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Abstract

Knowledge probing is a task to assess the
knowledge encoded within pre-trained lan-
guage models (PLMs) by having the PLM com-
plete prompts such as "Italy is located in ____,".
The model’s prediction precision serves as a
lower bound for the amount of knowledge it
contains. Subsequent works explore training
a series of vectors as prompts to guide PLMs
towards more accurate predictions. However,
these methods compromise the readability of
the prompts. We cannot directly understand
these prompts from their literal meaning, mak-
ing it difficult to verify whether they are cor-
rect. Consequently, the credibility of prob-
ing results derived from these prompts is di-
minished. To address the issue, we propose
a novel method called READPROMPT, which
aims to identify meaningful sentences to serve
as prompts. Experiments show that READ-
PROMPT achieves state-of-the-art performance
on the current knowledge probing benchmark.
Moreover, since the prompt is readable, we dis-
covered a misalignment between constructed
prompts and knowledge, which is also present
in current prompting methods verified by an
attack experiment. We claim that the probing
results obtained from the current prompting
methods are unreliable and tend to overstate
PLM’s actual knowledge.1

1 Introduction

Pre-trained Language Models (PLMs), such as
BERT (Devlin et al., 2018), contain factual knowl-
edge from their training data. Recent studies ex-
plore the possibility of replacing traditional knowl-
edge bases (KBs) with PLMs (Safavi and Koutra,
2021; Petroni et al., 2019). However, it is unclear
if a PLM pre-trained on a corpus contains suffi-
cient knowledge compared to a KB. Therefore, un-
derstanding and probing the knowledge stored in
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Figure 1: An example of prevalent prompting methods
with the fact (Italy, located-in, Europe), where LAMA
prompt is constructed manually. The different parts of
the prompts are highlighted in bold. The text in the
rightmost column represents the output of the language
model.

PLMs is crucial. One approach is to have the PLM
complete prompts about factual knowledge (Hu
et al., 2022; Chen et al., 2022; Petroni et al., 2019).
For instance, given the fact "(Italy, located-in, Eu-
rope)," a prompt can be constructed by masking
the object, like "Italy is located in [MASK]." If the
PLM fills in "Europe" for the mask, it is considered
to know the fact. The precision of PLMs on such
factual questions serves as a lower bound for the
amount of knowledge they encode.

As the PLM is sensitive to the context, recent
studies investigate ways to construct better prompts
that can trigger the PLM to answer more factual
questions. Shin et al. (2020) proposed a search-
based method that automatically selects discrete
words from the vocabulary to formulate prompts.
Some works further believed that prompts are not
necessarily composed of actual words and pro-
posed a tuning-based method to optimize a se-
quence of vectors as prompts, i.e., continuous
prompts (Liu et al., 2021; Qin and Eisner, 2021;
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Zhong et al., 2021).

Although these prompts can encourage PLMs to
answer more factual questions, compared to man-
ual prompts, they sacrifice the readability of the
prompts themselves, which reduces the reliability
of their probing results. Due to the entire prompt
being replaced with disjoint tokens or a series of
vectors, it is hard to discern the literal meaning
of these prompts. For instance, in Figure 1, given
"Italy national art Petroleum outside" as a prompt,
the PLM outputs the matching object "Europe."
Nevertheless, it is difficult to claim that the PLM
knows the fact (Italy, located-in, Europe) based
on this prompt. The same issue arises with the
SOFTPROMPT (Qin and Eisner, 2021) illustrated
in Figure 1, which uses vectors as prompts. Con-
sequently, it is unreliable to judge whether a PLM
knows a particular fact solely based on whether its
output matches the object. We believe that ensuring
the consistency between the prompt and the fact
is a prerequisite for knowledge probing, and read-
ability is fundamental for examining the prompt’s
meaning.

To this end, we aim to construct prompts with
good readability for knowledge probing that allows
humans to determine whether the combination of
the PLM’s output and the prompt constitutes a fact.
Referring to Molnar (2020), we define readability
as the degree to which it is understood by humans.
However, assessing readability is challenging due
to its subjective nature. To maintain fairness, we
use the perplexity score (Shannon, 1951) of the
PLM itself as a metric. Intuitively, lower scores in-
dicate that the prompt is closer to natural language
and easier to understand (Gonen et al., 2022).

