language, 65:101119.

Devamanyu Hazarika, Soujanya Poria, Amir Zadeh, Erik
Cambria, Louis-Philippe Morency, and Roger Zim-
mermann. 2018. Conversational memory network
for emotion recognition in dyadic dialogue videos.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 2122–2132, New
Orleans, Louisiana. Association for Computational
Linguistics.

Xuanli He, Quan Hung Tran, William Havard, Laurent
Besacier, Ingrid Zukerman, and Gholamreza Haffari.
2018. Exploring textual and speech information
in dialogue act classification with speaker domain
adaptation.

Zihao He, Leili Tavabi, Kristina Lerman, and Moham-
mad Soleymani. 2021. Speaker turn modeling for
dialogue act classification. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 2150–2157, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Dan Jurafsky and Elizabeth Shriberg. 1997. Switchboard
swbd-damsl shallow-discourse-function annotation
coders manual.

Daniel Jurafsky, Elizabeth Shriberg, Barbara Fox, and
Traci Curl. 1998. Lexical, prosodic, and syntactic
cues for dialog acts. In Discourse Relations and
Discourse Markers.

Jeng-Lin Li, Tzu-Yun Huang, Chun-Min Chang, and Chi-
Chun Lee. 2020. A waveform-feature dual branch
acoustic embedding network for emotion recognition.
Frontiers in Computer Science, 2.

Ruizhe Li, Chenghua Lin, Matthew Collinson, Xiao Li,
and Guanyi Chen. 2019. A dual-attention hierarchical
recurrent neural network for dialogue act classifica-
tion. In Proceedings of the 23rd Conference on
Computational Natural Language Learning (CoNLL),
pages 383–392, Hong Kong, China. Association for
Computational Linguistics.

Zheqian li, Rongqin Yang, Zhou Zhao, Deng Cai, and
Xiaofei He. 2018. Dialogue act recognition via crf-
attentive structured network. In The 41st Interna-
tional ACM SIGIR Conference on Research & De-
velopment in Information Retrieval, SIGIR ’18, page
225–234, New York, NY, USA. Association for Com-
puting Machinery.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.

Liyu Meng, Yuchen Liu, Xiaolong Liu, Zhaopei Huang,
Yuan Cheng, Meng Wang, Chuanhe Liu, and Qin
Jin. 2022. Multi-modal emotion estimation for in-the-
wild videos.

Daniel Ortega, Chia-Yu Li, Gisela Vallejo, Pavel Denisov,
and Ngoc Thang Vu. 2019. Context-aware neural-
based dialog act classification on automatically gen-
erated transcriptions. In ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 7265–7269.

Daniel Ortega and Ngoc Thang Vu. 2018. Lexico-
acoustic neural-based models for dialog act classifi-
cation. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 6194–6198.

Daniel Ortega and Ngoc Thang Vu. 2017. Neural-
based context representation learning for dialog act
classification. In Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue, pages
247–252, Saarbrücken, Germany. Association for
Computational Linguistics.

Tatsuro Oya and Giuseppe Carenini. 2014. Extrac-
tive summarization and dialogue act modeling on
email threads: An integrated probabilistic approach.
In Proceedings of the 15th Annual Meeting of the
Special Interest Group on Discourse and Dialogue
(SIGDIAL), pages 133–140, Philadelphia, PA, U.S.A.
Association for Computational Linguistics.

Leonardo Pepino, Pablo Riera, and Luciana Ferrer. 2021.
Emotion recognition from speech using wav2vec 2.0
embeddings.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
Navonil Mazumder, Amir Zadeh, and Louis-Philippe
Morency. 2017. Multi-level multiple attentions for

