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Abstract

Relation extraction is often challenged by insuf-
ficient labeled data. Previous methods exploit
knowledge from unlabeled data by generating
pseudo labels in a self-training pipeline, which
suffers a gradual drift problem. Logic rules,
a transferable and explainable form of expert
knowledge, have achieved promising success
by improving the model with weak labels. But
manually writing comprehensive rules set is
challenging and tedious. To alleviate the human
labor of writing high-quality rules, in this work,
we propose ARIA, an Automatic task-specific
Rules dIstilling frAmework. Specifically, we
guide the pre-trained language model to rea-
son rules as experts and compose them into
robust compound rules for data labeling. Be-
sides, ARIA could continuously enrich the rules
set to power the labeling ability by discovering
reliable model-labeled data for distinguishable
rules generation. Experiments on two public
datasets demonstrate the effectiveness of ARIA
in a low-resource scenario.

1 Introduction

Relation extraction is a fundamental task in natural
language processing. Training supervised models
with manually annotated data is labor-intensive.
This motivates methods for model learning under a
low-resource setting with limited annotations.

Semi-supervised methods (French et al., 2018;
Sun and Grishman, 2012) aim to explore knowl-
edge from the unlabeled data for better model gen-
eralization. Self-training pipeline (Rosenberg et al.,
2005; Lin et al., 2019) iteratively adds the model’s
high-confidence predictions over unlabeled set to
the training set and re-trains the model. However,
the noise in the model-labeled data may accumulate
during the training process (gradual drift problem).

The logic rule is an explainable and transferred
form to summarize knowledge, which could re-
place human for weak labels generation. Since the
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Figure 1: An illustration of how ARIA continuously
explore PLM-reasoned rules for model improvement.

human written rules (Zhou et al., 2020) are time-
consuming and difficult to be completed enough for
emerging domains, some work attempts to generate
logic rules automatically. For example, the distant
supervised methods (Riedel et al., 2010) extract
the knowledge base (KB)’s facts as rules for data
labeling. These methods label the sentences con-
taining the specific entity pair with KB’s relation
label regardless of the context, which generates
noise labels easily. Thus, how to handle the data’s
context for accurate labeling deserves studying.

Recently, the pre-trained language model (PLM)
shows broad cognitive capabilities that could be
distilled into downstream tasks and work well
even without any training data (Kojima et al.,
2022). Specifically, some work (Wei et al.,
2022; Saparov and He, 2022) propose the chain
of thought prompts to exploit the PLM’s reason-
ing ability by guiding it to generate the intermedi-
ate natural language reasoning process like human.
The explainable reasoning process infers the asso-
ciation between the input and output and could be
deemed as the prerequisite for the output answer.
Motivated by this, given labeled instances as input,
we guide the PLM to imitate human relation rea-
soning manner and summarize the key information
supporting relation inference from the reasoning
process into transferred rules automatically.

We propose an automatic task-specific logic
rules distilling framework, ARIA, which leverages
PLM to replace human for continuously high-
quality labeling rules discovery. As shown in Fig-
ure 1, starting from limited seed data, ARIA alter-
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nates between Data-to-Rule stage and Rule-to-Data
stage. The former guides the PLM to reason spe-
cific rules from labeled data by following human
reasoning paths and asks the PLM to merge them
into compound rules. The latter adopts the rules
over the unlabeled set to improve the RE model,
which is leveraged to generalize beyond the exist-
ing rules. Then we filter reliable model-labeled
data for further high-quality rules generation. Dif-
ferent from the previous work, which summarizes
rules based on the restricted knowledge from the ex-
perts or knowledge bases, ARIA could continuously
explore comprehensive rules by guiding PLM to
imitate human reasoning manner.

There are two major challenges to automatically
generate task-specific rules for accurate labeling:
1) how to guide the PLM to follow human’s reason-
ing manner and summarize crucial information of
relation inference into comprehensive rules; 2) how
to diversify the reasoned rules set with high-quality
rules to improve the labeling ability.

To solve the first issue, we guide PLM to im-
itate typical reasoning chains of human (e.g., in-
duction, abduction) by defining several types of
meta-rule templates, which derives the key infor-
mation related to the relation inference that can
be used for the rules construction. For each data,
to summarize rules from it, we guide the PLM’s
reasoning by prompts, which are built by following
the reasoning-specific meta-rule templates, and the
output reasoning words are used to build different
types of rules. Since some work (Wang et al.,
2022) shows reasoning in different ways helps an-
swer correctly, we compose the reasoning rules into
compound rules and ask PLM to pick out the most
comprehensive compositions for robust labeling.