To enhance the readability of prompts, we pro-
pose READPROMPT, a method for searching sen-
tences to construct prompts. Following the idea
of Shin et al. (2020), we use first-order estima-
tion to predict the change in classification loss for
each word in the vocabulary when selected into
the prompt to generate a golden answer. We then
select the word that most reduces the loss into the
prompt. Moreover, we introduce the perplexity of
the PLM as a constraint, necessitating that the se-
lected word reduces the overall perplexity of the
prompt, ensuring its consistency with the current
context and maintaining the readability of the en-
tire prompt. We iteratively update each word in
the prompt, repeating the process until all selected
words remain unchanged, ultimately obtaining the

final prompt. The experimental results demonstrate
that READPROMPT achieves state-of-the-art per-
formance on the current knowledge probing bench-
mark. Furthermore, READPROMPT significantly
improves the readability of prompts compared to
other automated prompting methods. Upon ex-
amining the constructed prompts, we found that
prompts contradicting facts surprisingly led the
PLM to answer more questions correctly. This in-
dicates that PLMs have confusion in understanding
certain knowledge, and the knowledge detected by
these incorrect prompts should not be considered as
knowledge mastered by PLMs. We further verified
through attack experiments that the probing results
of current prompting methods also contain knowl-
edge that PLMs are confused about, leading to an
overestimation of the PLMs’ knowledge volume.

2 Related Work

Knowledge Probing, first introduced by the
LAMA benchmark (Petroni et al., 2019), aims to
assess the volume of factual information contained
within a PLM. In LAMA, facts are represented as
triples (Subject, Relation, Object) and are sourced
from various databases such as Wikidata, Concept-
Net (Speer et al., 2012), and SQuAD (Rajpurkar
et al., 2018). We follow recent knowledge probing
research (Jiang et al., 2020; Shin et al., 2020) by
focusing on the T-REx split (Elsahar et al., 2018),
which comprises up to 1000 fact triples for each
of the 41 Wikidata relation types. Each relation is
associated with a human-written prompt, for exam-
ple, “[X] is located in [Y].", where [X] and [Y] are
placeholders for subjects and objects. Given the
prompt with a subject, the PLM needs to predict a
word for [Y]. If its prediction matches the golden
object, we claim that the PLM encodes information
about the fact (Zhong et al., 2021). The PLM’s pre-
diction precision can be served as a lower bound
on the amount of factual information it encodes.

Prompting methods can be categorized into
two types based on their composition: discrete
prompts and continuous prompts. Discrete prompts
are formulated by real words. For example, LPAQA
(Jiang et al., 2020) mined prompts from Wikipedia.
Several works proposed a gradient-based method
to search disjoint words as prompts (Wallace et al.,
2019; Shin et al., 2020). While continuous prompt
is composed of trainable vectors sampled from
word embedding space (Liu et al., 2021; Li and
Liang, 2021; Qin and Eisner, 2021; Zhong et al.,



2021). In that way, the tokens in the prompt are
not necessarily related to actual words. On the
one hand, it brings higher degrees of freedom for
prompts, which leads to better results. On the other
hand, those prompts become completely unknown
to humans (Khashabi et al., 2022).

3 Methodology

3.1 Problem Definition
We first make clear the definition of the prompt.
A prompt p is composed of three parts, includ-
ing an input x, k trigger tokens t1, · · · , tk, and a
symbol of mask, i.e., p = [x, t1, · · · , tk, [MASK]]
(See Figure 2 for an example). Fed the prompt p,
the PLM F(·) predicts the word distribution for
[MASK]:

F(p) = P ([MASK] = wi|p), wi ∈ V

where V is the vocabulary that contains n unique
words wi. The word with the largest probability is
the prediction, i.e., w∗ = argmaxP ([MASK] =
wi|p)

As for the task of knowledge probing (Petroni
et al., 2019), a fact is represented by a triplet
(x, r, y), where x is the subject, r is the relation,
and y is the object, e.g., (Italy, Located-in, Europe).
For the relation r, we design a prompt p that con-
tains the subject x and say that the PLM knows this
fact if its prediction is true, i.e., w∗ = y, for the
given p. Hence, the first goal is to find a sequence
of trigger tokens t = [t1, · · · , tk] to formulate a
prompt that can make the PLM generate more ac-
curate predictions for the given n facts, i.e.:

max
t

∑
i=1,··· ,n

1[w(i)∗ = y(i)] (1)

Besides the capability, the second goal is to en-
sure the readability of the searched prompt. In this
work, we evaluate the readability from the aspect
of perplexity. We define the perplexity (PPL) of the
bidirectional language model to a given prompt as:

PPL(p) = exp

{
− 1

k + 2

k+2∑
i=1

logP (pi|p/pi)

}
(2)

where pi is the i-th token in the prompt and p/pi is
the context of the i-th token. The value of k + 2
arises from taking into account both the subject
and object during PPL calculation. For left-to-right
PLMs such as LLaMA (Touvron et al., 2023), the
calculation of PPL adheres to the standard defini-
tion.

