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Abstract

Embodied language comprehension empha-
sises that language understanding is not only
a matter of mental processing in the brain, but
also involves interactions with the physical and
social environment. With the explosive growth
of Large Language Models (LLMs) and their
already ubiquitous presence in our daily lives,
it is becoming increasingly necessary to verify
their real-world understanding. Inspired by cog-
nitive theories, we propose POSQA: a Physical
Object Size Question-Answering dataset with
simple size comparison questions to examine
the extremity and analyse the potential mech-
anisms of the embodied comprehension of the
latest LLM.

We show that even the largest LLMs today per-
form poorly under the zero-shot setting. We
then push their limits with advanced prompting
techniques and external knowledge augmen-
tation. Furthermore, we investigate whether
their real-world comprehension primarily de-
rives from contextual information or internal
weights and analyse the impact of prompt for-
mats and report bias of different objects. Our
results show that real-world understanding that
LLMs shaped from textual data can be vulnera-
ble to deception and confusion by the surface
form of prompts, which makes it less aligned
with human behaviours.

1 Introduction

The rapid growth of recent Large Language Models
(LLMs) such as ChatGPT has led to their increased
use in various applications (Gozalo-Brizuela and
Garrido-Merchán, 2023; Sobania et al., 2023; Lehn-
ert, 2023; Guo et al., 2023; Nov et al., 2023; Jiao
et al., 2023). With the rapid growth of interest in
developing Embodied Language Models (ELM)
(Dasgupta et al., 2023; Driess et al., 2023; Vem-
prala et al., 2023), recently there has been increas-
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ing interest in investigating whether LLM have
an aligned understanding of the real world as our
human from cognitive and physiological perspec-
tives (Prystawski et al., 2022; Binz and Schulz,
2022; Hagendorff et al., 2022; Mahowald et al.,
2023). Embodied language comprehension (Hor-
chak et al., 2014; Buccino et al., 2016; Fischer and
Zwaan, 2008; Barsalou, 1999), a possible explana-
tion for human cognition, suggests that the human
develops an understanding of the physical world re-
lated by language by our physical experiences and
sensory perceptions of the world around us. When
we process languages, we reemulate or recreate
the experiences mentioned in the language to un-
derstand and interact with those languages more
meaningfully.

Although common sense physical reasoning
has been widely explored previously with various
benchmarks, such as PIQA (Bisk et al., 2020b),
MMLU-Physics (Hendrycks et al., 2021), UTOPIA
(Liu et al., 2022b), and PROST (Aroca-Ouellette
et al., 2021), few studies analyse the understand-
ing of LLMs about object size, which is actually
central to various fundamental aspects of cogni-
tion such as implicit memory, object recognition,
conceptual processing, and perception-action co-
ordination (Biederman and Cooper, 1992; Barsa-
lou, 2008). Therefore, inspired by cognitive ex-
periments (de Koning et al., 2017a), we pro-
posed POSQA: a Physical Object Size Question-
Answering dataset containing 12,000 questions of
size comparisons between pairs of objects to in-
vestigate whether the latest LLMs have aligned
cognition with our human and identify the limits of
their real-world understanding with various prompt-
based experiments.

Empirical findings suggest that under the zero-
shot setting, the performance of popular LLMs
such as GPT-3 is slightly better than random guess-
ing. However, increasing the types and amount of
external knowledge presented in the prompt about
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objects has a significant impact on the behaviour
of LLMs. In particular, LLMs tend to develop their
mental representation of objects referred to based
on the given context in prompts rather than relying
on their internal weights, even if the given context
information is incorrect.

To conclude, our contributions can be summa-
rized into three folds:

• We propose a simple but effective size com-
parison dataset to probe the real-world under-
standing of LLMs.

• We analyse the limits of the real-world un-
derstanding of LLMs with comprehensive
prompt-based probing experiments.

• We discuss the vulnerability and the alignment
of the world knowledge of LLMs.

2 Background

2.1 World Models and World Knowledge

There has been a wide and long-lasting debate
about whether LLMs really have their internal
world models and to what extent their world knowl-
edge aligns with humans. Mind’s Eye (Liu et al.,
2022b) proposed to augment language models with
an external physical simulation engine for better
understanding the physical phenomena. RAP (Hao
et al., 2023) suggests LLMs as both a world model
and a reasoning agent and includes a principled
planning algorithm for strategic exploration in a
vast reasoning space. Xiang et al. (2023) deploys
an embodied agent in a world model to endow
LLMs with a diverse set of embodied experiences
by fine-tuning. Although the world model of LLM
can be effectively augmented and they indeed dis-
play a certain level of real-world understanding,
there is still a lack of sufficient study on the bound-
ary of the world understanding of LLMs. Similarly
to other research on LLMs inspired by cognitive sci-
ence and psychology (Binz and Schulz, 2022; Bisk
et al., 2020a; Mahowald et al., 2023; Prystawski
et al., 2022), we propose to audit the real-world
understanding of LLM with questions as simple as
size comparison.

