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Abstract

Historically, researchers and consumers have
noticed a decrease in quality when applying
NLP tools to minority variants of languages
(i.e. Puerto Rican Spanish or Swiss German),
but studies exploring this have been limited to a
select few languages. Additionally, past studies
have mainly been conducted in a monolingual
context, so cross-linguistic trends have not been
identified and tied to external factors. In this
work, we conduct a comprehensive evaluation
of the most influential, state-of-the-art large
language models (LLMs) across two high-use
applications, machine translation and automatic
speech recognition, to assess their functionality
on the regional dialects of several high- and
low-resource languages. Additionally, we ana-
lyze how the regional dialect gap is correlated
with economic, social, and linguistic factors.
The impact of training data, including related
factors like dataset size and its construction
procedure, is shown to be significant but not
consistent across models or languages, mean-
ing a one-size-fits-all approach cannot be taken
in solving the dialect gap. This work will lay
the foundation for furthering the field of dialec-
tal NLP by laying out evident disparities and
identifying possible pathways for addressing
them through mindful data collection.

1 Introduction

Across the globe, humans speak over seven thou-
sand unique languages (Eberhard et al., 2022).
Many of these languages contain a plethora of in-
ternal variation due to the environmental, cultural,
and socioeconomic diversity inherent to large pop-
ulations (Honkola et al., 2018). These dialects are
categorised into two groups: standard and non-
standard (Trudgill, 2004). Standard dialects are, by
definition, supported by governmental and educa-
tional institutions resulting in more opportunities
of all kinds for their speakers. On the other hand,
speakers of non-standard and minority dialects find
themselves at a disadvantage compared to their

counterparts (Trudgill, 1979). These effects are
compounding; those who speak minority dialects
are provided fewer opportunities to advance so-
cially and economically, resulting in a self-fulfilling
cycle of oppression. Many people who speak a mi-
nority dialect as a first language find themselves
modifying their use of language throughout their
life to appear to belong to the group of standard di-
alect speakers, much to the detriment of the mainte-
nance of dialectal diversity (Carlson and McHenry,
2006). In losing these dialects, we lose not only the
form of expression itself but aspects of the unique
culture and society it belongs to (Fishman, 2007).

NLP has been moving in recent years to provide
more methods of communication, both between
people and with digital systems. In doing so, it
has been bridging information- and access-based
gaps for people in many historically marginalized
communities (Bouillon et al., 2021; Mariani et al.,
2022; Zhang et al., 2022). However, it is important
to acknowledge that variation within languages is
rarely addressed in mainstream tools. Modern sys-
tems that do provide access to variants still focus
on wealthy, standard dialects, such as British, Aus-
tralian and American English, while disregarding
commonly spoken minority dialects like African
American English. Speakers of under-resourced di-
alects, variants of both high- and low-resource lan-
guages with little available training data, face lan-
guage barriers when using many of the tools taken
for granted by speakers of well-resourced dialects.
This reduced accessibility further entrenches exist-
ing disparities by continuing the historical trend
of disenfranchising speakers of minority dialects
(Trudgill, 1979).

In this paper, we examine the performance of
large language models (LLMs) from two crucial
multilingual tasks, machine translation and auto-
matic speech recognition, across a diverse set of
dialects and analyze the linguistic, socioeconomic,
and computational factors that may contribute to
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the dialect gap. This study determines that the
largest indicator for better performance for under-
resourced dialects is linguistic proximity to well-
resourced dialects, regardless of the size or wealth
of the dialects’ speaker base. This connection is
predicted to be due to the lack of dialectal data in-
cluded in training large language models, leading to
dialects performing better or worse on the basis of
incidental similarity to the dialect used in training.
Unfortunately, the size of the performance gap and
the amount/makeup of data required to overcome it
is not predictable from external information about
the language since it varies across task, model, and
environment. As a result, further analysis will need
to be done by researchers for individual systems
to examine how the dialect gap can be closed for
their work through a unique combination of higher-
quality, larger, and more balanced datasets.

2 Dialect Diversity in Research

Studies in Linguistic Diversity A significant prob-
lem in the study of linguistic diversity across NLP
is the lack of attention paid to language variation.
In the past few years, increased awareness has been
drawn within the NLP community to the dispari-
ties present in modern research. In particular, re-
searchers have begun to notice the relative lack of
papers that address languages spoken outside of
Europe and East Asia, even in subfields like multi-
lingual NLP (Blasi et al., 2022; Joshi et al., 2020;
Ruder et al., 2022; Søgaard, 2022).

While these works offer insight into the disad-
vantages faced by speakers of under-resourced lan-
guages, they still are discussed under the assump-
tion that if languages were appropriately attended
to, all their speakers would gain equal access to
NLP tools. Similarly, they present their compar-
isons as if all speakers of well-resourced languages,
especially English, have superior access to tools.
Unfortunately, this is not necessarily the case. Two-
thirds of English’s one-and-a-half billion speak-
ers are second-language (L2) speakers (Eberhard
et al., 2022). Many L2 speakers struggle with
NLP systems due to their accent or their use of
code-switched and mixed language. Even many
first-language (L1) speakers, such as speakers of
African American or Scottish English, do not see
their native dialect supported by speech, dialogue,
or translation systems and are forced to mask their
natural speech patterns, which is harmful to their
mental health and sense of identity (Johnson et al.,

2022; Santiago et al., 2021). As such, existing
evaluations of linguistic diversity in NLP are fun-
damentally incomplete.

Dialectal Models The advent of large language
models has made it possible to train models that
perform well on even low-resource languages (Aha-
roni et al., 2019; Conneau et al., 2020). The term
LLM is not strictly defined, but in this study, we
use it to refer to multilingual Transformer-based
systems pretrained on large amounts of scraped
internet data and finetuned for specific tasks. In
these systems, under-resourced languages have
their training supplemented by this unannotated,
scraped data and cross-lingual transfer (Dabre et al.,
2020). The performance gain seen by low-resource
languages when using LLMs does not extend to
under-resourced variants of languages.

Some LLMs provide allocational support for di-
alects by treating them as separate languages but
their performance is not necessarily comparable to
that of the standard form. As an example, Arabic
speakers often write in their native dialects when
communicating casually online, a phenomenon
noted by both the linguistic and NLP research com-
munities (Alshutayri, 2017; Abdul-Mageed et al.,
2018). Still, attempts by social media to trans-
late Arabic posts are far less successful than their
attempts on French and English, despite many con-
sumer translation systems offering support for ma-
jor regional dialects of Arabic (Harrat et al., 2019).
For dialects outside of those explicitly included in
systems, this problem is only exacerbated by a lack
of allocational support.