3.2 Readable Prompt
READPROMPT strives to achieve two objectives:
guiding PLMs to make more accurate predictions
and ensuring the readability of the prompt. To
accomplish these goals, we design two loss func-
tions that assess the capability and readability of
the prompts.

3.2.1 Capability Loss
With a good prompt, the PLM tends to assign a high
probability to the correct word to fill the [MASK].
Hence, cross-entropy loss is applied to the PLM’s
prediction of the [MASK]:

Lce =
∑

i=1,··· ,n
− logP ([MASK] = y(i)|p(i)) (3)

Intuitively, a better trigger word can lead to a lower
loss. However, replacing the trigger word with
all possible words and computing loss are time-
consuming. Hence, we adopt the idea of Shin et al.
(2020) that computes a first-order approximation of
the change in the loss by swapping the j-th trigger
token tj with another token wi ∈ V:

∆Lce(wi) = eTi ∇eiLce

where ei is the word embedding of wi. And in
this place, we take the i-th column of the weight
in the embedding layer of the PLM as the word
embedding ei. We prefer words that can cause the
loss to have a large negative change.

The green part of Figure 2 illustrates this process.
The PLM predicts the word distribution ŷ ∈ R|V| to
the [MASK] and calculates the cross-entropy loss
following Equation (3). Then step one backward
computes the gradient ∇eiLce ∈ R|V| and step two
estimates the change of the loss ∆Lce(wi) ∈ R|V|.

3.2.2 Readability Loss
As the prompt should be readable, we need to eval-
uate whether the selected trigger words t1, · · · , tk
can formulate a meaningful sentence combined
with the input words. Perplexity can be regarded
as a metric to evaluate the rationality of sentences
(Lee et al., 2021). Intuitively, a well-trained PLM
has low perplexity in a fluent sentence. We calcu-
late the perplexity according to Equation 2. We
only consider the perplexity of tj that is needed to
update. Specifically, we compute the perplexity of
tj after being replaced with wi. Therefore, Equa-
tion 2 degrades to the reciprocal of the probability:

PPLj(wi, p) = P (tj = wi|p/pi)
−1 (4)
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Figure 2: Trigger words search of READPROMPT. This case is about the location of Italy. Taking the second trigger
word search as an example, we compute the perplexity and cross-entropy loss according to the word distribution t̂2
and ŷ respectively. Then we compute the gradient according to the loss backward propagation, estimate the change
of loss, weight combine the loss with perplexity, rank words accordingly, and select the word with minimum loss as
the new one for the second trigger word.

The PLM assigns a high probability to wi if it
believes that putting wi into the position of tj
is reasonable for the whole sentence so that the
perplexity of wi is small. From a practical view,
P (tj = wi|p) is a part of the output of PLMs which
does not introduce extra computation.

The yellow part of Figure 2 shows an example of
updating the trigger word t2. The t̂2 ∈ R|V| is the
word distribution predicted by the PLM. Then we
calculate the perplexity for each word wi following
Equation (4).

3.2.3 Trigger Tokens Selection
We define the complete loss for swapping tj with
wi as:

L(wi, p) = (1− α) ·∆Lce(wi) + α · PPLj(wi, p)

where α is a hyperparameter to control the effect
of the perplexity. Theoretically, a large α leads to
a more readable prompt but the effectiveness may
not be optimum. We can compute L(wi, p) for all
wi ∈ V simultaneously and then rank the words
according to the loss value. After that, we select k
words with the smallest loss value as candidates for
the trigger token tj . For each candidate, we take
a quick evaluation for the updated prompt on the
development set according to Equation (1). The
prompt that can retrieve most facts is selected as
the new one.

4 Experiments

4.1 Settings

Dataset We conduct experiments on T-REx, a sub-
set of LAMA (Petroni et al., 2019). We split the
data into training, development and test sets with

a ratio of 3:1:1 following the same setting as Shin
et al. (2020).

Prompts Comparison In this experiment, we
compare READPROMPT with six prompts, includ-
ing three discrete prompts LAMA (Petroni et al.,
2019), LPAQA (Jiang et al., 2020), AUTOPROMPT

(Shin et al., 2020), and three continuous prompts
P-tuning (Liu et al., 2021), OPTIPROMPT (Zhong
et al., 2021), SOFTPROMPT (Qin and Eisner, 2021).
In particular, the prompts of LAMA are designed
manually.