7542

https://doi.org/10.1609/aaai.v34i05.6259
https://doi.org/10.1609/aaai.v34i05.6259
https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/https://doi.org/10.1016/j.csl.2020.101119
https://doi.org/https://doi.org/10.1016/j.csl.2020.101119
https://doi.org/https://doi.org/10.1016/j.csl.2020.101119
https://doi.org/10.18653/v1/N18-1193
https://doi.org/10.18653/v1/N18-1193
http://arxiv.org/abs/1810.07455
http://arxiv.org/abs/1810.07455
http://arxiv.org/abs/1810.07455
https://doi.org/10.18653/v1/2021.findings-emnlp.185
https://doi.org/10.18653/v1/2021.findings-emnlp.185
https://aclanthology.org/W98-0319
https://aclanthology.org/W98-0319
https://doi.org/10.3389/fcomp.2020.00013
https://doi.org/10.3389/fcomp.2020.00013
https://doi.org/10.18653/v1/K19-1036
https://doi.org/10.18653/v1/K19-1036
https://doi.org/10.18653/v1/K19-1036
https://doi.org/10.1145/3209978.3209997
https://doi.org/10.1145/3209978.3209997
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2203.13032
http://arxiv.org/abs/2203.13032
https://doi.org/10.1109/ICASSP.2019.8682881
https://doi.org/10.1109/ICASSP.2019.8682881
https://doi.org/10.1109/ICASSP.2019.8682881
https://doi.org/10.1109/ICASSP.2018.8461371
https://doi.org/10.1109/ICASSP.2018.8461371
https://doi.org/10.1109/ICASSP.2018.8461371
https://doi.org/10.18653/v1/W17-5530
https://doi.org/10.18653/v1/W17-5530
https://doi.org/10.18653/v1/W17-5530
https://doi.org/10.3115/v1/W14-4318
https://doi.org/10.3115/v1/W14-4318
https://doi.org/10.3115/v1/W14-4318
http://arxiv.org/abs/2104.03502
http://arxiv.org/abs/2104.03502
https://doi.org/10.1109/ICDM.2017.134


contextual multimodal sentiment analysis. In 2017
IEEE International Conference on Data Mining
(ICDM), pages 1033–1038.

Soujanya Poria, Devamanyu Hazarika, Navonil Ma-
jumder, Gautam Naik, Erik Cambria, and Rada Mihal-
cea. 2019. MELD: A multimodal multi-party dataset
for emotion recognition in conversations. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 527–536, Florence,
Italy. Association for Computational Linguistics.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman,
Christine McLeavey, and Ilya Sutskever. 2022. Robust
speech recognition via large-scale weak supervision.

Vipul Raheja and Joel Tetreault. 2019. Dialogue Act
Classification with Context-Aware Self-Attention. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3727–3733,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Vandana Rajan, Alessio Brutti, and Andrea Cavallaro.
2022. Is cross-attention preferable to self-attention
for multi-modal emotion recognition?

Sujith Ravi and Zornitsa Kozareva. 2018. Self-governing
neural networks for on-device short text classifica-
tion. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 887–893, Brussels, Belgium. Association for
Computational Linguistics.

Emna Rejaibi, Ali Komaty, Fabrice Meriaudeau, Said
Agrebi, and Alice Othmani. 2022. Mfcc-based recur-
rent neural network for automatic clinical depression
recognition and assessment from speech. Biomedical
Signal Processing and Control, 71:103107.

Tulika Saha, Aditya Patra, Sriparna Saha, and Pushpak
Bhattacharyya. 2020. Towards emotion-aided multi-
modal dialogue act classification. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4361–4372, Online.
Association for Computational Linguistics.

John R. Searle. 1969. Speech Acts: An Essay in the Phi-
losophy of Language. Cambridge University Press.

Mayank Sharma. 2022. Multi-lingual multi-task speech
emotion recognition using wav2vec 2.0. In ICASSP
2022 - 2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
6907–6911.

Elizabeth Shriberg, Raj Dhillon, Sonali Bhagat, Jeremy
Ang, and Hannah Carvey. 2004. The ICSI meet-
ing recorder dialog act (MRDA) corpus. In Pro-
ceedings of the 5th SIGdial Workshop on Discourse
and Dialogue at HLT-NAACL 2004, pages 97–100,
Cambridge, Massachusetts, USA. Association for
Computational Linguistics.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Elizabeth
Shriberg, Rebecca Bates, Daniel Jurafsky, Paul Taylor,
Rachel Martin, Carol Van Ess-Dykema, and Marie
Meteer. 2000. Dialogue act modeling for automatic
tagging and recognition of conversational speech.
Computational Linguistics, 26(3):339–374.

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang,
J. Zico Kolter, Louis-Philippe Morency, and Rus-
lan Salakhutdinov. 2019. Multimodal transformer
for unaligned multimodal language sequences. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6558–
6569, Florence, Italy. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc.