The Data Problem The same marginalised lan-
guages that face lower performance at the hands
of LLMs also face a larger data problem across
dialects. Most of the task-annotated data avail-
able online for low-resource languages comes from
religious texts, government documents, or multina-
tional newspapers (Agić and Vulić, 2019; Skadin, š
et al., 2014; Chen et al., 2020). These sources often
use a formal manner and avoid dialectal markers,
especially when their target population is mostly
diglossic and has already had to learn a more stan-
dard dialect for survival in the modern world (Al-
shutayri, 2017; Abdul-Mageed et al., 2018). As a
result, the LLMs trained on this data are not built
to function on minority dialects and have unclear
performance capabilities. Before this problem can
be solved, questions must be answered about the
amount, quality, and type of data needed to over-
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Task Models Languages Metrics

Machine Translation
(MT)

Google NMT (Johnson et al., 2019)
Meta NLLB (Costa-jussà et al., 2022)
Helsinki OpusMT
(Tiedemann and Thottingal, 2020)

Arabic (16), Finnish (2),
Mandarin (2), German (3),
Malay (3), Portuguese (2),
Swahili (2)

BLEU, SentenceBERT
Similarity

Automatic Speech
Recognition (ASR)

Google USM (Zhang et al., 2023)
Google STT (Chiu et al., 2018)
OpenAI Whisper (Radford et al., 2022)
Meta XLS-R (Conneau et al., 2020)

Arabic (8), Spanish (8), Bengali
(3), Georgian (2), Tamil (5),
Telugu (4), Tagalog (3)

WER, CER

Table 1: Tasks addressed in this study along with models, languages (with the number of dialects), and metrics.

come the data problem. The survey done in this
paper across languages provides insight into how
well dialects perform ‘as is’ and identifies that lin-
guistic and socioeconomic knowledge should be
leveraged to inform future decisions on data collec-
tion and usage.

3 Tasks

The two tasks evaluated in this paper are machine
translation (MT) and automatic speech recognition
(ASR). These tasks are some of the few with suffi-
cient data for evaluation of dialects and both have
a focus on increasing access to people, tools, and
information by removing linguistic barriers (Jin
et al., 2021). They are also safe tasks to use as a
starting point because they do not deal with per-
sonal information or abusive language. The list of
models, languages, and metrics used in the evalu-
ation of each task can be found in Table 1. More
information about the datasets and languages used
can be found in Appendix A. In total, there are six
model versions evaluated for each task and 30 di-
alects across 7 languages compared for MT and 33
dialects across 7 languages compared for automatic
speech recognition. Other than Tamil and Telugu
for ASR, each language is taken from a different
language family in order to extract information that
is independent of specific linguistic features.

3.1 Machine Translation

Machine translation is already used in domains
such as medicine, law, and information as a method
of increasing access to systems (Büttner et al.,
2022; Vieira et al., 2021). A leader in the field
of multilingual MT is Meta’s No Language Left
Behind (NLLB), a model that claims "safe, high-
quality results" for two hundred languages (Costa-
jussà et al., 2022). The specific version of the
model evaluated in this study is the distilled 600M

parameter variant1.
Another popular MT model is Google’s Neural

Machine Translation (NMT), which is available
for use through Google Cloud API (Johnson et al.,
2019). NMT is a widespread consumer tool, to
the point that Google has had to parse out bitext
generated using it when scraping internet data for
training (Ni et al., 2022).

We also evaluate the University of Helsinki’s
OpusMT, a model based on MarianMT and trained
on Wikimedia monolingual and multilingual text
(Tiedemann and Thottingal, 2020). This model
is an interesting comparison to NLLB and NMT
because it is not an LLM and represents a different
approach - covering more languages at the cost
of performance across the board. This model was
constructed in an academic setting with a more
transparent set of training data and significantly
fewer parameters. All evaluations are conducted
with English as either the target or source language
due to data constraints.

Evaluation metrics are a biased measure of out-
put quality and fluency but are required to empir-
ically showcase the dialect gap. To reduce some
of the negatives associated with each metric, we
report two types of metrics that measure differ-
ent aspects of the output. The first metric is a
BLEU score, which is a classic n-gram evaluation
technique for translation (Papineni et al., 2002).
Secondly, a representation-backed metric is used
to determine the semantic similarity between two
sentences since MT is a task with multiple possi-
ble solutions. Most semantic similarity metrics are
based on transformer embedding models, so we use
a multilingual variant of SentenceBERT2 (Reimers
and Gurevych, 2019). Full results for both metrics
are reported in Appendix C.

1huggingface.co/facebook/
nllb-200-distilled-600M

2huggingface.co/sentence-transformers/
paraphrase-multilingual-MiniLM-L12-v2
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3.2 Automatic Speech Recognition
Automatic speech recognition (ASR) is a task that
is important in bringing access to those who are
unable or disinclined to communicate through text
(Ahn and Lee, 2016; Doumbouya et al., 2021). As
of late, representation learning and LLMs for end-
to-end ASR have been becoming more common.
Many models are trained on unsupervised audio
data and then finetuned for specific tasks. This is
the case for Meta’s XLS-R, a model that is trained
on thousands of hours of speech data across lan-
guages (Conneau et al., 2020). We evaluate both on
a multilingual variant3 and a monolingual variant
of the 300M parameter base model4 finetuned on a
single language at a time using the Common Voice
dataset (Ardila et al., 2020).

Another model examined is OpenAI’s Whisper,
which is trained on a combination of existing ASR
datasets and automatically generated transcripts
scraped from the internet (Radford et al., 2022).
The version of the model tested here is the medium
variant5. Like XLS-R, the Common Voice dataset
was used to finetune this model by language for an
additional evaluation (Ardila et al., 2020).

Lastly, Google has released two ASR models:
the monolingual Speech-To-Text (STT) and their
newer multilingual Universal Speech Model (USM)
(Chiu et al., 2018; Zhang et al., 2023). These mod-
els were both evaluated through Google Cloud API
because neither has been released for open-source
use. STT in particular functions as a good com-
parison to the LLMs evaluated here because it is
an older, monolingual model. Overall, six models
will be compared - three "monolingual" models
(including those finetuned for a specific language)
and three multilingual models.

While there has been discussion on whether
word error rate (WER) and character error rate
(CER) adequately predict performance, no better
system has been used by the community at large
(Favre et al., 2013). There have been other op-
tions, but these are primarily for downstream end-
to-end tasks, such as speech translation, natural
language understanding, and information retrieval
(Kim et al., 2021; Roy, 2021). For this work, we
will stick with the community standard and use
WER, with CER scores reported in Appendix C.

3https://huggingface.co/voidful/
wav2vec2-xlsr-multilingual-56

4https://huggingface.co/facebook/
wav2vec2-xls-r-300m

5https://huggingface.co/openai/whisper-medium

4 Linguistic Analysis of Dialects

There are many ways to identify and quantify
the similarity between two variants of a language.
Many have been explored in NLP for cross-lingual
transfer using features from syntax, lexicon, and
morphology (Philippy et al., 2023; Eronen et al.,
2023; Lin et al., 2019; Ponti et al., 2019). There
have also been studies on dialects in computational
linguistics, examining whether dialects are consis-
tent across corpora and registers (Dunn, 2021). A
similar method is used in this paper to examine
lexical similarity, using Spearman’s Rank Correla-
tion Coefficient. This has been used previously to
calculate corpus similarity and homogeneity (Kil-
garriff and Rose, 1998). In Appendix Figure 3a,
the similarity between each dialect and the best-
performing variant of that language is shown, as
well as the lexical similarities between scripted and
conversational samples from each dialect of the
Babel dataset.

Additionally, we examine the phonetic similarity
of selected ASR datasets, specifically for Arabic
and Spanish. Here, random samples were manually
annotated for vowel positioning through formant
analysis and plotted in the Appendix; see Figure 3b.
Then, the average Euclidean distance across vow-
els between each dialect and the standard form was
taken to serve as a measure of phonetic similar-
ity. More details on the exact methodology can be
found in Appendix B.