Pre-trained Language Models We apply
prompts above with RoBERTa (roberta-base) (Liu
et al., 2019), and two variants of BERT (De-
vlin et al., 2018), bert-base-cased and berta-large-
cased. We further investigated the impact of READ-
PROMPT on large language models (LLMs) by
comparing LLaMA-7B (Touvron et al., 2023),
Alpaca-7B (Taori et al., 2023), and Vicuna-7B (Chi-
ang et al., 2023). In addition, we used GPT-3.5
(Ouyang et al., 2022) and GPT-4 (OpenAI, 2023)
combined with manual prompts (LAMA) as a base-
line for comparison. Since these two models have
not been open-sourced, we did not construct READ-
PROMPT for them.

Evaluation Based on the LAMA knowledge
probing framework, we construct prompts from
facts using different prompting templates and query
the PLMs. The objects in the facts serve as ground
truth for calculating the precision@1 of the PLM
responses. Moreover, we compute the perplexity
according to Equation 2 as a metric to assess the
readability of the prompts.

Searching Details of READPROMPT There are
several hyperparameters needed to be declared. Be-
fore trigger words searching, we need to define



BERT-Base BERT-Large RoBERTa

P@1 PPL P@1 PPL P@1 PPL

LAMA 26.4 23.7 32.3 19.6 24.7 23.2
LPAQA 31.2 25.7 39.4 23.2 26.6† 29.3
Auto. 43.3 962.5 45.7† 869.2 40.0 1006.1
Read. 52.8 305.3 53.1 222.6 49.2 299.4

+ align 48.7 105.3 49.8 96.6 48.1 117.0

P-tuning 48.3 N/A 50.6 N/A 49.3 N/A

Opti. 48.6 N/A 50.3† N/A 44.4 N/A

Soft. 50.7 N/A 51.6 N/A 40.6 N/A

Table 1: Comparison results of P@1 (%) and PPL for
different prompts on the T-REx dataset. The best results
in each column have been highlighted in bold. † marks
baseline results obtained from our reimplementations.
The row of "Read." is our method. "+align" represent
the results of "ReadPrompt" after alignment.

a template to indicate the number of the trigger
words and the combination order among the object,
subject, and trigger words, e.g.,

[X] [T] [T] [T] [Y]
After that, we fill [X] and [Y] with the subject and
object from the dataset. [T] remains as the initial
token of the trigger words. Then we apply READ-
PROMPT to search for better trigger words in a
sequential manner. Once a trigger word is replaced
with others, the context changes accordingly. It
may appear a better choice for the other trigger
word under the new context. Therefore, we repeat
this process iteratively until no better trigger tokens
appear. We conduct a grid search (see Appendix A)
for α and set it with 0.7 to achieve the best trade-off
between capability and readability.

We conducted a case-by-case analysis of the
search results for READPROMPT and discovered
that some prompts, although readable, deviate sig-
nificantly from the relations defined in the knowl-
edge. We refer to this issue as the misalignment
of prompts and knowledge. To address this, we
developed an alignment strategy based on the loss
defined in Equation 3. During each search, we
recorded the top 5 prompts that minimized the loss
and calculated the BertScore (Zhang et al., 2020)
between each prompt and the manual prompt. We
then selected the prompt with the highest BertScore
as the aligned prompt. A higher BertScore in-
dicates that the READPROMPT is more closely
aligned with the manual prompt.

LAMA Read. Attack
P@1 PPL P@1 PPL P@1↓ PPL

LLaMA 33.88 21.44 58.06 101.50 1.62 22.33
Alpaca 36.65 19.32 58.88 114.23 1.65 20.85
Vicuna 30.79 20.71 57.93 103.86 2.33 22.09

GPT-3.5 87.02 N/A N/A N/A 0.00 N/A

GPT-4 89.90 N/A N/A N/A 0.00 N/A

Table 2: Comparison results of P@1 (%) and PPL for
different LLMs on the T-REx dataset. The best results
in each column have been highlighted in bold. The
"Attack" column displays the results of the LLM on
attack samples. In this column, P@1 represents the
confusion rate, which is the precision of the model’s
output matching the object in the attack samples. A
lower value is preferable.

4.2 Main Results

Table 1 shows the results about precision@1 and
perplexity on T-REx dataset. As the continuous
prompt is not composed of the actual words, we
cannot compute their perplexity. So we fill the
corresponding value with N/A in Table 1. It is
worth noting that the row marked as “+align” in the
table refers to the results of READPROMPT after
applying our alignment strategy.

We can see that READPROMPT achieves the best
results on all BERT-based PLMs and get over 2%
improvements compared with the current state-of-
the-art method SOFTPROMPT. Though it cannot
surpass P-tuning when prompt RoBERTa, the gap
is less than 0.1%. We further compare READ-
PROMPT with baselines on Google-RE, Concept-
Net, and UHN. The results show that though READ-
PROMPT is composed of discrete real words, it
can also achieve comparable results with contin-
uous prompts (See Appendix B). On the other
hand, READPROMPT decreased around 70% per-
plexity over AUTOPROMPT. Despite the fact that
the perplexity of the prompts searched by READ-
PROMPT is higher than manual ones, i.e., LAMA
and LPAQA, they are readable enough for humans
to understand (See case study in section 4.3).