2.2 Physical World Understanding Datasets

PIQA (Bisk et al., 2020b) is a popular data set
for physical commonsense reasoning to benchmark
progress in physical commonsense understanding.

PIQA dataset consists of more than 16,000 train-
ing QA pairs, with additional 2K and 3K held
for development and testing. The task is multiple
choice question answering: Given a question and
two possible solutions, a model or a human must
choose the most appropriate solution, of which ex-
actly one is correct. MMLU-Physics (Hendrycks
et al., 2021) contains 206 samples of physics con-
sisting of multiple choice questions at the college
and high school level to evaluate the academic
and professional understanding of the model in
the physics domain. UTOPIA (Liu et al., 2022b)
is a new multi-task physics alignment dataset that
aims to benchmark how well current LMs can un-
derstand and areas over some basic laws of physics.
It leverages a physics engine to generate data for
39 subtasks covering six common scenes that in-
volve understanding basic principles of physics.
PROST (Aroca-Ouellette et al., 2021) is a new
probing dataset to evaluate the ability of pre-trained
LMs to understand and reason about the physical
world. It contains 18,736 multiple-choice questions
made from 14 manually curated templates, cover-
ing 10 physical reasoning concepts. The existing
datasets contain questions from different dimen-
sions, but they fail to effectively evaluate some
particular aspect of the understanding of the phys-
ical world of LLMs. Since we want to probe the
effect of context for in-context learning, it is neces-
sary to have a content-controllable and dimension-
specific dataset. Based on the requirements, we
propose POSQA: a Physical Object Size Question-
Answering dataset which is also designed to test
the size understanding ability of LLMs on physical
world objects.

3 POSQA

POSQA consists of 12,000 multiple choice ques-
tions designed to probe the physical world under-
standing ability of the language model in the size
dimension. We design two types of questions, each
of them containing 6,000 questions. Table 1 shows
the statistics of POSQA. The size comparison cov-
ers 92 entities, ranging from proton to universe.
The entity and size information are obtained from
Nikon Universcale, which aims to allow people
to see and understand the relative size of the full
range of known objects in our universe. We design
four manually written templates to construct the
two types of size questions. We show the templates

https://www.nikon.com/about/sp/universcale/
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Question Type Bigger Smaller Total
General Question 3,000 3,000 6,000
Special Question 3,000 3,000 6,000

Table 1: The statistics of POSQA.

in detail below.

General Question A general question requires
the answer "yes" or "no". We use two templates to
generate general questions.

TEMPLATE 1: Is Entity A bigger than Entity B?
TEMPLATE 2: Is Entity A smaller than Entity B?
We replace Entity A and Entity B with differ-

ent entity names. For each template, we use the
same Entity A – Entity B pair to generate a ques-
tion, which is to avoid introducing bias. We gen-
erate 3,000 questions for each template, so there
are 6,000 general questions in total. Based on the
actual size of each entity, we label each question
with "yes" or "no". The general questions aim to
evaluate the size knowledge of objects contained in
the LMs and the understanding of LMs on yes/no
labels.

Special Question A special question begins with
an interrogative word “which”. We design two
templates for special questions.

TEMPLATE 3: Which one is bigger between
Entity A and Entity B?

TEMPLATE 4: Which one is smaller between
Entity A and Entity B?

Similarly, we also use the same Entity A – Entity
B pair to generate a question on each template. We
generated a total of 6,000 questions, 3,000 ques-
tions for each template. The label of a special
question is different from the general question. In
the special question, we label each question with
the actual entity name, which is exactly the same
as Entity A or Entity B. The special questions are
intended to test the understanding of the size of the
LMs and the understanding of the LMs about the
interrogative word ’which’ of the question.

Entity Feature We collect the features of the
92 entities, including scale, size, magnitude, and
text. The scale feature stores the size information
of the entity in a specific size unit. For example,
the scale of the Solar System is 9 billion km and
the scale of an Atom is 100 pm. The size feature
stores the absolute value of the size of the entity
representing in scientific notation. The magnitude

feature represents the exponent of size which is
stored in the size feature. The text feature contains
a textual description of the entity.