5 Dialect-Wise Performance Gaps

Examining the performance across dialects in Fig-
ure 1, some trends appear immediately. As men-
tioned in Appendix A, the dialects evaluated were
largely dictated by data availability. As a result,
Arabic and Spanish are heavily represented while
other lower resource (dialect-wise) languages see
coverage of only two to three dialects. This is some-
thing that may be reflected as well in the training
data for pre-trained models, resulting in Arabic and
Spanish both having relatively more even dialectal
performance than the other surveyed languages.

For MT, there are steeper performance gaps
when translating into the dialect. This makes sense
if input robustness is taken into account; in other
words, models may be able to handle some level
of dialect variation in their input but cannot know
to output the non-dominant dialect. Additionally,
models that perform better on the standard dialect
show steeper drop offs in performance, something
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Figure 1: The performance of various dialects across Machine Translation and Automatic Speech Recognition.
Within each language the same dataset is used. Because Bengali, Georgian, and Tamil are heavily diglossic, the
standard written form (spt) and the best performing spoken form (cnv) are compared rather than regional dialects.

very clearly exemplified across the Finnish dialects.
This demonstrates the interesting point that higher
performing models - which have access to more
parameters and data during training - have greater
inequalities in their coverage.

The same trends are not apparent for ASR, where
the worst performing model (OpenAI’s Whisper)
has the highest amount of variance across dialects.
Interestingly, all three multilingual models seem to
prefer the spoken dialect (cnv), likely due to the fact
that they are mostly trained on unsupervised inter-
net data from websites like Youtube. On the other
hand, the finetuned models prefer the written di-
alect (spt), which is understandable since most are
finetuned using CommonVoice, a heavily scripted
data source.

6 Correlations with Proximity to Power

Even within the same task and model, different
dialects have different performance disparities,

as seen in Figure 1. In order to examine this
phenomenon in an equivalent environment, we
compare performance across MT using BLEU %,
which is the percentage of the best-performing di-
alect’s BLEU score achieved by the minority di-
alect. Likewise, for ASR, the relative percentage
loss of performance for each dialect compared to
the standard dialect is used. Note that this means
that in Figure 2, a positive MT correlation and
a negative ASR correlation both mean there is
positive correlation between the metric and per-
formance.

In choosing metrics for comparison, we aimed
to cover the range of economic, social, and lin-
guistic factors that capture the idea of proximity to
power. As proxies for wealth, we examine gross
domestic product (GDP) for cumulative economic
power and GDP per capita for individual economic
power (The World Bank, 2023). Socially, we are
interested in both population size and how well-
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Metric Machine Translation Speech Recognition
EN → di di → EN Multilingual Finetuned

Gross Domestic Product 0.11 0.16 -0.25 -0.13
Gross Domestic Product per Capita 0.16 0.31* 0.44* 0.16
Population Size 0.04 -0.13 -0.30 -0.00
Human Development Index -0.06 -0.03 0.23 0.09
Lexical Similarity 0.48* 0.69* -0.70* -0.57*
Phonetic Similarity - - -0.49* -0.63*

Table 2: Pearson correlation coefficients for each language metric. For MT, correlation is calculated against
percentage drop in BLEU performance while for ASR, correlation is calculated against percentage increase in WER.
As such, the correlations are reversed for WER. Correlations with p < 0.05 are marked.

served the population is in education, healthcare,
and standard of living, estimated via the Human De-
velopment Index (HDI) (US Census Bureau, 2017;
United Nations Development Programme, 2021).
Lastly, for linguistic factors, we utilize the lexical
similarity and phonetic similarity extracted from
evaluation data and normalized to a scale from −1
(lowest similarity) to 1 (highest similarity). Un-
fortunately, some economic and social metrics are
only reported at the national level, so there is no
data for minority dialect groups within countries.
As a result, certain dialects (e.g. Kven Finnish,
Vernacular Malay) are not included.

In the past, population factors have been shown
to loosely correlate with factors such as perfor-
mance and appearance in NLP research (Blasi et al.,
2022). Here, in Figure 2, we see that these correla-
tions do not necessarily hold for dialects. In fact,
these results are contradictory to common expecta-
tions and narratives, which assume that wealthier,
larger, and more educated populations are better
served across the board.

Gross Domestic Product GDP represents the over-
all wealth of a speaker population and their eco-
nomic power in the world. As such, we would
expect groups with high cumulative wealth to be
well-served by technology. While GDP has a small
impact, it varies heavily by model and can’t be
used as a consistent predictor of performance. Cer-
tain models show a relatively consistent positive
correlation, such as OpusMT and USM/STT, but
others show no correlation at all. Ohers showcase
a correlation only in one set of models, such as
NLLB which is uncorrelated when translating into
English but positively correlated when translating
into the dialect. On average, worse-performing
models and environments show a stronger correla-
tion, with translation into the dialect being much
more correlated than translation into English.

Gross Domestic Product Per Capita GDP per
capita is an important metric as a proxy for esti-
mating the wealth of individuals in a population
and we would expect those with access to wealth
to be well-served even if their population is smaller.
Surprisingly, it seems to have no impact at all on
MT across models, so wealthier minority popula-
tions are not better served than poorer ones despite
having access to increased resources. In ASR, the
result is even more unexpected with wealth corre-
lating negatively with performance.

Population Size Population size intuitively would
correlate with better performance, but previous
studies on language diversity in NLP have shown
that even languages with extremely high popula-
tions are not well-served if they are impacted by
other factors like geographic distance from research
institutions and low wealth (Blasi et al., 2022).
Here, population size has little impact on MT per-
formance, to the point that certain models show a
negative correlation between the two. On the other
hand, in ASR there is a strong positive correlation
across all models except for the finetuned version
of Whisper. This is an unexpected result because
Whisper originally showcases a matching positive
correlation and is finetuned on the same Common
Voice datasets as XLS-R but demonstrates a com-
plete trend reversal. This difference between MT
and ASR may be a result of the type of data used
for training each and the sources it came from, but
further analysis is needed to confirm this.

Human Development Index HDI is a measure of
how well a population is served in other access-
based metrics, such as education, healthcare, and
standard of living. It would logically follow that a
high HDI would then correlate with better perfor-
mance, but this does not hold for MT. Instead, MT
performance shows no correlation at all with HDI.
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Figure 2: Impact of training dataset modifications on performance.

Surprisingly, HDI correlates negatively with ASR
performance, so better-educated and healthy minor-
ity dialect speakers have a harder time accessing
ASR systems despite being otherwise well-served
economically and socially.

Lexical Similarity Lexical similarity, on the other
hand, is very correlated with performance for both
MT and ASR. Since dialectal data is not used for
training regardless of population features, perfor-
mance is likely mostly based on linguistic proxim-
ity to the standard form. This result is also more
robust than the other correlations mentioned here
because every dialect of every language evaluated
was included since the similarity score was not de-
pendent on external data availability. Again, we
also see in MT that the worse-performing direc-
tionality (EN → dialect) has a stronger correlation.
This is expected in context since these models do
not provide allocational support to these dialects,
so they are translating into the standard dialect re-
gardless of user intent but they may be robust to
some amount of the lexical variation in the input.

Phonetic Similarity The importance of linguistic
similarity extends to phonetic similarity for ASR,
which is strongly positively correlated with per-
formance. Again we see that finetuning on the
smaller, scripted Common Voice datasets makes
the correlation stronger for XLS-R and Whisper,
which suggests that models overfit to the dialects
present in training data. It is important to remember
that phonetics is a broad area of study in linguistics
that encompasses many measures of acoustic simi-
larity, so other forms of analysis may capture even
higher impact forms of variation between dialects.