We further compared READPROMPT and LAMA
Prompt with large language models (LLMs). To
the best of our knowledge, we are the first to con-
duct knowledge probing on LLMs using the T-Rex
benchmark. It should be noted that the LLMs used
in this experiment, unlike the BERT models from
previous experiments, are all left-to-right language
models. As a result, some prompts with objects in



Relation Method Prompt P@1 PPL
LAMA [X] is a member of [Y]. 13.14 8.19

P463 Auto. [X] participated uncredited Millennium scarce of [Y]. 43.80 1809.30
Read. [X] is a project member of [Y]. 45.26 15.68
LAMA The original language of [X] is [Y]. 39.00 11.01

P364 Auto. [X] »hanna siblings speak panoramic [Y]. 39.00 526.07
Read. [X] written has lyrics in [Y]. 45.50 78.92
LAMA [X] is a subclass of [Y]. 29.00 5.31

P279 Auto. [X] or polarppedpiconized [Y]. 51.50 5848.57
Read. [X] is a type of [Y]. 48.00 7.71
LAMA [X] and [Y] are twin cities. 2.79 15.68

P190 Auto. [X] departed Istanbul microwave Marcos departed [Y]. 0.00 3217.17
Read. [X] airport flight then to [Y]. 12.35 257.28
LAMA [X] is developed by [Y]. 46.43 13.77

P178 Auto. [X] product Sega merged Microsoft versus [Y]. 62.50 748.23
Read. [X] was a developed console by [Y]. 67.86 23.83
LAMA [X] plays [Y]. 8.00 149.20

P1303 Auto. [X] Ballet performances concepts radar versus [Y]. 19.00 1815.02
Read. [X] and concert player playing [Y]. 22.50 198.27
LAMA [X] is the capital of [Y]. 38.33 6.39

P1376 Auto. [X] previously olds nominally predominantly called [Y]. 55.00 13345.02
Read.1 [X] has a province called [Y]. 58.66 19.78
Read.2 [X] is capital of county of [Y]. 53.23 8.51
Read.3 [X] is the city of [Y]. 45.00 17.78

Table 3: The comparisons among the prompts from LAMA, AUTOPROMPT, and EXPROMPT in terms of the
precision@1 and perplexity. We mark the keywords in blue, evidence in orange, and the false prompt in red.

the middle position, such as "[X] plays [Y] music,"
are not suitable for these models. In left-to-right
language models, the text following the predicted
object [Y] does not contribute to the model’s pre-
diction. Consequently, we modified eight prompts
to place the object at the end of the prompt. Details
are presented in Appendix C.

As shown in Table 2, Alpaca and Vicuna, which
are fine-tuned from LLaMA, exhibit differences
in their responses to manual prompts. We argue
that fine-tuning neither injects nor removes knowl-
edge from the original model (LLaMA); instead,
it leads to alterations in the model’s response to
human language, thereby raising or lowering the
lower bound of the probed knowledge encoded by
the model. READPROMPT significantly improves
the results of all three models. The performance
of the three models combined with READPROMPT

shows no significant difference, suggesting that the
amount of encoded knowledge in the three models
is nearly identical. This shows that READPROMPT

can effectively probe the maximum knowledge en-
coded in different models. GPT-3.5 and GPT-4,
when utilized with manual prompts, achieve Preci-

sion@1 scores of 87.02% and 89.90%, respectively.
These scores significantly surpass those of other
models, representing the current state-of-the-art.
The impressive results, obtained without modify-
ing the prompts and solely relying on manually
preset prompts, demonstrate not only the exten-
sive knowledge embedded in both models but also
their remarkable capacity to comprehend human
language.

4.3 Case Study

Table 3 shows the prompts constructed by LAMA,
AUTOPROMPT, and READPROMPT. Overall,
READPROMPT significantly improves the readabil-
ity of the searched prompts compared with AU-
TOPROMPT. We can roughly know the meanings
of the searched prompt, though they are not fluent
enough. Besides that, we have three findings.

(1) READPROMPT retrieves prompts with higher
readability. Although the prompts may not be
strictly grammatically correct, they do not hinder
human understanding. Most prompts are semanti-
cally close to human-generated prompts and con-
tain some of the same keywords (as shown in blue



ID Relation
P527 [X] consists of [Y] .
P407 [X] was written in [Y] .
P364 The original language of [X] is [Y] .
P361 [X] is part of [Y] .
P30 [X] is located in [Y] .
P176 [X] is produced by [Y] .
P138 [X] is named after [Y] .
P1376 [X] is the capital of [Y] .
P136 [X] plays [Y] music .
P103 The native language of [X] is [Y] .
P1001 [X] is a legal term in [Y] .