4 Methodology

In this section, we cover the details of the proposed
approach, first describing the designed prompt in
Section 4.1, followed by the models used in the
experiments in Section 4.2 and the introduction of
the evaluation methods in Section 4.3.

4.1 Prompt Design
We construct different prompts that are used in our
experiments.

4.1.1 Plain Question Prompt
Plain question prompt is to query the model with
a single plain question without any hint or knowl-
edge. We aim to test how the model performs on
POSQA without any external auxiliary information.
The model answers the query purely based on the
knowledge stored within its weights.

4.1.2 Relevant Knowledge-augmented Prompt
External knowledge has been shown to be helpful
for various NLP tasks, including common sense
reasoning (Liu et al., 2022a). We consider two
kinds of knowledge in our experiments: (1) Ex-
act Size Information from POSQA (2) Generated
Knowledge from GPT-3. Knowledge is considered
as the context that is concatenated with a ques-
tion. We use the knowledge-augmented prompt to
query LLMs to see how the context would affect
the model’s prediction.

Exact Size Information The exact size informa-
tion of each object in POSQA is stored as an entity
feature. For a size comparison question, first we
retrieve the exact size the two entities respectively,
then we rewrite the original prompt to a knowledge-
augmented prompt. In particular, we add a sentence
to describe the size of the two objects before the
question. The sentence is: The size of Entity A is
Exact Size of Entity A. The size of Entity B is Exact
Size of Entity B.

Generated Knowledge We generate the entity-
related knowledge statement by querying an LLM.
We consider two types of knowledge of entities: (1)
general knowledge, which describes the general in-
formation of an entity; (2) size knowledge, which
describes the size information of an entity. The
purpose is to investigate which knowledge is more
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useful to the model when answering the size-related
questions. We query GPT-3 using the prompt ’Gen-
erate knowledge about entity in one sentence.’ for
extraction of general knowledge and ’Generate size
knowledge of entity in one sentence.’ for size
knowledge extraction. The knowledge generated
from GPT-3 is stored and used as a context in the
knowledge-augmented prompt. Then we concate-
nate the knowledge generated with the size com-
parison question to query LLMs.

4.1.3 Adversarial Prompt with Knowledge
Perturbation

In addition to the above useful prompt, we also
design some adversarial prompts with knowledge
perturbation. We aim to test how the model behaves
when the given context is not useful or against the
knowledge stored in its internal weights. We con-
sider three settings: (1) Partial Information Pro-
vided (2) Masking Particular Information (3) Coun-
terfactual Size Information.

Partial Information Provided In Exact Size In-
formation Prompt, we provide the exact size infor-
mation of two entities as the context. To investigate
to what extent the model would utilise the context
information, instead of giving two entity size infor-
mation, we only provide one of them. This is to test
whether the model could extract useful information
from its internal weights to use together with the
context information.

Masking Particular Information To further in-
vestigate whether the exact size helps the model
when answering size comparison questions, we
manually mask important information in the con-
text. For example, in Exact Size Information
Prompt, we mask the exact size or entities, respec-
tively, to see the performance gap between using
the masked prompt and the unmasked prompt. We
replace the exact size of the entities with the mask
token [MASK].

Counterfactual Size Information Instead of
providing the true size information in the context,
we replace it with the wrong size information to
investigate what predictions the model would make
when the external context knowledge contradicts
the knowledge stored in its weights. If the model
will fully utilise the counterfactual size information
when answering the size comparison questions. In
particular, we swap the size information of the two
entities in the prompt to mislead the model.

4.2 Models

Previous work (Wei et al., 2022a) (Sanh et al.,
2022) has shown that instruction-tuned language
models on a collection of NLP tasks formatted
with instructions substantially improve the ability
of language models to perform an unseen task from
an instruction, especially zero-shot performance.
In this work, we do experiments on three kinds
of instruction-tuned model: Flan-T5 (from 80M
to 3B) (Chung et al., 2022), InstructGPT (175B)
(Ouyang et al., 2022), and recent ChatGPT. Flan-
T5 is instruction-tuned on 1,836 NLP tasks that
initialise from prior public checkpoints of T5 (Raf-
fel et al., 2020). InstructGPT uses reinforcement
learning from human feedback (Christiano et al.,
2017) (Stiennon et al., 2020) to fine-tune GPT-3
(Brown et al., 2020) to follow a broad class of writ-
ten instructions. ChatGPT uses the same training
methods as InstructGPT, but with slight differences
in data collection setup. It can interact in the form
of a conversational dialogue and provide human-
like responses.