However, these results clearly already show that
phonetic similarity plays a large part in determining
the performance of dialects.

The results surrounding similarity suggest that
the most useful method of addressing the dialect
gap may lie in focusing on how to reduce the lin-
guistic distance between the language used at eval-
uation versus training. In other words, this can be
compared to a domain shift problem rather than
a multilingual problem. A way to begin is by in-
creasing the dialectal diversity of the training data
to cover a larger variety of language patterns.

7 The Impact of Datasets

7.1 Machine Translation & Dataset Size

For many languages, lower performance in MT is
seen in parallel with a smaller dialect gap. As an
example, the Mandarin dialects perform compara-
bly on NLLB and OpusMT but the disparity be-
comes statistically significant under NMT, a model
where Mandarin as a whole performs better. This
trend suggests that the benefits of larger models
and more training data are not equally felt by all
dialects due to disparities in the training pipeline —
more training data does not solve the dialect gap,
it makes it worse. The question can then be raised:
would training on more specifically dialectal data
be sufficient to overcome these disparities?

To answer this question, two languages with
enough dialectal data were chosen to finetune
NLLB and OpusMT. Each model was trained with
thirty different dataset sizes, on three different data
subsets per size and three seeds per data subset to
ensure that the results were statistically significant.
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In Figure 2a, the training curves for each model
and translation direction can be seen.

As more data is added, the languages begin to
perform better, but not all at the same rate. For
example, Vernacular Malay sees relatively little
improvement as data is added to train NLLB, but
OpusMT’s initial training curve is steep. Therefore
the same amount of data causes two different out-
comes depending on the model architecture and the
data it was previously trained on. In some cases,
the improvements are marginal, while in others,
even a small amount of data is enough to com-
pletely overcome the dialect gap. Likewise, the
same inconsistencies can be seen between the two
directionalities of the same model. Despite both
versions of OpusMT being trained on the same Low
German data, translation into English sees benefits
while translation into Low German remains poor.
This makes it clear that the amount of data that
dissipates the dialect gap in one situation may not
be enough for another model or language.

7.2 Speech Recognition & Dataset Makeup

Besides finetuning on more dialectal data, another
possible method of addressing the dialect gap is
modifying the makeup of training or finetuning
data. Across the board, the data used to finetune
LLMs for speech recognition is heavily influential
on performance. This difference can be seen when
comparing the performance of these ASR systems
on conversational and scripted samples from the
IARPA Babel dataset (Bengali, Georgian, Tagalog,
Tamil, & Telugu). The models evaluated here are
largely trained on unsupervised speech data from
the internet, which mostly comes from unscripted
conversational recordings. As a result, the multi-
lingual models perform slightly better on conversa-
tional speech. To test the impact of data makeup,
XLS-R and Whisper were finetuned for three lan-
guages (Bengali, Georgian, & Tamil) on Common
Voice, an entirely scripted dataset (Ardila et al.,
2020). These languages are all spoken by a diglos-
sic population that uses both a regional dialect and
a more linguistically conservative standard writ-
ten form. As a result, the lexical distance between
conversational and scripted samples is farther than
might otherwise be expected. In Figure 2b, finetun-
ing on scripted data almost exclusively benefits per-
formance for scripted samples over conversational
samples. In some cases, such as with Whisper, this
comes at the detriment of performance on conver-

sational samples. This ties back into the impact
of lexical variation discussed in Section 6 since
both scripted and conversational samples were col-
lected by speakers of the same dialect with similar
accents. The low lexical similarity between these
dialects amplifies the fact that ensuring the training
dataset accurately and fully represents the lexical
variations across a language and its dialects is an
important step in creating systems that perform
well across dialects, domains, and registers.

8 Implications of the Dialect Gap

The existence of a dialect gap means that not all
speakers are inherently well-served by a tool just
because their language is supported. Past analy-
ses examined inequities from the perspectives of
multilingualism and therefore likely overestimated
the number of speakers benefiting from the current
system. As the field moves forward, it is important
to step back and remember that languages are not
static or monolithic.

Additionally, as we saw, the dialect gap is not
identical in severity or structure across every sys-
tem. This implies that researchers cannot take a
one-size-fits-all approach towards solving the di-
alect gap. This issue needs addressing in different
ways depending on the task and the existing state of
the gap. A large component of dialect gaps is based
on datasets — both dataset size and dataset makeup.
As the NLP community moves towards furthering
research for medium- and low-resource languages,
discussions must be had on both collecting suffi-
cient amounts of dialectal data and capturing the
natural variations of every language by ensuring
that data is collected from diverse populations. Ap-
preciating and accounting for variation not only
makes our systems more robust but supports groups
that face marginalization in other ways.

9 Conclusion

This work examined an important subspace in NLP
by evaluating the (regional) dialect gap present
in tasks with the highest likelihood of impacting
speakers directly. Still, there are countless LLMs
which have been rapidly gaining popularity in the
past few years with the release of open-ended dia-
logue and image models. Most tasks outside of MT
and ASR do not have the data necessary to analyze
the impact of language variation but as more data
is collected and annotated, this may change. As
a direct continuation of the line of inquiry started
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in this work, multi-dialectal analyses of the dialect
gap across a wider variety of tasks should be next.

For MT and ASR, the next steps are two-fold.
Firstly, the datasets used for evaluation and fine-
tuning in this work were primarily determined by
availability, but using a broader and higher-quality
set of samples may lead to the rise of other interest-
ing trends. Additionally, to address the dialect gap
identified here, there is a clear path forward that in-
volves collecting more dialectal data and ensuring
it is representative of the languages and dialects
it aims to serve. This should be done in conjunc-
tion with speakers of the language, linguists, and
members of the NLP community to maximise util-
ity while minimising the burden or harm on the
speaker population. Lastly, this analysis is hardly
complete. As new LLMs come out, it is on the de-
velopers of these tools and the researchers behind
them to continuously produce evaluations around
language diversity to ensure that the benefits these
LLMs bring do not come at the cost of access for
minority dialect speakers.

Limitations

Dataset Size & Quality Factors Dataset size is
a very significant factor when evaluating models
and drawing language-wide conclusions. While
the languages seen in this work had enough data
for evaluation, very few provided enough data for
finetuning LLMs and none provided enough to train
a model from scratch. As a result, models were
largely evaluated out of the box, which serves to
identify performance gaps as they may appear in
non-academic use cases but does not fully address
solutions to this problem.

Likewise, dataset quality makes a massive im-
pact on the result of training and evaluation. Be-
cause the number of available datasets was already
quite low, crowd-sourced datasets such as Tatoeba
were used without additional filtering, which may
result in increased noise due to improper annota-
tions. For some datasets, such as the IARPA Babel
speech dataset, there was filtering done but spon-
taneous speech data in general is often paired with
background noise and distortion, causing a further
drop in performance.

Some languages have several datasets available,
but because these datasets were not all collected
with the same methodology (and therefore simi-
lar errors and distortions), they were not directly
comparable so only one dataset was used or the lan-

guage was not evaluated. Spanish speech, for ex-
ample, has been recorded in the OpenSLR, CALL-
HOME, and Fisher datasets but CALLHOME was
chosen alone to be used. On the other hand, a
multitude of English accent and dialect datasets
are available for speech, but because each was col-
lected independently, they again could not be di-
rectly compared and were therefore omitted. Lastly,
some languages supported by models (Telugu and
Tagalog) were not present in the Common Voice
finetuning dataset used for the ASR experiments
and were therefore omitted from a large part of the
discussion surrounding dataset makeup.