Table 4: The selected 11 types of facts with asymmetric
relations for attack experiments.

font).
(2) Part of prompts constructed by READ-

PROMPT have a difference from the predefined
relations in the facts. For example, P190 describes
a twin-city relation between the subject and object,
while READPROMPT describes a flight-related rela-
tion between them, which is a clear misalignment.
Other examples include relations P364 and P1376,
where we marked misaligned prompts in orange.

(3) A select few of the prompts even contra-
dict the predefined relations in the facts. For in-
stance, P1376 describes the subject as the capital
of the object, while Read.1 describes the object as
a province of the subject. Filling the subject and
object into Read.1 results in a completely wrong
statement. Surprisingly, such prompts can deceive
PLMs into producing 58.66% matching subject-
object pairs.

The case study demonstrates that some prompts
can be deceptive, leading the language model to
generate more matching subject-object pairs. How-
ever, the overall prompt may deviate from or con-
tradict facts. Such results should not be considered
as knowledge encoded by the language model. This
indicates that simply striving for high accuracy may
not yield effectiveness in certain cases. Before as-
serting whether the language model knows a fact, it
is essential to verify if the prompt used aligns with
the knowledge. READPROMPT, due to its readabil-
ity, provides humans with a direct way to assess
the alignment of the prompt. This helps to miti-
gate potential issues arising from overestimating
the knowledge storage capacity of PLMs due to
misleading prompts.

Further, we consider if there are potential mis-
alignment issues between unreadable prompts and

Figure 3: The precision with original prompts (orange
bar) versus attack prompts (blue bar). Notably, some
facts are newly retrieved by the attack prompt but not
by the original, and we highlight these parts in cyan.

knowledge. However, due to the unreadability of
these prompts, it is challenging to make intuitive
judgments based on their literal meanings. To ad-
dress this, we design an attack experiment to detect
misalignment issues in unreadable prompts.

4.4 Attack Experiment
In section 4.3, we demonstrated that some prompts
construct relations that are semantically opposite
to those defined in the facts. However, PLMs still
generate a large number of matching subject-object
pairs. This indicates that PLMs tend to output
one when they see the other, regardless of the con-
text. We believe that PLMs indeed capture the
Co-occurrence relationship between subjects and
objects, although the specific relationship may not
be clear.

We question whether unreadable prompts might
implicitly change the meaning and use co-
occurrence relations to induce better results from
the PLM. To test this, we generate attack samples
by swapping subjects and objects, such as changing
(Italy, located-in, Europe) to (Europe, located-in,
Italy). We then query PLMs using these attack sam-
ples and existing prompting methods. If the PLM’s
response matched the swapped object in the attack
sample (e.g., responding "Italy" when given "Eu-
rope is located in"), it indicated confusion about
the relationship between the subject and object. We
calculated the Confusion Rate as the proportion
of confused responses in the PLM’s replies. In-
tuitively, a higher confusion rate is likely if the
unreadable prompts are based on co-occurrence
relationships.

We use SOFTPROMPT and BERT as an exam-
ple and select 11 types of facts with asymmetric
relations for attack experiments (details are shown



LAMA Soft. Read.
+align

Precision@1 47.59% 71.63% 63.27%
Confusion Rate 1.18% 25.93% 2.77%
Difference 46.41% 55.70% 60.50%

Table 5: The experimental results of LAMA Prompt,
SOFTPROMPT, and READPROMPT on 11 types of facts.
Precision@1 is calculated based on normal samples,
while confusion rate is derived from attack samples. The
difference refers to the gap between these two metrics.

in Table 4). First, we trained continuous vectors
as prompts via SOFTPROMPT on normal samples.
Then, we combined the attack samples with the
prompt to query the PLM and calculated the confu-
sion rate. As shown in Figure 3, the results of the
attack experiment suggest that SOFTPROMPT lead
to a high confusion rate (at least exceeding 10%).
One possible reason is that the unreadable prompt
itself describes a co-occurrence relationship, and
swapping the subject and object positions does not
affect the overall meaning of the prompt. Another
possibility is that the PLM’s performance is not sat-
isfactory, and it cannot distinguish the relationship
between the two.