4.3 Evaluation

In this part, we describe the evaluation process and
the evaluation metrics we use.

4.3.1 Answer Mapping
Since we query the LLMs to generate the answer
to the question, it cannot be guaranteed that all the
generated answers are exactly the labels. We use
an answer mapping process to map the generated
answer to the answer label. For general questions,
the labels are yes or no. If the predicted answer con-
tains ‘yes’/‘YES’, we assume its predicted label is
yes. If the predicted answer contains the ‘no’/‘NO’,
we assume that its predicted label is no. For special
questions, the labels are entity names. We calcu-
late the Levenshtein distance (Li and Liu, 2007)
between the predicted entity and the two candidate
entities, respectively. The Levenshtein distance is a
string metric for measuring the difference between
two sequences, and a smaller distance means the
two strings are more similar. We choose the can-
didate entity with smaller Levenshtein distance as
the predicted label.

4.3.2 Metrics
We consider four metrics in our experiments. Ac-
curacy and Macro-F1 scores are two commonly

https://openai.com/blog/chatgpt/
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Prompt FT5-Small FT5-Base FT5-Large FT5-XL GPT3-Davinci GPT3.5-Turbo
Metric Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1
Plain Question 0.51 0.34 0.50 0.35 0.56 0.54 0.58 0.51 0.52 0.38 0.69 0.69
+ General Knowledge Information 0.50 0.34 0.52 0.52 0.64 0.63 0.67 0.67 0.51 0.35 0.79 0.79
+ Size Knowledge Information 0.50 0.40 0.55 0.53 0.63 0.61 0.76 0.76 0.56 0.48 0.85 0.85
+ Exact Size Information 0.50 0.50 0.50 0.54 0.62 0.77 0.87 0.88 0.73 0.89 0.90 0.89
+ Only Head Entity Gold Size 0.50 0.34 0.54 0.50 0.63 0.60 0.64 0.64 0.51 0.35 0.69 0.69
+ Only Tail Entity Gold Size 0.50 0.34 0.49 0.34 0.55 0.54 0.66 0.63 0.51 0.34 0.75 0.74
+ Masking Size Information 0.50 0.49 0.49 0.34 0.53 0.41 0.74 0.74 0.53 0.39 0.80 0.80
+ Masking Entity Information 0.50 0.33 0.50 0.37 0.49 0.42 0.63 0.58 0.52 0.46 0.70 0.69
+ Counterfactual Size Information 0.50 0.47 0.49 0.33 0.47 0.33 0.23 0.23 0.42 0.41 0.38 0.38

Table 2: The results of using different prompt settings on various models on the general question of POSQA.
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Figure 1: The results of CER and CMR using different
knowledge-augmented prompts (except for Counterfac-
tual Size Information) on various models on general
question of POSQA.

used metrics for the evaluation of the performance
of the model in classification tasks. Accuracy con-
siders global precision and recall of the categories,
while Macro-F1 computes the average of the F1
scores obtained by individual categories.

To explore the influence of context on the
prompt, we propose two quantitative evaluation
metrics: Context Effective Rate (CER) and Con-
text Misleading Rate (CMR). We calculate CER
and CMR by comparing the output of a model us-
ing a prompt that contains context information with
the output of a model using a prompt that does not
contain any context information. Specifically, CER
evaluates how many incorrectly answered ques-
tions can be correctly answered after adding the
context in the prompt. CMR evaluates how many
correctly answered questions can be incorrectly
answered after adding the context to the prompt.

5 Results and Analysis

5.1 Baseline

The baseline is to query LLMs using the Plain
Question prompt and the results are presented in
Table 2 for general questions and Table 3 for spe-
cial questions. When the number of parameters
of the model exceeds 250M (Flan-T5-Base), the
ability to answer the special size comparison ques-
tions begins to emerge. GPT3.5-Turbo achieves
the best accuracy score and Macro-F1 score on
both types of questions. It is surprising that sig-
nificantly smaller models, such as Flan-T5-Large
(780M) and Flan-T5-XL (3B), exhibit superior per-
formance. For example, Flan-T5-XL outperforms
GPT3-Davinci (175B) by 0.06 precision in answer-
ing general questions and 0.03 precision in answer-
ing special questions. In general, LLMs perform
better at special questions. For example, the ac-
curacy increases by 0.14 on Flan-T5-XL and 0.04
on GPT3.5-Turbo, respectively, from answering
general questions to special questions.