To solve the second issue, the RE model im-
proved by the rule-labeled data, is used to general-
ize beyond the existing rules and alleviate the grad-
ual drift problem. Since the PLM’s reasoning rules
conclude the information crucial for relation infer-
ence, for each relation, we pick the model-labeled
data that could generate rules consistent with this
relation’s existing rules and distinguishable from
other relations’ by modeling their rules’ relevance.
Specifically, we propose a Graph-based Data Fil-
ter, which builds a graph of both model-labeled
data and seed data to propagate their rules’ features.
For each relation, the model-labeled data with fea-
tures close to its seed data and far from others’ are
picked for further rules generation. Compared with

previous work, our method leverages PLM’s broad
knowledge rather than human knowledge or the
restricted knowledge of jointly trained modules to
discover data for high-quality rules generation.

In summary, our contributions are four-fold:

1. We develop a framework, ARIA, to guide the
PLM to continuously summarize comprehen-
sive labeling rules following different reason-
ing paths as human.

2. We propose a Graph-based Data Filter that
leverages PLM’s knowledge to discover re-
liable model-labeled data to generate distin-
guishable rules and enrich the rules set for
accurate labeling.

3. ARIA achieves a great performance on two
public datasets TACRED and SemEval under
the low resource setting, which outperforms
all the baselines and on average achieves
2.65% higher F1 than the best one.

4. We discuss ARIA’s potential under ChatGPT.
Embedding Roberta as a safe and efficient
annotator, ARIA gets competitive labeling pre-
cision as ChatGPT. We also show the small-
scaled PLM’s potential to assist ChatGPT for
reliable reasoning: the in-context learning en-
hanced by our rules’ representative informa-
tion could reduce ChatGPT’s hallucination
and improve at most 23.04% in precision.

2 Related Work

Semi-Supervised Methods. With a low require-
ment of labeled data, semi-supervised methods
(French et al., 2018; Sun and Grishman, 2012; Li
et al., 2020, 2023; Yu et al., 2023) exploit knowl-
edge from the unlabeled set. Since self-training
methods (Rosenberg et al., 2005) accumulate noise
in pseudo labels (Hu et al., 2021b), some methods
(Han et al., 2018; Lin et al., 2019) lower the noise
by a joint training dual retrieval module, whose
classification ability is limited by the training data’
scale. Our work, instead, denoises by a Data Filter,
which leverages PLM’s broad cognitive capabilities
to pick reliable model-labeled data for distinguish-
able rules generation.
Weakly Supervised Methods. Logic rules are
proposed to improve the model with weak labels.
Since the manually written rules are expensive and
difficult to be completed enough for emerging do-
mains (Zhou et al., 2020), many works discover
rules automatically from KB (Riedel et al., 2010;
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Figure 2: The overall framework of ARIA. In each iteration, ARIA 1) leverages the Reasoning Rules Generator
to imitate human’s reasoning manner and summarize rules from the labeled data; 2) asks the Compound Rules
Compiler to compose reasoning rules into robust compound rules; 3) utilizes compound rules to label data for
training set enrichment; 4) learns a RE model to predict on the unlabeled data and uses Graph-based Data Filter to
select reliable model-labeled data for further rules generation in the next iteration.

Ye and Ling, 2019). Recently, language models
has shown their ability on various tasks based on
prompting (Li et al., 2022a,b, 2021; Lu et al.,
2023). Since the scale of KB is limited, PRBOOST
(Zhang et al., 2022) asks PLM by prompt to pre-
dict the relation directly and take the predictions
as rules. This rule construction manner lacks cap-
turing the task-specific reasoning process, mak-
ing the rules less transferred and explainable. In-
stead, ARIA builds rules in a fine-grained manner
by guiding PLM with different reasoning paths.
Besides, PRBOOST requires human for rules se-
lection, while ARIA could automatically pick the
data that could generate high-quality rules by mod-
eling their reasoning rules’ dependency.

3 Method

We introduce ARIA in this section. Given limited
seed data, ARIA continuously distills specific rules
by PLM for labeling over the unlabeled set and
improves the task model with rule-labeled data.
Overview. As shown in Figure 2, our framework
iterates among the four steps: 1) From Data to
Rules: Given a set of labeled data, we propose
a Reasoning Rules Generator to guide the PLM
to generate specific reasoning rules of different
reasoning path from each labeled data. 2) From
Simple Rules to Compound Rules: A Compound
Rules Compiler is proposed to compose each data’s
reasoning rules and ask the language model to pick
the comprehensive composition as compound rules.
3) From Rules to Data: The compound rules are
used to generate labels over the unlabeled set for
further RE model improvement. 4) From Data
to Data: The rule-labeled data are merged with
seed data to train a RE model, which is adopted to
predict the unlabeled data. The Graph-based Data

Filter then selects the reliable model-labeled data
for further rules generation. Finally, the filtered
data are taken as the input for the next iteration.

Notice that in step 4) we pick the model-labeled
data rather than rule-labeled data for further rules
discovery, which are less likely to accumulate
repeating patterns in the rules set based on the
model’s generalization ability. For initialization,
the seed data are taken as the input in the first itera-
tion. Then for the iteration t+ 1, the input labeled
data is the filtered data output from the iteration t.