To determine whether the confusion is caused by
the unreadable prompt or is inherent in the PLM
itself, we further conduct attack experiments on
manually constructed prompts (LAMA). Since the
manual prompts are accurate and reliable, the con-
fusion ratio can be considered as a result of the
PLM’s insufficient performance. As shown in Ta-
ble 5, the manual prompt gains a much lower con-
fusion rate. In contrast, the high confusion rate
exhibited by PLMs with SOFTPROMPT can be at-
tributed to the prompt. We conduct the same at-
tack experiment on our method, READPROMPT,
for comparison. The results show that the aligned
prompt does not cause more confusion, and is only
slightly higher by 1.59% compared to the manual
prompt. For each prompt, we calculate the differ-
ence between Precision@1 and Confusion Rate.
To some extent, this can represent the lower bound
of the knowledge encoded in the model after de-
ducting the confusion cases. The results show that
READPROMPT still achieves the best performance.

We conduct the same attack experiments on
larger language models and the results are pre-
sented in the column of "Attack" of Table 2. both
GPT-3.5 and GPT-4 demonstrate a robust perfor-
mance by successfully evading all attack samples.

On the other hand, the 7B-sized model shows con-
fusion regarding certain facts, suggesting that it
might be more susceptible to adversarial attacks or
misinformation.

5 Discussion: Stochastic Parrot or
Intelligence?

The emergence of large language models has at-
tracted widespread attention. Many studies ques-
tion whether large language models are truly intel-
ligent or merely a "stochastic parrot" (Chen et al.,
2022) that assemble sequences of linguistic forms
based on probabilistic information, without any ref-
erence to meaning (Jin and Rinard, 2023; Mitchell
and Krakauer, 2023).

Our experiments with READPROMPT reveal con-
fusion in some knowledge triplets within the PLM.
Interestingly, using prompts with opposite mean-
ings can help PLMs achieve better results on cur-
rent knowledge probing benchmarks. Attack ex-
periments confirm that some PLMs or LLMs only
capture high-frequency co-occurrence relationships
between parts of the subject and object, resembling
a stochastic parrot. In contrast, GPT-3.5 and GPT-4
successfully resist attack samples, demonstrating
sufficient intelligence in the attack experiment. Al-
though some studies (Liu and Low, 2023; Chiang
et al., 2023; Geng et al., 2023; Liang et al., 2022)
claim that moderately-sized (e.g., 7B) large lan-
guage model can achieve results comparable to
GPT-4, our knowledge probing experiments reveal
that these models fall short in terms of the amount
of knowledge they contain (lower bound), reliabil-
ity, and their adherence to human prompts.

6 Conclusion

In this work, we introduce READPROMPT, a novel
method to construct prompts for the knowledge
probing task. On one hand, READPROMPT can
guide PLMs to answer more factual questions cor-
rectly. On the other hand, READPROMPT is read-
able, providing a way for people to verify its cor-
rectness. Our case studies reveal that PLMs oc-
casionally confuse facts, which should not be re-
garded as their inherent knowledge. Furthermore,
we demonstrate through attack experiments that
existing prompting methods intensify PLMs’ con-
fusion of facts, leading to higher but unreliable
results. Ultimately, we argue that for probing tasks,
a reliable outcome is of greater importance than a
merely "better" one.



Limitation

We discuss the limitations of this work from three
aspects. Firstly, ReadPrompt searches for optimal
trigger words within a given template. However,
these templates are currently designed by humans,
which may not always be the best choice. The
second problem is the trade-off between readabil-
ity and capability. ReadPrompt achieves certain
readability that can be guessed and understood by
humans. However, it cannot compare with human
expressions from a strict grammar view. This is
a reluctant compromise between readability and
performance. Lastly, with the increasing size of
language models, searching for readable prompts
is becoming more time-consuming and resource-
intensive. Therefore, there is an urgent need for a
more efficient search indicator, especially one that
doesn’t necessitate access to the model itself.
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A Hyperparameters Grid Search

We investigate how the hyperparameters influence
the results aiming to suggest the best choice of the
hyperparameters and gain a better understanding
of the role of perplexity in searching. We conduct
a limited hyperparameter grid search for each re-
lation, with α ∈ {0.0, 0.1, 0.3, 0.5, 0.7, 0.9} and
with the number of trigger tokens from 3 to 15.
We follow the settings of AutoPrompt and fix the
number of candidates to 10. To optimize the ef-
ficiency of the hyperparameter search, we apply
the following settings for the maximum iteration:
when the number of trigger tokens stands at 10 or
less, we establish the maximum iteration as 500;
when the number exceeds 10, we incorporate 50 ad-
ditional iterations for each extra trigger token. This
methodology ensures a thorough search for each
token. The strategy is mathematically represented
as follows:

itermax =

{
500 if k ≤ 10

50k if k > 10
,

where k denotes the trigger token number. After
determining the optimal combination of hyperpa-
rameters, i.e., k = 10 and α = 0.7, we proceed
by increasing the maximum iteration to 1000. Sub-
sequently, we conduct prompt searches utilizing
these hyperparameters, performe evaluations, and
report the results in Table 1.