Our empirical investigation also reveals that the
GPT3-Davinci model tends to provide an initial
incorrect answer, despite subsequently offering a
correct explanation for the given question. This
phenomenon occurs especially when directly query-
ing GPT3-Davinci with general questions to get
the "yes" or "no" answers. We speculate that it
could be attributed to the use of first-word sampling
techniques during the decoding process. However,
this phenomenon does not occur in GPT3.5-Turbo
which has been optimised for dialogue scenario.
Even GPT3.5-Turbo, one of the most powerful
LLMs, can only achieve an average 0.71 accuracy
score on these two types of questions. This sug-
gests that although larger LMs may possess certain
advantages in most situations, they may still lack
real-world understanding when it comes to answer-
ing basic size comparison questions.
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Models→ FT5-Small FT5-Base FT5-Large FT5-XL GPT3-Davinci GPT3.5-Turbo
Prompt↓, Metric→ Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1
Plain Question 0.51 0.49 0.51 0.50 0.63 0.62 0.72 0.71 0.69 0.69 0.73 0.72
+ Size Knowledge Information 0.52 0.50 0.55 0.53 0.74 0.73 0.79 0.78 0.76 0.76 0.83 0.83
+ General Knowledge Information 0.52 0.50 0.54 0.52 0.67 0.66 0.72 0.71 0.71 0.71 0.80 0.80
+ Exact Size Information 0.52 0.50 0.56 0.54 0.77 0.77 0.88 0.88 0.89 0.89 0.90 0.89
+ Only Head Entity Gold Size 0.50 0.48 0.52 0.51 0.68 0.67 0.77 0.77 0.58 0.57 0.74 0.73
+ Only Tail Entity Gold Size 0.51 0.49 0.52 0.51 0.64 0.63 0.77 0.76 0.69 0.68 0.76 0.76
+ Masking Size Information 0.52 0.49 0.51 0.49 0.68 0.68 0.76 0.76 0.67 0.67 0.64 0.63
+ Masking Entity Information 0.51 0.47 0.54 0.52 0.71 0.69 0.84 0.84 0.84 0.83 0.82 0.82
+ Counterfactual Size Information 0.52 0.50 0.49 0.47 0.32 0.32 0.18 0.18 0.25 0.25 0.29 0.29

Table 3: The results of using different prompt settings on various models on the special question of POSQA.
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Figure 2: The results of CER and CMR using different
knowledge-augmented prompts (except for Counterfac-
tual Size Information) on various models on special
question of POSQA.

5.2 Prompts with Augmented Knowledge

The performance of using Relevant Knowledge-
Enhanced Prompt as contextual information to
query LLMs is shown in Table 2 and Table 3. Ac-
cording to the presented results, augmenting the
original size comparison questions with supplemen-
tary knowledge about the mentioned objects can
significantly enhance an LLM’s performance, sug-
gesting that these models can effectively use con-
textual information to improve their real-world un-
derstanding. In particular, as the model size scales
beyond 780M (Flan-T5-Large), its ability to utilise
prompt information increases greatly. Among these
three Knowledge-augmented prompts, adding ex-
act size information of the two compared objects in
the context is the most effective way, which adheres
to the intuition. By using this prompt, GPT3.5-
Turbo achieves 0.9 accuracy score on both general
questions and special questions, which shows great
ability in utilising the exact size information in the
context. GPT3-Davinci also obtains the 0.89 ac-

curacy score and the Macro-F1 score on special
questions. Even for FT5-XL, it can achieve 0.87
accuracy score and 0.88 Macro-F1 score on gen-
eral questions and special questions, respectively,
which is quite close to GPT3.5-Turbo with regard
to the size comparison ability.

In addition to Gold Size Information, the gener-
ated knowledge information and size information
are also helpful to LLMs in answering the size com-
parison question. The results also show that size
knowledge is more effective than general knowl-
edge as contextual information. Specifically, on
GPT3.5-Turbo, using size knowledge information
can increase the accuracy and Macro-F1 scores by
0.06 on general questions and 0.03 on special ques-
tions from using general knowledge information.

Although there is a significant improvement after
providing LLMs with useful contextual informa-
tion, the result still fall short of the human-level
understanding of the real world, especially when
adding the ground truth exact size information. Fur-
thermore, the LLMs’ performance in answering dif-
ferent types of question has an obvious difference,
despite the two types of questions being seman-
tically equivalent for humans. This observation
indicates that LLMs are more sensitive to question
formats than humans. In summary, the findings
suggest that supplementing original questions with
additional information can enhance an LLM’s real-
world understanding. However, even with this aug-
mentation, LLMs’ ability to achieve human-level
understanding of the real world is still limited, and
their sensitivity to question formats remains a chal-
lenge.