3.1 Reasoning Rules Generator

In this section, we introduce the design of our meta-
rule templates, which are instantiated by building
cloze-style prompts to guide the PLM to reason
specific rules under different reasoning paths.
Meta-Rule Templates Designing. We pro-
pose four meta-rule templates to build reasoning
prompts from each instance, as shown in Table 1,
where [input] indicates the sentence, [A], [B] de-
notes the mention of head and tail entities and [M]
is the mask token. The design of the meta-rule tem-
plates follows four types of reasoning in Causality,
which aims to guide the reasoning of the induction,
abduction, intervention and counterfactual between
entities expressed in the sentence.

To be more specific, 1) Induction Meta-Rule
treats one entity as a premise and puts mask tokens
for reasoning the conclusion related to the other
entity. 2) Abduction Meta-Rule treats one entity
as a conclusion and aims at reasoning the premise
related to the other. 3) Intervention Meta-Rule
aims at reasoning the intervention brought by one
entity to the other. 4) Counterfactual Meta-Rule
guides to reason what will happen to one entity if
the other entity does not exist.
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Type Meta-Rule Template
Induction [Input]. We can infer that, [A] leads to [B]’s [M][M], while [B] leads to [A]’s [M][M].
Abduction [Input]. We can infer that, [A] is a [M] of [M] for [B], while [B] is a [M] of [M] for [A].

Intervention [Input]. We can infer that, [A] brought [M] to [B], while [B] brought [M] to [A].
Counterfactual [Input]. We can infer that, without [A], [B] will [M][M], while without [B], [A] will [M][M].

Table 1: Meta-rule templates to build reasoning prompts. [input], [A] and [B] refer to the sentence, head entity and
tail entity. [M] is the mask token.

Reasoning Rules Instantiation. As shown in Fig-
ure 3, given an instance, to generate specific rules
from it, we put its sentence and entity mentions
to the slots in the meta-rule templates to get four
prompts. Then each prompt is fed to PLM respec-
tively and the most likely predicted words for mask
tokens are taken as reasoning words. Instantiated
rules are obtained by filling all the slots (including
mask tokens) in meta-rule templates with specific
information. Thus, each data could get four reason-
ing rules, denoted as {pi}4i=1, with the correspond-
ing reasoning words {wi}4i=1.

In Sec. 4.6, case studies are conducted to show
more examples of the reasoning rules.

3.2 Compound Rules Compiler

Some work (Wang et al., 2022) has shown reason-
ing in different ways is beneficial for finding the
correct answer. Thus, for each data, we compose
its four reasoning rules into robust compound rules.
Composition Evaluation. As shown in Figure
3, we ask the PLM by prompt to evaluate if each
composition has enough information to figure out
the corresponding relation. Given a set of reason-
ing rules {pi}i∈S , the template to build evaluating
prompt for this composition is:

[Input]. {p′i}i∈S Question: Can we infer [A]
[Relation] [B]? Answer: [M] (Yes or No).

where [Input], [A], [B] are the sentence and two
entities’ mentions in the data, [M] refers to the
mask token and [Relation] denotes the data’s rela-
tion label. p

′
i is the mention of reasoning rules pi,

with the sentence and the statement "We can infer
that" being removed to ensure the prompt’s fluency.

After feeding the evaluating prompt to PLM,
the probability of the mask token being predicted
as ’Yes’ is taken as the composition’s evaluation
score. For each data, we enumerate all the possible
compositions of its four reasoning rules and rank
them by the evaluation score descendingly. Finally,
in each data, the top Nc compositions are picked
and each composition will form a compound rule.
Compound Rule Definition. Once a compound
rule denoted as pS is built by a composition of

reasoning rules from an instance, it contains the
following components: a set of reasoning rules
{pi}i∈S , a label l (same as the instance’s), a thresh-
old TH , and a similarity function g(·, ·). Given an
unlabeled sample u, u is matched by pS if the over-
all similarity of the reasoning words between u and
pS exceeds the corresponding threshold. Formally,

1(u matched pS) = 1
(
g(pS , u) ≥ TH

)
(1)

g(pS , u) =
∑

i∈S
s(wi, w

u
i ) (2)

where wi denotes pi’s reasoning words. Notice
we extract u’s reasoning words wu

i by following
the same manner as wi introduced in Sec. 3.1.
Similarity Measurement. Since the reasoning
words are predicted by the PLM from a large vo-
cabulary, the hard matching manner may lead to a
low rule coverage. Thus, we design a soft matching
manner, given the reasoning words of a rule and
unlabeled data, we compute their embedding and
take the cosine similarity as the matching score:

s(wi, w
u
i ) = Cos(e(wi), e(w

u
i )) (3)

Reasoning Words Embedding. For rules or unla-
beled data, we embed each word in wi by GloVe
(Pennington et al., 2014) and concatenate the em-
bedding as the reasoning words’ embedding e(wi).
Data Labeling & Training Set Enrichment.
Given an unlabeled data u and a compound rules set
R, to create the rule-generated label, we go through
R and measure if u matches each compound rule.
When u is matched by multiple compound rules
with conflicting labels, the label with the largest
similarity g is chosen to label u and this largest
similarity is taken as the labeling confidence.