Computational Restraints Many of the models
evaluated are large industry models, with hundreds
of millions if not billions of parameters. Natu-
rally, as an academic institution, we were limited
in the computational power made available to train
these models; certain models were so large that
even with a batch size of one they are incapable
of running on the machines we have available. If
we had greater computational power available, we
would have run our evaluations on the largest ver-
sion of each model to provide a picture of the most
state-of-the-art performance for each task and fine-
tune these larger models longer. On the other hand,
many minority dialect speakers do not have the eco-
nomic resources to train or finetune super-massive
models, so the evaluation of more accessible mod-
els is an appropriate reflection of what is available
to these speakers. In the future, with access to
greater resources, the evaluation of more systems
and larger models, along with the evaluation on
other user-facing tasks (Ruder et al., 2023), again
through the optics of regional dialects, ould be a
valuable extension of this work.

Ethics Statement

Dialectal NLP research is a burgeoning field with-
out many precedents set for ethical research, but
direction can be taken from the field of multilin-
gual NLP for how to work with the languages of
minoritised groups ethically. In this paper, the issue
of ethics was largely sidestepped through the use
of anonymised, public, and voluntarily collected
datasets and the evaluation of tasks with a low
likelihood of causing harm. Additionally, despite
the importance of idiolects and moving beyond re-
gional dialects, we purposefully did not work with
dialects connected to identity features that may put
people at risk, such as sexuality, gender, and reli-
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gion. Even as this paper supports the collection
of larger and more representative datasets, these
arguments do not apply in cases where it would be
against the wishes or best interests of the groups
involved.
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A Languages

In total, there are seven languages evaluated in this
study per task and over thirty dialects. The de-
tails of these datasets are discussed in Section A,
but for easy reference, a table listing the datasets,
the languages included, and any dialects is pro-
vided in Table 3. Additionally, any abbreviations
used in figures throughout the paper are included,
with language abbreviations pulled from ISO 639-1
and dialect abbreviations either based on the ISO
3166 country codes or created based on the regional
names provided in the dataset.

AraBench Arabench is a dataset collected by the
Qatar Research Computing Institute to encourage
research into machine translation for Arabic di-
alects (Sajjad et al., 2020). The dataset includes
parallel text data grouped by region, nation, and
city from religious, media, and speech sources.
Across the board for Arabic, Modern Standard Ara-
bic (MSA) outperforms the vast majority of dialec-
tal forms, even though social media’s rise has led to
dialectal forms of Arabic being used in written com-
munication more often. In fact, in personal chat,
dialectal forms of Arabic are represented more than
MSA (Chelghoum, 2017).
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Dataset Language ISO 639-1 Dialects (Abrv.)

AraBench Arabic ar
Modern Standard (msa), Iraqi (iq), Omani (om), Qatari (qa), Saudi (sa), Yemeni
(ye), Jordanian (jo), Palestinian (ps), Lebanese (lb), Syrian (sy), Algerian (dz),
Moroccan (ma), Libyan (ly), Tunisian (tn), Egyptian (eg), Sudanese (sd)

Region-Aware MT Mandarin zh Mainland (cn), Taiwanese (tw)
Portuguese pt Brazilian (br), European (pt)

Tatoeba
Finnish fi Standard (fi), Kven (kv)
German de Standard (de), Low (lo), Swiss (sw)
Malay ms Standard (ms), Vernacular (vn), Moluccan (mo)
Swahili sw Coastal (co), Congolese (cg)

Conversational
Telephone Speech Arabic ar Iraqi (iq), Omani (om), Saudi (sa), Emirati (ae), Jordanian (jo), Lebanese (lb),

Palestinian (ps), Syrian (sy)

CALLHOME Spanish es Argentinian (ar), Chilean (cl), Colombian (co), European (es), Mexican
(mx), Peruvian (pe), Puerto Rican (pr), Venezuelan (ve)

Babel

Bengali bn Kamrupa (kp), Radha (rd), Varendra (vd)
Georgian ka Eastern (en), Western (wn)
Tagalog tl Central (cn), Northern (nn), Southern (sn)
Tamil ta Central (cn), Madurai (md), Northern (nn), Southern (sn), Western (wn)
Telugu te Central (cn), Northern (nn), Southern (sn), Western (wn)

Table 3: The datasets, languages, dialects and abbreviations used throughout this paper.

Google Region-Aware MT The dataset used for
Mandarin and Portuguese MT is Google’s Region-
Aware Machine Translation Dataset, a small bench-
marking dataset for few-shot translation for these
two high-resource languages (Riley et al., 2022).
The dataset consists of Wikipedia articles that exist
in both English and the target dialects.

Tatoeba The Tatoeba datasets are a set of trans-
lation datasets crowdsourced by the Tatoeba or-
ganisation6 (Tiedemann, 2020). Languages have
varying amounts of data, ranging from over a mil-
lion sentences in English to fewer than ten for lan-
guages such as Sindhi. The majority of parallel
text available in these datasets is for low-resource
languages paired with English, so most translation
systems trained on this data use English as either
the source or target language. While Tatoeba is
a project focused on language diversity, there are
efforts within it to include some major regional
dialects. Dialects of languages such as German
(Standard, Low, & Swiss), Finnish (Standard &
Kven), Malay (Standard, Venacular, & Moluccan),
and Swahili (Coastal & Congolese) are available
and included in our analysis.

Conversational Telephone Speech The dataset
used to evaluate Arabic for ASR is the Conver-
sational Telephone Speech (CTS) dataset, a spon-
taneous spoken language dataset with transcrip-
tions available through the Linguistic Data Consor-
tium (Appen Pty Ltd, 2006c,d, 2007a,b, 2006a,b).
This set of datasets encompasses the Gulf (Emirati,
Omani & Saudi), Mesopotamian (Iraqi), and Lev-

6https://tatoeba.org/

antine (Jordanian, Lebanese, Palestinian & Syrian)
dialects of Arabic.

CALLHOME The dataset used to evaluate Span-
ish ASR is the CALLHOME telephone speech cor-
pus, which encompasses several primarily Latin
American Spanish datasets (Canavan and Zip-
perlen, 1996; Wheatley, 1996). In this work, we
specifically focus on eight dialects: Argentinian,
Chilean, Columbian, European, Mexican, Peruvian,
Puerto Rican, and Venezuelan Spanish. Spanish is
an interesting case of two "standard" forms, Mexi-
can and European Spanish.

IARPA Babel The IARPA Babel dataset7 was a
large set of speech recognition datasets collected
for medium- and low-resource languages to make
ASR effective on a broader set of languages. While
there are many languages included, most are not
currently supported by large ASR systems, so five
have been selected for these experiments: Bengali
(Kamrupa, Radha, & Varendra), Georgian (Eastern
& Western), Tagalog (Central, Northern, & South-
ern), Tamil (Central, Madurai, Northern, Southern,
& Western), and Telugu (Central, Eastern, North-
ern, & Southern). Each of these languages is writ-
ten in a different script, increasing the difficulty. It
is important to note that the Babel project’s goal
was not to represent all dialects of these languages,
so certain significant dialects (e.g. Sri Lankan and
Singaporean Tamil for the Tamil dataset) are omit-
ted due to the focus on a single major region. The
Babel dataset divides each language into two to
five regional dialects, with half the samples being

7https://www.iarpa.gov/research-programs/babel
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scripted speech and the other half being sponta-
neous utterances. While we are primarily interested
in spontaneous speech for this work, all of these
languages have a distinct written form which is con-
sidered a separate dialect. As a result, the scripted
audios are kept but separated from the spontaneous
samples to examine how much lexical variation
(between the scripted and spontaneous samples of
each dialect) impacts performance in comparison
to phonetic variation (across dialects).