5.3 Context vs. Weights

By using the Adversarial Prompt with Knowledge
Perturbation, we further explore the influence of the
contextual information. The results in Table 2 and
Table 3 provide valuable insights into how provid-
ing additional information can help improve LLM’s
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Figure 3: The results of CER and CMR using Counter-
factual Size Information prompt on various models on
two types of questions of POSQA.

real-world understanding. When we only provide
LLMs with partial information, the performance
drops significantly compared to jointly providing
information about both objects. For instance, on
GPT3.5-Turbo, the accuracy score decreases by
0.21 on general questions and by 0.16 on special
questions when only providing the exact size infor-
mation of the head entity. The results also reveal an
imbalance in the utilisation of information, as the
LMs tend to benefit more from extra information
about the tail objects than the head objects.

Masking either of the size or entity information
would influence the performance of the LLMs. In-
terestingly, masking size information decreases the
performance more in answering the special ques-
tions, while masking entity information decreases
the performance more in answering the general
questions. For example, on GPT3.5-Turbo, the
accuracy score is 0.8 on general questions while
only 0.64 on special questions when masking size
information. When masking entity information,
GPT3.5-Turbo only gets a 0.7 accuracy score on
general questions while 0.82 on special questions.
Even when key information is masked, the con-
text still provides some useful information which
LLMs can utilise when answering on one type of
question.

Figure 1 and Figure 2 show the CER and
CMR results using different knowledge-augmented
prompts (except for Counterfactual Size Informa-
tion) on various models on general and special ques-
tions, respectively. As the scale of LMs grows, the

ability of LMs to utilise contextual information in
the prompt is also enhanced. For example, the re-
sults of GPT3.5-Turbo are scattered in the lower
right of the diagram, which means that a powerful
LLM should have high CER and low CMR.

When providing LLMs with counterfactual size
information that is not helpful to answering size
comparison questions, accuracy and Macro-F1
scores decrease to a large extent. It should be noted
that FT5-XL has the lowest accuracy score and
Macro-F1 score on both types of questions, with
only 0.23 and 0.18 respectively. Figure 3 illustrates
the results of CER and CMR using the Counterfac-
tual Size Information prompt on various models
for two types of questions. The CER is low on
all models, while the CMR increases as the scale
of the models grows. It shows a great ability to
utilise counterfactual contextual information for
larger LMs (e.g. GPT3-Davinci), which is revealed
by the low CER and high CMR on general and
special questions.

The results also highlight the importance of con-
textual information in LLMs’ real-world under-
standing, as providing counterfactual information
significantly decreases their performance with high
CMR in answering both general and special ques-
tions. This indicates that the LLMs rely more
on contextual information rather than their inter-
nal weights learnt during pre-training, which re-
flects their in-context learning capabilities. In sum-
mary, the findings provide valuable insights into
the strengths and limitations of LLMs in real-world
understanding. They demonstrate that while pro-
viding additional information can enhance LLMs’
performance and their sensitivity to contextual in-
formation. However, this also raises concerns about
the robustness of LLMs’ real-world understanding,
as they may be easily induced to perform harmful
actions in real-world scenarios.

6 Discussion

LLMs’ ability to understand the size of physical
objects in the real world remains a challenge.
Our experiments underscore that even the most
advanced LLMs at our disposal struggle to consis-
tently grasp the sizes of physical objects. Specif-
ically, GPT3.5-Turbo registers an average accu-
racy score of 0.71 when directly addressing the
two question types present in POSQA. This perfor-
mance reveals a pronounced disparity compared to
human comprehension of size, particularly when
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object size information is explicitly provided. Hu-
mans, when confronted with size comparison tasks,
often engage in mental simulations, drawing upon
their accumulated knowledge to envisage the sizes
of objects (de Koning et al., 2017b). For a human,
the ability to tackle size comparison effectively
hinges on possessing adequate size-related infor-
mation about the objects in question. Similarly,
LLMs should leverage the knowledge encoded in
their internal weights to adeptly respond to size
comparison queries.