In each iteration, the top Nd rule-labeled data
with the highest labeling confidence are selected to
enrich the training set.

3.3 Graph-based Data Filter
We utilize the RE model learned on the training
set to generalize over the unlabeled set and provide
model-labeled data for new rules discovery.

For each relation, to select the model-labeled
data having inference features consistent with its
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[Input]. We can infer that, without [Smith], [assault] will not charges, while without [assault], [Smith] will face murder.

ℳ

Input: [Smith] faces first-degree [assault] and other charges related to the shooting.

[Input]. We can infer that, [Smith] leads to [assault]’s first sentence, while [assault] leads to [Smith]’s conviction.

[Input]. We can infer that, [Smith] brought guilty to [assault], while [assault] brought injury to [Smith].

[Input]. We can infer that, [Smith] is a person of probation for [assault], while [assault] is a crime of felony for [Smith].

Composition Evaluation Example for Sec. 3.2 (In our example, we evaluate the composition of rules ?, and ?-)

[Input]

Without [Smith], [assault] will not charges, while without [assault], [Smith] will face murder,

[Smith] brought guilty to [assault]. While [assault] brought injury to [Smith],

Question: Can we infer [Smith] [is charged of] [assault]]? Answer: (Yes or No).

ℳ
+ , =' -./'

Rules Generation Example for Sec. 3.1 (In our example, [A]= [Smith], [B]= [assault])

Evaluation Score

+

Relation: is_charged_of

Input

Meta-Rule
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Prompt
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-
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Figure 3: Examples for generating reasoning rules and evaluating rules composition given the input sentence "Smith
faces first-degree assault and other charges related to the shooting".

seed rules and far away from other relations’, we
build a graph for this relation by connecting the
model-labeled data with seed data based on their
reasoning words’ relevance. Then a classifier is
trained to figure out if a data belongs to this relation
(Positive) or not (Negative).
Initial Node Embedding. Since a node represents
a data, for each node, we concatenate the data’s four
types of reasoning words’ embedding (introduced
in Sec. 3.2) as its initial node embedding.
Graph Construction. We build a k-nearest neigh-
bor graph Gr = {V = Vp

⋃
Vs, A} for relation

r, which connects nodes based on their initial em-
bedding’s cosine similarity and aims to model the
data’s inference features relevance. Vp, Vs are
nodes for model-labeled data and seed data, A is
the adjacency matrix. To get the binary supervision
signals, each node in Vs will get a Positive binary
label if its data belongs to r, otherwise, Negative.
Inference Features Propagation. For rela-
tion r and its corresponding graph Gr, we ap-
ply an independent 2-layer graph attention net-
work (Veličković et al., 2018) to propagate nodes’
inference features. Given node i’s representation
hi and its neighbors Ni, in each layer the attention
weight between node i and j can be computed as:

aij =
exp(f(AT[Whi,Whj ]))∑

k∈Ni
exp(f(AT[Whi,Whk]))

(4)

where W is parameter matrix and f is
LeakyReLu function. Then the ith node represen-
tation of the next layer is updated as:

h∗i = aiiWhi +
∑

j∈Ni

aijWhj (5)

Objective. The classifier’s objective is defined as:

L = Lsup + Lnei (6)

where Lsup=−∑
(yilogPi + (1− yi)log(1− Pi))

(i ∈ Vs) is the supervised loss, yi is the bi-

nary label of the node, Pi is the predicted
possibility of node i being Positive, and
Lnei =

∑
j∈V

∑
k∈Nj

∥hj − hk∥2 is to encourage
nodes with similar inference features to be close to
each other in the representation space.
High-quality Data Filtering. To pick the model-
labeled data containing inference features consis-
tent with the existing rules for relation r and dis-
tinguishable from other relations, we 1) compute
the centroids’ representation of Positive and Nega-
tive seed nodes as the average of corresponding
nodes’ representation; 2) measure each model-
labeled node’s cosine similarity with the two cen-
troids’ representation as Spos and Sneg; 3) rank all
model-labeled nodes by Sd = Spos−Sneg descend-
ingly to find distinguishable nodes. Then we select
the top Np model-labeled nodes (data) for further
rules generation of relation r.

4 Experiments

4.1 Datasets

By following (Hu et al., 2021a), we conduct exper-
iments on two public datasets widely used for rela-
tion extraction, SemEval (Hendrickx et al., 2010)
and TACRED (Zhang et al., 2017). The datasets
statistic is shown in Appendix A.1. TACRED is
more complicated than SemEval, since it contains
more relation types and a larger distribution bias
between positive and negative instances.