B Linguistic Analysis

Lexical Similarity The lexical similarity be-
tween dialects is calculated by splitting the full
dataset for each dialect and randomly sampling it
into halves one hundred times. The top hundred
most frequently occurring words are then ranked by
frequency to generate a vocabulary list. For each
dialect pair of interest, the position of each word
in the ranking is compared using the following for-
mula:

s = 1− 6
∑

d2i
n(n2 − 1)

Here, di is the difference in ranking between each
i word in the list and n is the number of words
being compared (100 in this case). If a word ap-
pears in one list but not the other, the ranking given
is n + 1. The same process is utilized for calcu-
lating homogeneity, except both halves are taken
from the same corpus. Homogeneity is calculated
to ensure that there isn’t a large degree of internal
variation that is influencing the degree of lexical
cross-similarity between dialects. While this anal-
ysis can be impacted by domain mismatches, by
focusing on only the top one hundred words we
deal primarily with very common words that are
less likely to be specialized vocabulary.

Phonetic Similarity The phonetic similarity be-
tween dialects is computed in a time-intensive
method for this paper, so the results of this computa-
tion should be considered preliminary until further
annotations can be collected. For each language
of interest, the primary vowels of that language
are determined based on the orthographic choices
made in that language. This amounted to three
vowels in Arabic (/a/, /u/, & /i/) and five vowels
in Spanish (/a/, /e/, /i/, /o/, & /u/). For simplicity,
other highly sonorant phonemes, such as /j/, are
not included, although some may consider them
vowel-like. From this, the set of samples from each
dialect where all the language’s vowels are present

is extracted in order to reduce discrepancy due to
variations in distortion or recording environments
as much as possible. Ten samples per dialect, from
unique speakers (when possible) are then annotated
with the first (f1) and second (f2) formant, which
provides information on the height and backness
of the vowel. While roundedness can be gleaned
from further formants, this adds another level of
complexity so it was not considered in this study.
The height of the vowel was then set as f1 and the
backness was set as f2− f1. The average distance
between the dialects’ mean vowel positions and
those of the best-performing dialect was taken to
represent phonetic similarity.

C Full Evaluation Results

Machine Translation Here, we include the full
results achieved across dialects for transparency.
The BLEU score results can be seen in Table 4
and the semantic similarity results can be seen in
Table 5. The label "di → EN" refers to translation
into English from the dialect and "EN → di" refers
to translation from English into the dialect. The
closest language tag was used when possible, such
as regional dialect tags for Arabic in NLLB.

Automatic Speech Recognition Likewise, full
results are included for both the raw and finetuned
versions of our ASR models. In Table 6, the word
error rates (WER) are provided and in Table 7 the
character error rates (CER) are provided. When
there is a "+ CV" included in the model title, that
refers to further finetuning on the Common Voice
dataset. Additionally, the "spt" and "cnv" titles
refer to the scripted and conversational splits of the
languages in the IARPA Babel dataset. Spanish
and Arabic are only evaluated with conversational
samples, so there is no data in the scripted column.

D Correlations

The plot comparing various metrics with dialect
performance can be found in Figure 4. The vertical
axis for the MT plots is BLEU %, or the percentage
of the standard dialect’s BLEU score achieved by
the minority dialect. Likewise, the vertical axis
for the ASR plots is WER %, or the percentage
worse WER achieved by the minority dialect, since
a lower WER is better. This means that a higher
score on the two left columns is better, while a
lower score on the two right columns is better. As
you can see heuristically, the only obvious corre-
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Figure 3: Linguistic similarity measures comparing dialects. Left: Lexical similarity, taken either between each
dialect and the best-performing dialect from that family or between spontaneous and conversational samples of the
same dialect. Right: Vowel positions for the most common vowels in two languages across dialects.
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Figure 4: Correlation between various metrics and the relative performance of minority dialects, normalised to
be relative to the best performing dialect. Note: The MT graphs are with respect to BLEU scores, where a higher
value means better performance, but the ASR graphs are with respect to WER, where the inverse is true. Linguistic
similarity is positively correlated with better performance in both systems.
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lates are both linguistic measures, which is con-
firmed in our calculations.

E Concerns on Ethics in Dialect Research

Dialectal research is a relatively new field in NLP
and as such, it is important to consider the ethical
impacts of conducting it. In the past, researchers
have examined the ethics of many aspects of NLP
as they relate to marginalized and vulnerable pop-
ulations, including raising concerns about sources
of data (Olson et al., 2023; Rogers et al., 2021;
Shmueli et al., 2021), evaluations of representa-
tional bias (Hutchinson et al., 2020; Lalor et al.,
2022; Sun et al., 2019), and bringing awareness to
allocational bias (Aji et al., 2022; Blasi et al., 2022).
Additionally, there has been significant work done
in the medical domain, where the population be-
ing served is particularly vulnerable to both coer-
cion and harm from publicized data (Don’t Walk
et al., 2022; Thompson et al., 2021; Suominen et al.,
2007). We can take inspiration from these prior
works when examining the ethical pitfalls of dialec-
tal research, since minority dialect communities
face many of the same hurdles as other minoritized
groups, especially when their language reflects as-
pects of their identity that face persecution such as
gender, race, or class.

Currently, the issues that impact minority dialect
speakers are largely around representational and
allocational bias. Speakers of certain dialects are
viewed as less intelligent or more difficult to un-
derstand, leading to systems classifying them as
such when it comes to usages such as call screen-
ing or academic evaluations (Koenecke et al., 2020;
Wassink et al., 2022). Important tools in use, such
as automated emergency service or medical phone
systems, may not function well on their dialects,
reducing access to necessary care. Additionally,
these biases are perpetuated externally towards
users as well; female voices are often used when
building personal assistants, which continues the
societal trend of female systems being "bossed
around" or acting in a subservient manner. This is
especially the case since there has been no strong
correlation in increased trust or comfort when per-
sonal assistants are of a specific gender, but the vast
majority of consumer systems use female voices
anyway (Tolmeijer et al., 2021). As dialect re-
search improves, there is unfortunately room for
these problems to worsen. Currently, gender is easy
to specify when generating synthetic speech, but

in the future if ethnicity or socioeconomic class
was equally able to be designated, what patterns
would emerge in consumer systems? These tools
may result in maintaining stereotypes regarding
subservience and the "place" of certain groups in
society.

Another aspect to consider is the result of
datasets and tools that parse certain identity mark-
ers falling into the wrong hands. A key exam-
ple of this in another domain, facial recognition
processing, is the Stanford "Gaydar" which was
purported to outperform humans in predicting sex-
ual orientation from facial structure (Wang and
Kosinski, 2018). This system was denounced by
multiple prominent LGBTQ organizations for both
its methodology and the risk it places on closeted
members of the community since it could be used
to out members living in unfriendly places (Levin,
2017). Likewise, in China, similar facial recogni-
tion systems have already been used to track the
movement of Uighurs, a Muslim minority group
that has been facing prosecution by the government
(Mozur, 2019). As such, the existence of tools to
identify a minority are unfortunately inextricably
linked with the ability to repress that minority. Cur-
rently, there are no highly accurate systems that
can classify most personal identity features from
text alone, but as we work on the identification and
usage of dialect data, this may soon change. When
conducting this research, it is important to have a
deep understanding of the communities impacted
by these tools beyond their academic contribution
and weigh the consequences of releasing such tools
for public use against the value of open and collab-
orative science.