Dong Wang, Ziran Li, Haitao Zheng, and Ying Shen.
2020a. Integrating user history into heterogeneous
graph for dialogue act recognition. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 4211–4221, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Kai Wang, Junfeng Tian, Rui Wang, Xiaojun Quan, and
Jianxing Yu. 2020b. Multi-domain dialogue acts and
response co-generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7125–7134, Online. Association
for Computational Linguistics.

Andrew Wood, Zachary Eberhart, and Collin McMillan.
2020. Dialogue act classification for virtual agents for
software engineers during debugging. In Proceedings
of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops, ICSEW’20,
page 462–469, New York, NY, USA. Association for
Computing Machinery.

Piotr Żelasko, Raghavendra Pappagari, and Najim Dehak.
2021. What helps transformers recognize conversa-
tional structure? importance of context, punctuation,
and labels in dialog act recognition. Transactions
of the Association for Computational Linguistics,
9:1163–1179.

Wenjie Zheng, Jianfei Yu, Rui Xia, and Shĳin Wang.
2023. A facial expression-aware multimodal multi-
task learning framework for emotion recognition in
multi-party conversations. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
15445–15459, Toronto, Canada. Association for Com-
putational Linguistics.

A Label Distribution for MRDA and
EMOTyDA

Figure 3 shows the label distribution for the MRDA
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(a) MRDA (b) EMOTyDA

Figure 3: Label distribution of the two datasets.

Feature Macro F1 Accuracy

Last hidden state 29.11 59.86
Average of last 4 hidden states 28.42 59.34

Table 8: Comparison of different configurations of
RoBERTa features

B Configuration of Textual Feature
Extraction

We use pre-trained RoBERTa as feature extractor
to extract token embeddings from the textual input.
The choice of this feature extractor is consistent
with contemporary works on DA classification (He
et al., 2021) and other NLP tasks (Zheng et al.,
2023; Chudasama et al., 2022) in the literature.
RoBERTa is also more recent and proven to be
better than BERT on several NLP benchmarks and
hence a better choice of feature extractor.

We experimented with two variants of RoBERTa
features, one where the token embeddings are the
average of last 4 hidden states and the other where
the token embeddings are solely from last hidden
state. As shown in Table 8, we did not find any sig-
nificant improvement using the intermediate layers
and hence continued with the last hidden states for
feature extraction for all the experimentation.

C Configuration of Audio Feature
Extraction

For extracting frame embeddings from the audio, we
used the pre-trained model, Whisper and followed
the same setup that is used in original Whisper
implementation for pre-processing audio inputs.
The input audio utterance is padded or clipped
to 30s and a 25ms window with 10 ms stride is
employed to extract the mel-spectrograms. The

Name Best Value

Hidden dimensions of encoders 128
Kernel size 5
No of channels for conv layers 256
Window size for context modeling 3

Table 9: Choice of hyperparameters

choice of window size and stride for Whisper is
consistent with that of other audio feature extraction
methods across the literature. The final output from
the whisper encoder is 1500 frames per utterance
with 512 dimensional embedding per frame.

D Hyperparameters
To control the learning rate, we implemented a
linear LR scheduler that gradually decreased the
rate from the initial value of 1e-3 after 5 epochs. For
the MRDA dataset, our experiments are conducted
over 40 epochs, while for the EMOTyDA dataset,
the experiments were carried out for 20 epochs. To
prevent overfitting, we used early stopping, ceasing
training if no improvement in validation macro F1
score was observed for 5 consecutive epochs.

The best model for inference on the test set was
selected based on macro F1 score on the validation
set. To ensure the reliability of the results, each
experiment was repeated 5 times with different
random seeds, and the reported results represent
the average performance across these runs.

A list of hyperparameters and the chosen values
upon experimentation is shown in Table 9.

E Training and Inference
All experiments were performed on a single
NVIDIA RTX A6000 GPU. Training an epoch
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on the MRDA dataset took approximately 40 min-
utes, with an additional 12 minutes each for valida-
tion and testing. Training time can be reduced by
caching the audio features but it in turns increase
the memory requirement on the CPU. Training an
epoch on the EMOTyDA dataset took approximately
7 minutes, with an additional 2 minutes each for
validation and testing. The latency of the model at
inference time is 0.16 seconds to infer dialog act
for each utterance.
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