4.2 Baselines

Supervised Baselines. We build classifiers with
three common encoders and train them with only la-
beled data: LSTM (Hochreiter and Schmidhuber,
1997), PCNN (Zeng et al., 2015) and BERT (Ken-
ton and Toutanova, 2019). Since BERT performs
best, we take it as the encoder of all the following
baselines and ARIA’s RE model for fair evaluations.
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Methods / %Labeled Data SemEval TACRED

5% 10% 30% 3% 10% 15%
LSTM (Hochreiter and Schmidhuber, 1997) 22.65 32.87 63.87 28.68 46.79 49.42
PCNN (Zeng et al., 2015) 41.82 51.34 63.72 40.02 50.35 52.50
BERT (Kenton and Toutanova, 2019) 70.71 71.93 78.55 40.11 53.17 55.55
Self-TrainingBERT (Rosenberg et al., 2005) 71.34 74.25 81.71 42.11 54.17 56.52
Mean-TeacherBERT (Tarvainen and Valpola, 2017) 70.05 73.37 80.61 44.34 53.08 53.79
RE-EnsembleBERT (Lin et al., 2019) 72.35 75.71 81.34 42.78 54.83 55.68
DualRE-PairwiseBERT (Lin et al., 2019) 74.35 77.13 82.88 43.06 56.03 57.99
DualRE-PointwiseBERT (Lin et al., 2019) 74.02 77.11 82.91 43.73 56.28 57.72
MRefGBERT (Li and Qian, 2020) 75.48 77.96 83.24 43.81 55.42 58.21
MetaSREBERT (Hu et al., 2021a) 78.33 80.09 84.81 46.16 56.95 58.94
GradLREBERT (Hu et al., 2021b) 79.65 81.69 85.52 47.37 58.20 59.93
ARIABERT (Ours) 80.24 82.40 86.07 49.59 60.86 62.57
BERT w. gold labels 86.66 87.25 87.87 62.56 64.15 64.51

Table 2: Micro F1 (%) of methods on SemEval and TACRED datasets with different scales of seed data and 50%
unlabeled data. For each method we conduct five runs with random seeds and report the average performance.

Low-Resource Learning Baselines. We compare
ARIA with baselines studied under the low-resource
setting. 1) Self-Training (Rosenberg et al., 2005)
generalizes the learned model on unlabeled set and
updates the model with pseudo labels. 2) Mean-
Teacher (Tarvainen and Valpola, 2017) forms the
teacher model from students by encouraging consis-
tent predictions for similar inputs. 3) DualRE (Lin
et al., 2019) jointly trained a retrieval module to pro-
vide pseudo-labeled data for the prediction module.
Pointwise or Pairwise is the way to measure the re-
trieved data’s quality. 4) RE-Ensemble (Lin et al.,
2019) replaces DualRE’s retrieval module with a
prediction module. 5) MRefG (Li and Qian, 2020)
connects the unlabeled data with labeled ones se-
mantically to build reference graphs. 6) MetaSRE
(Hu et al., 2021a) eval pseudo-labeled data’s quality
by meta-learning from the model’s successful and
failed attempts. 7) GradLRE (Hu et al., 2021b)
encourages the pseudo-labeled data to imitate the
labeled data’s gradient descent direction.
RE-Gold. We train our RE model with both seed
data and the unlabeled data assigned with the gold
labels to indicate the upper bound performance
(denoted as BERT w. gold labels).

4.3 Implementation Details

Data Preparation. To imitate the low-resource
scenario, we follow (Hu et al., 2021a) and utilize
stratified sampling to divide the original training
set into seed data and unlabeled data. Specifically,
for SemEval, we sample 5%, 10%, 30% training
data as seed data, while for TACRED, 3%, 10%,
15% are sampled. For both datasets, 50% training

data are sampled as unlabeled data, whose gold
labels are unavailable during the learning process.
Hyperparameter Setting. Roberta-base (Liu
et al., 2019) is taken as our PLM for rules reasoning.
For the Compound Rules Compiler, in each data the
top Nc = 8 high-quality combinations are picked
to build compound rules and the threshold TH for
data labeling is set to 0.8. In each iteration, the top
Nd = 100 rule-labeled data with the highest label-
ing confidence are added to the training data. We
take DualRE-Pointwise as our RE model, trained
with our training set (containing both seed data and
rule-labeled data) and the unlabeled set. For each
relation, the Data Filter picks the top Np = 15
high-quality model-labeled data for further rules
generation in the next iteration.

4.4 Overall Performance

Table 2 shows the performance on two datasets.
Overview: We could observe that ARIA outper-
forms all the baselines on both datasets with differ-
ent scales of seed data, which demonstrates ARIA’s
effectiveness and stableness. Specifically, com-
pared with the previous SOTA work GradLRE,
ARIA average achieves an F1 improvement of
0.62% in SemEval and 2.51% in TACRED.

Compared with the DualRE-Pointwise that only
trained with the seed data and unlabeled data, the
RE model (with the same structure) embedded in
ARIA average gets F1 score 4.89% higher in Se-
mEval and 5.10% higher in TACRED. This result
shows a significant improvement from the compre-
hensive rules distilled from the PLM.