7242



Language Dialect Google NMT Meta NLLB Helsinki OpusMT
di → EN EN → di di → EN EN → di di → EN EN → di

Arabic

MSA 47.64 22.07 43.71 14.64 26.22 05.72
Iraqi 33.38 03.94 37.37 02.82 10.16 03.97
Omani 46.78 19.77 45.07 13.68 20.05 09.40
Qatari 34.84 05.75 37.08 03.03 10.46 01.23
Saudi 39.98 6.79 41.63 04.32 13.67 01.54
Yemeni 35.05 03.84 37.45 02.53 11.28 01.01
Jordanian 37.86 04.75 40.46 02.76 08.00 01.29
Palestinian 34.88 04.16 38.62 02.68 07.22 00.94
Lebanese 26.76 02.39 37.22 01.23 08.02 00.55
Syrian 34.31 03.14 38.69 02.27 08.63 00.68
Algerian 22.95 04.90 29.76 03.79 09.27 01.38
Moroccan 19.69 02.91 34.99 02.08 06.45 00.71
Libyan 33.03 04.40 38.13 03.43 10.93 01.31
Tunisian 17.29 02.08 30.70 01.35 06.23 00.83
Egyptian 36.44 04.81 39.06 03.12 09.00 01.34
Sudanese 45.62 08.92 46.40 06.20 15.61 03.67

Finnish Standard 53.58 41.18 54.10 31.95 35.61 21.40
Kven 22.19 05.23 17.24 08.35 20.13 10.38

Mandarin Mainland 35.82 20.79 27.22 00.90 16.27 01.29
Taiwanese 31.65 13.60 26.23 01.48 15.54 01.64

German
Standard 50.10 51.01 53.28 44.88 39.78 26.30
Low 17.28 01.78 25.53 01.66 30.90 01.49
Swiss 29.85 02.92 17.02 02.56 18.76 03.02

Malay
Standard 47.98 43.61 46.81 35.27 27.86 22.86
Vernacular 33.74 06.95 36.58 06.88 16.76 04.18
Moluccan 17.11 02.04 12.03 06.11 09.03 05.89

Portuguese Brazilian 57.96 57.09 55.54 52.98 42.62 35.96
European 48.08 40.41 47.08 41.66 35.13 29.98

Swahili Coastal 50.15 42.94 41.79 32.35 02.52 00.25
Congolese 35.40 20.48 34.11 17.58 02.84 00.54

Table 4: Machine Translation Evaluations: BLEU Scores. Each model is evaluated across both directionalities with
either the source or target specified as English. A higher BLEU score signifies better performance.

Language Dialect Google NMT Meta NLLB Helsinki OpusMT
di → EN EN → di di → EN EN → di di → EN EN → di

Arabic

MSA 0.851 0.890 0.826 0.872 0.590 0.834
Iraqi 0.742 0.860 0.750 0.794 0.417 0.771
Omani 0.792 0.805 0.801 0.841 0.502 0.811
Qatari 0.743 0.814 0.742 0.787 0.416 0.768
Saudi 0.792 0.806 0.788 0.800 0.447 0.777
Yemeni 0.733 0.804 0.757 0.793 0.403 0.772
Jordanian 0.777 0.785 0.780 0.789 0.416 0.767
Palestinian 0.746 0.782 0.771 0.776 0.394 0.758
Lebanese 0.681 0.797 0.747 0.765 0.352 0.745
Syrian 0.764 0.788 0.776 0.777 0.382 0.755
Algerian 0.661 0.780 0.704 0.777 0.378 0.752
Moroccan 0.606 0.799 0.743 0.770 0.339 0.753
Libyan 0.726 0.770 0.752 0.780 0.392 0.761
Tunisian 0.521 0.787 0.685 0.757 0.329 0.747
Egyptian 0.764 0.832 0.773 0.774 0.381 0.749
Sudanese 0.792 0.805 0.782 0.819 0.449 0.796

Finnish Standard 0.897 0.842 0.855 0.796 0.728 0.761
Kven 0.777 0.754 0.581 0.642 0.692 0.701

Mandarin Mainland 0.866 0.883 0.766 0.785 0.637 0.742
Taiwanese 0.849 0.848 0.752 0.762 0.635 0.739

German
Standard 0.894 0.857 0.886 0.832 0.797 0.764
Low 0.528 0.494 0.622 0.489 0.684 0.480
Swiss 0.669 0.573 0.509 0.522 0.515 0.539

Malay
Standard 0.871 0.842 0.839 0.811 0.712 0.756
Vernacular 0.819 0.652 0.805 0.665 0.654 0.627
Moluccan 0.622 0.637 0.580 0.638 0.509 0.618

Portuguese Brazilian 0.933 0.907 0.904 0.889 0.822 0.837
European 0.909 0.858 0.889 0.859 0.809 0.820

Swahili Coastal 0.855 0.857 0.823 0.818 0.247 0.199
Congolese 0.728 0.749 0.717 0.732 0.257 0.200

Table 5: Machine Translation Evaluations: SentenceBERT Similarity. Each model is evaluated across both
directionalities with either the source or target specified as English. A higher similarity score signifies better
performance.
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Language Dialect Google USM OpenAI Whisper Meta XLS-R
Spt Cnv Spt Cnv Spt Cnv

Spanish

Argentinian 26.55% 33.76% 72.56%
Chilean 25.80% 35.36% 74.95%
Colombian 24.40% 34.32% 67.72%
European 25.21% 30.75% 68.24%
Mexican 24.55% 34.79% 68.78%
Peruvian 27.52% 37.41% 71.93%
Puerto Rican 36.88% 45.21% 84.83%
Venezuelan 28.68% 35.69% 73.85%

Arabic

Iraqi 54.14% 134.09% 94.49%
Omani 57.81% 157.52% 94.77%
Saudi 50.51% 120.31% 93.12%
Emirati 57.13% 154.92% 95.04%
Jordanian 49.57% 129.44% 93.93%
Lebanese 58.14% 136.57% 95.88%
Palestinian 49.56% 121.88% 94.06%
Syrian 48.78% 118.59% 94.59%

Bengali
Kamrupa 60.98% 51.11% 207.58% 190.83% 103.31% 101.16%
Radha 58.16% 49.79% 229.59% 188.62% 103.06% 100.89%
Varendra 57.92% 52.79% 221.46% 185.26% 102.83% 100.94%

Georgian Eastern 49.12% 32.39% 117.03% 132.76% 104.13% 101.11%
Western 50.21% 39.09% 144.40% 129.93% 104.45% 101.13%

Tamil

Central 63.91% 65.60% 128.96% 134.23% 100.50% 101.83%
Madurai 63.69% 70.59% 83.68% 131.25% 100.45% 101.62%
Northern 65.12% 68.07% 150.17% 131.10% 100.01% 101.60%
Southern 65.75% 65.75% 102.50% 125.66% 100.99% 101.72%
Western 66.10% 68.48% 150.69% 130.37% 100.23% 101.65%