LLMs prefer to utilise the information in the
given context rather than knowledge stored in
their internal weights. Our experiments demon-
strate that giving useful information in a prompt can
enhance the performance of LLMs. For instance,
GPT3.5-Turbo achieves 0.9 accuracy score on both
two types of questions. However, LLMs cannot
make good use of the external context information
when they are only given partial information. It
is noteworthy that adding error information to the
prompt largely decreases the performance of LLMs.
For example, GPT3.5-Turbo can only get 0.38 Ac-
curacy and Macro-F1 score on general questions
and 0.29 Accuracy and Macro-F1 score on spe-
cial questions. Even research (Shi et al., 2023)
has shown that adding an instruction to ignore ir-
relevant information brings performance gains; A
single piece of irrelevant information can distract
the models and substantially degrade their perfor-
mance. These results indicate that the context in the
prompt is extremely important for LLMs and that
LLMs will utilise the information in the context.

LLMs are sensitive to the format of the query,
even if they are semantically equivalent. In our
experiments, we query LLMs with different for-
mat of size comparison questions from POSQA.
The results show that LLMs are not robust enough
when faced with the same semantics, but different
forms of the queries. For example, on FT5-XL, it
achieves a 0.58 accuracy score on general questions
versus a 0.72 accuracy score on special questions.
Based on the behaviour of the LLMs on answering
size comparison questions, it is not certain which
forms of questions the models are better at solv-
ing, and the performance is also influenced by the
context added to the prompt. Although the perfor-
mance gap between these two types of questions in
GPT3.5-Turbo has narrowed, it is still a noteworthy
problem when training robust LLMs in the future.

Krippendorff’s Alpha Human (Online) Human (Offline)

Human (Online) 0.740 0.780
Human (Offline) 0.780 0.791
ChatGPT 0.644 0.687

Table 4: The internal and mutual consistency among
human annotators in different settings and ChatGPT is
measured by Krippendorff’s Alpha.

Alignment of World Models To further investi-
gate the alignment of LLM world models, we ran-
domly sampled 100 examples and annotated them
with four human annotators in two settings: (1)
Online: Annotators are free to access any external
or online sources of knowledge, and (2) Offline:
Annotators are prohibited from relying on external
resources during annotation. Surprisingly, online
annotations lag behind offline annotations in terms
of accuracy, with online accuracy at 0.86 and of-
fline accuracy at 0.88. ChatGPT is slightly behind
human performance, reaching an accuracy of 0.77.
As shown in Table 4, we compute the Krippendorff
Alpha (Krippendorff, 2011) to assess the internal
and mutual agreement between the online and of-
fline annotators and ChatGPT. The scores indicate
that ChatGPT is more consistent with human an-
notators without accessing an external knowledge
source, which arouses curiosity that ChatGPT may
share characteristics and bias similar to that of hu-
man intuition or fast thinking, which could be fur-
ther investigated from the psycholinguistic point of
view.

7 Conclusion

We propose POSQA: a Physical Object Size
Question-Answering dataset with two types of size
comparison questions to probe the ability of LLMs
to understand the size of physical world objects.
We design different knowledge-augmented prompt
settings to investigate the effect of the context in the
prompt. Our experiments demonstrate that LLMs
still fail to demonstrate a robust understanding of
the size of physical objects. The ability of LLMs
to understand the size of physical objects in the
real world remains a challenge for the future. The
results also show that LLMs prefer to utilise the
information in the given context rather than to use
the knowledge stored in their internal weights. This
also raises concerns about the robustness of LLMs’
understanding ability to identify the useful and cor-
rect contextual information in the prompt.
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Our datasets comprise a modest total of 92 objects.
Consequently, rather than serving as comprehen-
sive evaluation toolkits that encapsulate the breadth
of LLM world models, they may be best suited
for probing or auditing LLM performance in real-
world understanding, preferably in tandem with
broader benchmarks. Additionally, the dataset only
captures rudimentary relationships between two ob-
jects—specifically, size comparisons. The incorpo-
ration of more intricate interactions and dynamics
among multiple objects might provide a deeper in-
sight into the LLM world model. Moreover, due to
resource constraints, our experiments were limited
to Flan-T5, GPT3-Davinci, and GPT3.5-Turbo.
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A Appendix

A.1 Error Analysis
Empirically, we realised that the error counts vary
largely regarding to different entity mentions in
the prompts. According to Figure 4, the AIDS
virus is the most challenging entity for LLMs to
distinguish the physical size relationship with other
objects, compared to that of Mars, which is the
easiest. Furthermore, as shown in Figure 5, it is
more difficult for LLMs to correctly compare two
objects with similar size magnitude.

A.2 GPT3-Davinci using Chain-of-Thought
Existing research (Kojima et al., 2022)(Wei et al.,
2022b) has shown that the use of CoT could sig-
nificantly improve the performance of LLMs. We
randomly sample 100 test cases (50 questions for
each type) and report the results using Zero-Shot-
CoT (Kojima et al., 2022) on GPT3-Davinci in
Table 5. The results show that after using CoT, ac-
curacy and Macro-F1 scores are notably improved
across all settings on both types of questions.