Among the two datasets, ARIA gets greater im-
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[Asthma causes swelling and

narrowing of the airways.]

We can infer that, [Asthma] leads to

[swelling]’s bad symptoms, while

[swelling] leads to [Asthma]’s

worsening death.

Cause-Effect (e1, e2)

[Shiite List groups lots of Shiite and

other parties, including the Badr

Organization former Badr Corps and

independents.]

We can infer that, [Badr

Organization] leads to [Shiite]’s

large list, while [Shiite] leads to

[Badr Organization]’s Shiite party.

Org: Member_of

[Lee, the third son of the late

Samsung group founder Lee Byung,

became vice chairman of the

Samsung Corporation.]

We can infer that, [Samsung] leads to

[Lee Byung]’s business success,

while [Lee Byung] leads to

[Samsung]’s business compony.

Org: Founded_by

[The kitchen holds a cooker, fridge,

microwave oven, in short:

everything you need to prepare a

light meal.]

We can infer that, [kitchen] is a kind

of room for [cooker], while [cooker]

is a kind of storage for [kitchen].

Whole-Component (e1, e2)
[Carnival Cruise Lines president

Robert Dickinson, will retire at the

end of the year, parent Carnival Corp

said.]

We can infer that, [Carnival Corp] is a

parent of operations for [Carnival

Cruise Lines], while [Carnival Cruise

Lines] is a subsidiary of operation for

[Carnival Corp].

Org: Subsidiaries

[The burned fuels create air pollution

that contributes to global warming and

causes respiratory disease.]

We can infer that, [pollution] is a

source of risk for [disease], while

[disease] is a source of blame for

[pollution].

Cause-Effect (e1, e2)

[Beverly Sills, obituary Opera

legend Beverly Sills succumbed to

lung cancer tonight at age 78.]

We can infer that, [Beverly Sills]

brought succumbe to [lung cancer],

while [lung cancer] brought death to

[Beverly Sills].

Per: Cause_of_Death

[When the princess left her native land

and traveled west to her bridegroom,

she carried silkworm cocoons in her

headdress. ]

We can infer that, [princess] brought

her to [land], while [land] brought

happiness to [princess].

Entity-Origin (e1, e2)

[Catherine was born in Brooklyn in

1920, one of three children of Albert

and Gertrude Dittmars Roraback.]

We can infer that, [Catherine] brought

married to [Albert], while [Albert]

brought brith to [Catherine].

Per: Parents

[“Many People see the kibbutz as a

corpse,” says Shlomo, head of the

Kibbutz Studies Centre at Haifa

University.]

We can infer that, without [Haifa

University], [Kibbutz Studies Centre]

will not exist, while without [Kibbutz

Studies Centre], [Haifa University]

will be exist.

Org: Subsidiaries

[Born on Aug. 15, 1925, in a poor

neighborhood of Montreal, Peterson

got his passion for music from his

father.]

We can infer that, without [Peterson],

[Aug. 15, 1925] will be meaningless,

while without [Aug. 15, 1925],

[Peterson] will be void.

Per: Date_of_Birth

[The steering committee that drafted

the document also passed it through

two Palestinian GFM organizers.]

We can infer that, without

[committee], [document] will not

exist, while without [document],

[committee] will be exist.

Product-Producer (e1, e2)

Induction Abduction Intervention Counterfactual

Figure 4: Examples of reasoning rules belonging to different relations summarized by the PLM in Section 3.1. The
four types of color indicate four types of reasoning paths. The reasoning words for each rule are highlighted.

provements on TACRED compared with all base-
lines, which shows ARIA could better leverage the
PLM to exploit high-quality rules to improve the
model’s learning of more complex relations with
skewed data distribution.

4.5 Ablation Study
We present ablation studies on SemEval to show
the components’ effectiveness (Table 3).

Methods / %Labeled Data 5% 10% 30%
ARIA 80.24 82.40 86.07

ARIA w/o GDF 76.77 80.48 84.21
ARIA w/o CRC 77.99 78.09 84.31
ARIA w/o Indu. 75.65 80.87 84.65
ARIA w/o Abdu. 74.53 79.85 84.99
ARIA w/o Inte. 75.82 80.16 83.28
ARIA w/o Cont. 76.72 80.61 85.47

Table 3: Ablation results of ARIA and its variants on
SemEval with different scales of seed data.

Removing Graph-based Data Filter (w/o GDF).

When extracting rules directly from all the model-
labeled data without Data Filter, the F1 scores
lower 3.47% ∼ 1.86%. The decrease gets larger
when running with fewer seed data. Thus when the
seed data is quite limited, the Data Filter is neces-
sary to pick reliable data from the unfitted model’s
predictions for high-quality rules generation.

Removing Compound Rules Compiler (w/o
CRC). When labeling with single reasoning rules
rather than compound ones, the performance gets
lower, especially when the seeds’ scale turns from
5% to 10%. This is because some relations can
not be discriminated by single reasoning paths and
more seed rules lead to noise labeling. Thus, Com-
pound Rules Compiler is needed for fine-grained
data labeling. The effect of labeling noise gets
lighter as the seed data is abundant enough (30%).