Telugu
Central 66.34% 65.01% 238.81% 207.66% 105.72% 102.60%
Eastern 66.20% 64.24% 317.67% 193.24% 104.78% 103.08%
Northern 65.37% 67.24% 320.80% 211.71% 105.57% 103.27%
Southern 66.53% 65.80% 254.95% 232.51% 104.36% 103.03%

Tagalog
Central 110.49% 90.21%
Northern 116.31% 95.71%
Southern 94.09% 105.98%

Language Dialect Google STT OpenAI Whisper + CV Meta XLS-R + CV
Spt Cnv Spt Cnv Spt Cnv

Spanish

Argentinian 55.36% 44.65% 62.58%
Chilean 47.95% 37.03% 65.22%
Colombian 49.71% 34.75% 59.61%
European 45.22% 29.76% 57.27%
Mexican 44.78% 43.14% 59.99%
Peruvian 53.38% 42.68% 63.51%
Puerto Rican 59.33% 51.63% 76.61%
Venezuelan 53.47% 36.76% 65.82%

Arabic

Iraqi 72.47% 218.33% 95.39%
Omani 73.93% 217.44% 96.16%
Saudi 67.39% 185.53% 94.60%
Emirati 74.39% 216.66% 95.93%
Jordanian 72.91% 186.66% 94.94%
Lebanese 82.27% 200.33% 96.37%
Palestinian 73.78% 189.31% 95.15%
Syrian 75.04% 195.73% 95.69%

Bengali
Kamrupa 64.11% 81.85% 75.87% 176.37% 73.02% 90.48%
Radha 63.09% 79.85% 68.35% 144.77% 68.34% 88.84%
Varendra 65.82% 80.37% 74.17% 153.00% 71.54% 89.59%

Georgian Eastern 64.64% 81.44% 143.95% 222.75% 68.61% 88.56%
Western 66.95% 81.71% 165.49% 210.67% 72.83% 88.11%

Tamil

Central 64.97% 86.39% 73.25% 108.17% 77.71% 98.46%
Madurai 63.82% 86.54% 73.00% 109.13% 76.79% 98.16%
Northern 64.57% 87.00% 74.72% 112.06% 78.46% 98.18%
Southern 65.13% 86.75% 79.97% 110.75% 81.36% 98.25%
Western 64.13% 84.39% 77.67% 106.23% 77.07% 97.58%

Telugu
Central 63.94% 84.35%
Eastern 63.36% 84.91%
Northern 62.73% 85.63%
Southern 64.62% 85.87%

Tagalog
Central 58.82% 64.61%
Northern 58.16% 65.01%
Southern 57.04% 65.10%

Table 6: Automatic Speech Recognition Evaluations: Word Error Rate. Each language is evaluated on three
multilingual models and three monolingual models, with the IARPA Babel samples separated into Scripted (spt)
and Conversational (cnv) classes. A lower word error rate signifies better performance.
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Language Dialect Google USM OpenAI Whisper Meta XLS-R
Spt Cnv Spt Cnv Spt Cnv

Spanish

Argentinian 17.54% 22.16% 35.73%
Chilean 16.98% 23.10% 37.43%
Colombian 16.61% 22.90% 32.17%
European 18.27% 21.75% 32.94%
Mexican 16.71% 23.40% 32.92%
Peruvian 18.52% 25.03% 35.87%
Puerto Rican 25.75% 31.33% 46.90%
Venezuelan 19.80% 24.22% 37.01%

Arabic

Iraqi 23.97% 104.15% 53.48%
Omani 27.56% 128.51% 55.32%
Saudi 21.94% 91.25% 52.54%
Emirati 26.45% 121.32% 55.08%
Jordanian 20.57% 95.77% 52.01%
Lebanese 27.38% 99.87% 54.49%
Palestinian 20.06% 99.87% 52.53%
Syrian 19.83% 82.85% 52.02%

Bengali
Kamrupa 41.02% 29.56% 231.39% 218.35% 93.63% 94.60%
Radha 36.26% 30.91% 268.22% 213.89% 93.34% 94.43%
Varendra 37.27% 31.28% 220.76% 207.11% 93.30% 94.25%

Georgian Eastern 35.15% 13.83% 336.56% 298.09% 72.64% 88.39%
Western 36.11% 18.16% 349.79% 291.62% 74.14% 86.77%

Tamil

Central 42.42% 29.44% 63.03% 100.79% 59.90% 93.04%
Madurai 40.91% 38.91% 49.65% 90.71% 55.39% 92.53%
Northern 41.04% 34.72% 78.49% 86.91% 58.23% 92.47%
Southern 43.58% 31.01% 69.37% 86.06% 59.82% 92.35%
Western 43.42% 37.36% 107.68% 88.58% 56.77% 92.13%

Telugu
Central 39.95% 35.86% 251.07% 275.66% 97.61% 95.46%
Eastern 41.20% 33.14% 307.03% 271.42% 96.86% 95.46%
Northern 40.95% 37.10% 233.57% 279.64% 96.89% 95.89%
Southern 42.03% 36.01% 275.70% 282.87% 96.70% 95.77%

Tagalog
Central 81.86% 62.82%
Northern 87.30% 66.62%
Southern 66.92% 69.32%

Language Dialect Google STT OpenAI Whisper + CV Meta XLS-R + CV
Spt Cnv Spt Cnv Spt Cnv

Spanish

Argentinian 43.08% 27.71% 29.56%
Chilean 33.53% 22.74% 30.89%
Colombia 38.25% 22.01% 27.93%
European 35.47% 18.89% 27.31%
Mexican 31.45% 26.99% 28.30%
Peru 40.95% 26.77% 30.30%
Puerto Rican 44.26% 32.40% 40.68%
Venezuelan 40.83% 22.96% 31.97%

Arabic

Iraqi 44.05% 191.00% 51.91%
Omani 49.02% 189.29% 54.16%
Saudi 40.39% 152.65% 51.88%
Emirati 48.28% 188.34% 54.28%
Jordanian 45.74% 157.30% 51.19%
Lebanese 55.58% 170.02% 53.70%
Palestinian 47.21% 158.14% 51.35%
Syrian 49.19% 168.76% 51.45%

Bengali
Kamrupa 41.55% 69.20% 39.32% 139.69% 30.26% 51.65%
Radha 39.86% 67.09% 31.26% 108.85% 27.39% 49.09%
Varendra 42.39% 68.01% 37.11% 117.18% 29.86% 49.92%

Georgian Eastern 44.43% 53.26% 100.37% 183.55% 18.16% 35.25%
Western 46.48% 52.86% 110.34% 176.89% 20.15% 34.67%

Tamil

Central 41.54% 65.28% 32.56% 70.98% 30.02% 59.84%
Madurai 40.35% 65.60% 33.71% 73.86% 26.98% 59.70%
Northern 40.94% 66.49% 33.79% 75.13% 29.69% 59.71%
Southern 41.37% 65.62% 40.76% 72.77% 32.30% 59.17%
Western 40.59% 62.21% 34.51% 69.72% 28.16% 57.29%

Telugu
Central 40.76% 69.31%
Eastern 40.58% 69.53%
Northern 39.09% 71.41%
Southern 42.03% 71.33%

Tagalog
Central 44.89% 44.39%
Northern 44.69% 44.85%
Southern 43.85% 44.95%

Table 7: Automatic Speech Recognition Evaluations: Character Error Rate. Each language is evaluated on three
multilingual models and three monolingual models, with the IARPA Babel samples separated into Scripted (spt)
and Conversational (cnv) classes. A lower character error rate signifies better performance.
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