A.3 GPT3-Davinci using Different
Temperature Parameters

To investigate the effect of different temperature
parameters, we performed experiments at three dif-
ferent temperatures (0, 0.5, 1) in 100 randomly sam-
pled test cases (50 questions for each type). This
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Figure 4: The number of mistakes related to each entity.

Question Prompt Accuracy Macro-F1 Accuracy Macro-F1
w/o CoT with CoT

General Plain Question 0.52 0.38 0.62 0.62
+ Gold Size Information 0.78 0.78 0.88 0.88
+ General Knowledge Information 0.50 0.33 0.66 0.65
+ Size Knowledge Information 0.62 0.56 0.76 0.76

Special Plain Question 0.84 0.83 0.90 0.87
+ Gold Size Information 0.94 0.93 0.94 0.93
+ General Knowledge Information 0.84 0.81 0.92 0.91
+ Size Knowledge Information 0.88 0.86 0.94 0.93

Table 5: The results of GPT3-Davinci using Chain-of-Thought (CoT) in different prompts on 100 randomly chosen
test cases (50 questions for each type).

result is shown in Table 6. The results show that
setting the temperature to 0 can give the best results.
To alleviate the randomness effect of temperature,
in all our experiments, we set the temperature as 0,
so that the LLMs become deterministic.

A.4 GPT3-Davinci using Gold Size
Information Prompt Templates

Since LLMs is sensitive to the format of the prompt,
we use different prompt templates to probe their in-
fluence. We mainly tested the gold size information
prompt template and we list all templates in Table
7. We conducted experiments on the same 100 ran-
domly sampled test cases (50 questions for each
type), and the result is shown in Table 8. The effect
of using different templates is notable in the general
question, and using Template 3 has the best per-
formance. Interestingly, Template 4 decreases the
performance on both general and special questions,
which means that the order of the question and

context is significant when choosing the prompt.

A.5 Statistical Significance
We assess the statistical significance of the differ-
ences or relationships observed in our experiments
using a two-sample t-test (Cressie and Whitford,
1986). The results in Table show that the p-value
(p < 0.05) is sufficiently low to reject the null hy-
pothesis, indicating that there is a significant differ-
ence between the various experiment settings with
GPT3.5-Turbo on the POSQA data set.
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Question Prompt Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
Temperature 0 0.5 1
General Plain Question 0.52 0.38 0.52 0.38 0.52 0.38

+ Gold Size 0.78 0.78 0.80 0.80 0.78 0.78
+ General Knowledge 0.50 0.33 0.50 0.33 0.50 0.33
+ Size Knowledge 0.62 0.56 0.62 0.56 0.60 0.52

Special Plain Question 0.84 0.83 0.82 0.80 0.82 0.81
+ Gold Size 0.94 0.93 0.90 0.90 0.92 0.92
+ General Knowledge 0.84 0.81 0.86 0.83 0.82 0.78
+ Size Knowledge 0.88 0.86 0.82 0.78 0.80 0.75

Table 6: The results of GPT3-Davinci using different temperatures in different prompts on 100 randomly chosen
test cases (50 questions for each type).

Template 1: The size of Entity A is Exact Size of Entity A. The size of Entity B is Exact Size of Entity B. + Question
Template 2: Entity A: Exact Size of Entity A; Entity B: Exact Size of Entity B. + Question.
Template 3: Entity A is Exact Size of Entity A and Entity B is Exact Size of Entity B. + Question
Template 4: Question + The size of Entity A is Exact Size of Entity A. The size of Entity B is Exact Size of Entity B.

Table 7: Different gold size information prompt templates used in Table 8.

Question Prompt Accuracy Macro-F1
General Plain Question 0.52 0.38

+ Gold Size Information using Template 1 0.78 0.78
+ Gold Size Information using Template 2 0.82 0.82
+ Gold Size Information using Template 3 0.88 0.88
+ Gold Size Information using Template 4 0.50 0.37

Special Plain Question 0.84 0.83
+ Gold Size Information using Template 1 0.94 0.93
+ Gold Size Information using Template 2 0.94 0.95
+ Gold Size Information using Template 3 0.90 0.89
+ Gold Size Information using Template 4 0.86 0.84

Table 8: The results of GPT3-Davinci using different gold size information prompt templates on 100 randomly
chosen test cases (50 questions for each type).
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Figure 5: The number of mistakes related to the magnitude difference between two entities.
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