Removing one type of meta-rule each time (w/o
Indu, w/o Abdu, w/o Inte and w/o Cont). The re-
sult shows that each meta-rule contributes to ARIA.
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The lack of each meta-rule causes a sharp perfor-
mance degradation on small-scaled seed data (5%).
This is because the labeling noise caused by the
incomplete reasoning paths (as shown in Sec. 4.6)
can easily lead to the model’s misunderstanding of
relations when the correct seed data is limited.

4.6 Case Study
Figure 4 shows examples of four types of reason-
ing rules. We can observe that the rules’ reasoning
words capture the information crucial for relation
inference. For example, given an instance with en-
tity pair (X, Y) and meeting "X leads to Y’s business
success, while Y leads to X’s business company",
we can infer that X may be a company greatly con-
tributed by Y and Y is likely to be X’s founder. Thus
our reasoning words are beneficial to sentence un-
derstanding and rules construction.
Necessity of Compound Rules. Besides, the rea-
soning rules provided by single reasoning path is
not enough to discriminate different relations. For
example, under the Counterfactuals reasoning path,
the rules of relation Product-Producer and Org:
Subsidiaries have similar reasoning words. Thus,
to label the relation Org: Subsidiaries accurately,
the Abduction rule is necessary, which indicates
the effectiveness of compound rules construction.

4.7 ARIA’s Potential under ChatGPT
To discuss ChatGPT’s influence on ARIA, taking
5% training data as seed data and 50% as unlabeled
data in SemEval, we design different labeling man-
ners based on ChatGPT and compare their labeling
precision on the unlabeled data (as Figure 5 shows).
Notice that we sort the annotated results by label-
ing confidence and compute the precision for the
top K results (more details are in Appendix A.2).
ARIA: Competitive Performance with a Light
and Privacy-Protected Annotator. We replace
Roberta with ChatGPT for rules generation and
composition in our framework, and label data
with compound rules (denoted as ARIA-ChatGPT).
When Top K is 5∼45, ARIA’s labeling precision is
1.67%∼7.72% higher than ARIA-ChatGPT. This
is because the hallucination of ChatGPT may make
rules unreliable and lead to fake high-confident la-
beling results. For example, when the ground-truth
relation is "NA" (there is no relation between the
two entities), ChatGPT may generate unreasonable
rules that seem brilliant, while Roberta, the naive
PLM, may answer meaningless words. Compared
with ChatGPT, Roberta embedded in ARIA could

Labeling Precision on Unlabeled Data
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Figure 5: Labeling precision of ARIA and different
pipelines based on ChatGPT.

predict the reasoning words quickly and is more
time-saving to handle large-scale data in real sce-
narios. Furthermore, Roberta could be deployed
privately and avoid the data breach risk. This ex-
ploration also shows our framework could embed
different types of language models as the annotator.
Achieve Concentrate In-Context Learning with
Rules Knowledge. We apply in-context learning
to annotate the unlabeled data directly by ChatGPT.
Taking this as a baseline (denoted as ICL), we de-
sign ICL-R, each example data in the context is
followed by its reasoning rules mentions instanti-
ated in ARIA. We can see ICL-R is at most 23.04%
higher than ICL. Since in ICL-R, ChatGPT focuses
more on the representative knowledge points for re-
lation reasoning summarized by our rules, it is less
likely to be distracted by other information or hal-
lucination caused by the example data. This shows
the small-scaled PLM’s potential to highlight the
key points and assist the reasoning of ChatGPT.
Future Works: Cooperation for Complex Sce-
narios. ChatGPT shows powerful comprehension
ability but sometimes generate hallucination. ARIA
provides an efficient rules-distilling manner that
could reduce hallucination, but simple rules match-
ing is not enough for complex semantics. To lever-
age the advantages of both sides, we could first ask
Roberta simple questions and summarize the key
points into rules, which are collected to ChatGPT
to get a reliable reasoning with less hallucination.
We could further ask ChatGPT if its conclusion
obeys the rules or if the rules are reasonable, and
fix the answer or the rules automatically.

5 Conclusion

We propose ARIA, which guides the PLM to sum-
marize comprehensive rules as human. Specifically,
we build a Reasoning Rules Generator to replace
human for high-quality rules generation and a Com-
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pound Rules Compiler to compose rules into robust
compound rules. Besides, ARIA could discover reli-
able model-labeled data for further rules generation
based on the rules relevance. Experiments on Se-
mEval and TACRED show ARIA’s effectiveness.
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Limitations

In our Reasoning Rules Generator, we take
Roberta’s most likely predicted words for mask
tokens as reasoning words. This may ignore much
important information contained in Roberta’s pre-
dictions. An approach to making better use of
Roberta’s knowledge is to take Roberta’s hidden
vectors for the masked tokens as virtual reasoning
words. Besides, to better leverage our rules to han-
dle the complex semantics, we could collect the
rules with representative key points from Roberta
and input them with context to ChatGPT for a reli-
able answer.
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A Appendix

A.1 Datasets Statistics
In this section we show the statistics of the two
public datasets used in our experiments.