In order to illustrate the trend clearly, we smooth
the results by Gaussian filter (Haddad and Akansu,
1991) with σ = 2 before visualization.

We compare the performance of READPROMPT

with different α in Figure 4, where α = 0 is the ab-
lation study of the readability loss. As for the value
of α, we suggest the best choice with 0.7. Over-
all, the performance increased with α. But when
α reached 0.9, the performance decreased, which
implies the impact of perplexity is overweight in
the search. For the number of trigger tokens, nearly
all experiments show that 10 is enough. Increasing
the number has little impact on the improvement
of results and even has a negative effect.

Figure 5 compares perplexity with different α.
There are two clear trends: First, higher α leads
to overall lower perplexity, which shows that the
readability loss defined in Equation 2 works as
desired. Second, more trigger words cause higher
perplexity. We checked the prompts and found
that long prompts contain more word pieces, for

Figure 4: The relation between precision@1 and the
number of trigger tokens regarding different α.

example, "##ally", or symbols, which leads to a
high perplexity.

Figure 5: The relation between perplexity and the num-
ber of trigger tokens regarding different α.

We also plot the relation between capability and
readability of READPROMPT in Figure 6, which
can help us find the best compromise on capability
and readability.

Figure 6: The relationship between performance and the
perplexity of prompts with different α. The green point
represents an ideal result with the lowest perplexity and
highest performance. For each α, we mark the points
closest to the ideal result with crosses.

All hyperparameters for the other prompting
methods reproduced in this work are referenced
from the original papers with the recommended
settings.

B More Experiment Results

Besides T-REx, we compare READPROMPT with
baselines on three datasets.

Google-RE. It contains facts manually extracted
from Wikipedia by Petroni et al. (2019). It covers
three relations, namely place-of-birth with 2937
facts, date-of-birth with 1825 facts, and place-of-
death with 766 facts.

ConceptNet. (Speer et al., 2012) is a multi-
lingual knowledge base, initially built on top of



Code LAMA Prompt Modified Prompt
P413 [X] plays in [Y] position . The position played by [X] is [Y] .
P1923 [Y] participated in the [X] . [X] was participated in by [Y] .
P106 [X] is a [Y] by profession . [X]’s occupation is a/an [Y] .
P102 [X] is a member of the [Y] political party . [X] is a member of the political party [Y] .
P27 [X] is [Y] citizen . [X] is a citizen of [Y] .
P136 [X] plays [Y] music . The music played by [X] is [Y] .
P140 [X] is affiliated with the [Y] religion . The religion affiliated with [X] is [Y] .
P190 [X] and [Y] are twin cities . The twin city of [X] is [Y] .

Table 6: Modifications on LAMA prompts that move the object to the end of the prompt.

Method Google-RE ConceptNet UHN.
LAMA 9.7† 0.1† 21.8‡

LPAQA 10.6† - 28.7‡

Auto. 11.0 12.2 31.3‡

Opti. - - 38.4‡
Soft. 12.9† 14.5† -
Read. 11.8 16.6 37.2

Table 7: Results on datasets of Google-RE, ConcepNet,
and UHN. The best results are marked in bold. † and
‡ mark baseline results obtained from Qin and Eisner
(2021) and Zhong et al. (2021), respectively. "-" denotes
the results that are not reported by current works. The
results of AUTOPROMPT on Google-RE and Concept-
Net are reimplemented by us.

Open Mind Common Sense (OMCS) sentences.
OMCS represents commonsense relationships be-
tween words and/or phrases. Petroni et al. (2019)
extract facts from the English part of ConceptNet
that have single-token objects covering 16 relations
as a benchmark of knowledge probing.

UHN. Poerner et al. (2019) note that some facts
in LAMA can be recalled solely based on surface
forms of entities without memorizing facts. They
filter out those easy-to-guess facts and create a
more difficult benchmark, denoted as LAMA-UHN
(Jiang et al., 2020). In this experiment, we use one
of its subsets, T-REx-UHN.

READPROMPT achieves the best results on Con-
ceptNet, slightly lower than SOFTPROMPT on
Google-RE and OPTIPROMPT on UHN. The re-
sults show that though READPROMPT is composed
of discrete real words, it can also achieve compa-
rable results as the continuous prompts, which is
consistent with the conclusion obtained in the main
results (section 4.2).

C LAMA Prompt Modifications

We modified eight prompts to place the object at
the end of the prompt. The details are presented in
Table 6.