Datasets Relations Train Dev Test %Neg.
SemEval 19 7199 800 1864 17.40
TACRED 42 75049 25763 18659 78.68

Table 4: Statistics of the datasets in our experiments.
Notice that Neg. refers to the percent of negative in-
stances, which are labeled as NA.

A.2 Implementation Details of ICL, ICL-R
and ARIA-ChatGPT

For ARIA-ChatGPT, we redesign cloze templates
to prefix templates to exploit ChatGPT’s potential.
Notice that for both ARIA and ARIA-ChatGPT in
Figure 5, we report the labeling precision in the
first iteration. For ICL and ICL-R, we randomly
select one seed data per relation as example data
in context. For each unlabeled data, the ChatGPT
predicts 5 times under the contexts with random
example data. Then majority voting strategy is
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Inference Type Meta-Rule Template

Induction
[Input]. We can infer that, [A] leads to [B]’s MASK. Question: MASK = ? (Please answer within two words).
[Input]. We can infer that, [B] leads to [A]’s MASK. Question: MASK = ? (Please answer within two words).

Abduction

[Input]. We can infer that, [A] is a MASK_1 of MASK_2 for [B]. Question: MASK_1 = ? (Please answer within one word).
[Input]. We can infer that, [A] is a MASK_1 of MASK_2 for [B]. Question: MASK_2 = ? (Please answer within one word).
[Input]. We can infer that, [B] is a MASK_1 of MASK_2 for [A]. Question: MASK_1 = ? (Please answer within one word).
[Input]. We can infer that, [B] is a MASK_1 of MASK_2 for [A]. Question: MASK_2 = ? (Please answer within one word).

Intervention
[Input]. We can infer that, [A] brought MASK to [B]. Question: MASK = ? (Please answer within one word).
[Input]. We can infer that, [B] brought MASK to [A]. Question: MASK = ? (Please answer within one word).

Conterfactual
[Input]. We can infer that, without [A], [B] will MASK. Question: MASK = ? (Please answer within two words).
[Input]. We can infer that, without [B], [A] will MASK. Question: MASK = ? (Please answer within two words).

Table 5: Prefix Meta-Rule Template applied in ARIA-ChatGPT. [input], [A] and [B] refer to the sentence, head
entity and tail entity.

taken to pick out the final prediction and the max
votes number is taken as the labeling confidence.
Prefix Template for ARIA-ChatGPT. To generate
and compose the rules by ChatGPT, we transfer
the cloze template into prefix template by asking
ChatGPT what the "MASK" refers to in natural
language. The prefix Meta-Rule Template is shown
in Table 5. The prefix template for building the
evaluating prompt is shown as follows:

[Input]. {p′i}i∈S Question: Can we infer [A]
[Relation] [B]? Answer: (Yes or No).

[𝐼𝑛𝑝𝑢𝑡] !
Q: What is the relation label of [𝐴]! and [𝐵]! ?

A:[𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛] !

[𝐼𝑛𝑝𝑢𝑡]

Q: What is the relation label of [𝐴] and [𝐵] ? You 

should answer one of the following relations: 

[𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑡].

A:

[𝐼𝑛𝑝𝑢𝑡]𝑛
Q: What is the relation label of [𝐴]𝑛 and [𝐵]𝑛 ?

A: [𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛]𝑛

…

ICL

[𝐼𝑛𝑝𝑢𝑡] !
[𝑃"]1
Q: What is the relation label of [𝐴]! and [𝐵]!?

A: [𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛] !

[𝐼𝑛𝑝𝑢𝑡]

[𝑃"]

Q: What is the relation label of [𝐴] and [𝐵] ? You 

should answer one of the following relations: 

[𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑡].

A:

[𝐼𝑛𝑝𝑢𝑡]𝑛
[𝑃"]#
Q: What is the relation label of [𝐴]𝑛 and [𝐵]𝑛 ?

A: [𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛]𝑛

…

ICL-R

Figure 6: Template of contexts in ICL and ICL-R.

where [Input], [A], [B] refers to the sentence and
the two entities mentions in the instance and [Rela-
tion] donates the instance’s relation label mention.
p
′
i is the mention of reasoning rules pi, with the sen-

tence and the statement "We can infer that" being
removed. S represents the set of reasoning rules to
be evaluated for composition.
Context Building in ICL, ICL-R. The template
to build the context is shown in Figure 6. [Input]i,
[A]i, [B]i and [Relation]i are the sentence, head
entity, tail entity and the label of ith example data.
n is the number of labels and [Relation Set] is
the set of all label mentions. [P

′
]i = {p′k}4k=1 is

the set of reasoning rules’ mentions of ith example.
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