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Abstract

In executable task-oriented semantic parsing,
the system aims to translate users’ utterances in
natural language to machine-interpretable pro-
grams (API calls) that can be executed accord-
ing to pre-defined API specifications. With the
popularity of Large Language Models (LLMs),
in-context learning offers a strong baseline
for such scenarios, especially in data-limited
regimes (Hu et al., 2022; Shin et al., 2021).
However, LLLMs are known to hallucinate and
therefore pose a formidable challenge in con-
straining generated content (Parikh et al., 2020).
Thus, it remains uncertain if LLMs can effec-
tively perform task-oriented utterance-to-API
generation where respecting API’s structural
and task-specific constraints is crucial. In this
work, we seek to measure, analyze and miti-
gate such constraints violations. First, we iden-
tify the categories of various constraints in ob-
taining API-semantics from task-oriented utter-
ances, and define fine-grained metrics that com-
plement traditional ones. Second, we leverage
these metrics to conduct a detailed error analy-
sis of constraints violations seen in state-of-the-
art LLMs, which motivates us to investigate
two popular mitigation strategies— Semantic-
Retrieval of Demonstrations (SRD) and API-
aware Constrained Decoding (API-CD). Our
experiments show that these strategies are effec-
tive at reducing constraints violations and im-
proving the quality of the generated API calls,
but require careful consideration given their
implementation complexity and latency.

1 Introduction

In task-oriented dialog (TOD) settings, executable
semantic parsers maps natural language utterances
from human users to machine-interpretable mean-
ing representations that help achieve users’ goals.
In order to effectively carry out the user’s com-
mand, such task-oriented semantic parsers need
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Figure 1: A nested example from the TOPv2 dataset
consisting of an utterance, a corresponding semantic
parse, the extracted tree representation and the corre-
sponding API call. We measure & improve the ability
of a Large Language Model (LLM) to generate the API
call given an utterance with In-Context Learning (ICL).

to be able to interact with the real-world execu-
tion environment by translating users’ utterances
to API calls, that are executable according to pre-
defined API documentation. For example, in Fig-
ure 1, given the user’s utterance Show me one way
options to auditorium by 10am via Ist ave, the ex-
ecutable task-oriented semantic parser should not
only understand the semantic parse structures from
the user’s input, but more importantly, be able to
generate the API call:
GET_DIRECTIONS (

GET_LOCATION (
"auditorium" ), .. .,

="l1st ave") )

where the parsed intents and represent func-
tions and in the API calls.
Existing work has tackled task-oriented seman-
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tic parsing by using auto-regressive language mod-
els (Rongali et al., 2020; Mansimov and Zhang,
2022; Hu et al., 2022; Shin and Van Durme, 2022).
Recent advances of pre-trained Large Language
Models (LLMs), especially those trained with code,
present an exciting opportunity to frame executable
semantic parsing tasks as an API call generation
problem. In Hu et al. (2022), Shin et al. (2021) and
Shin and Van Durme (2022), LLMs prompted with
examples are able to generate code-like represen-
tations based on user queries. In-context Learning
(ICL) (Brown et al., 2020) is a particularly appeal-
ing approach for semantic parsing tasks as it allows
developers to (1) make use of LLM’s transfer learn-
ing abilities in low-resource settings with only a
small collection of labelled training data, and (2)
easily prototype LLM-based systems without need-
ing re-training or fine-tuning.

However, it has been shown that outputs from
LLMs are prone to hallucination, lack controlla-
bility and have high sensitivity to prompt design
(Parikh et al., 2020; Raunak et al., 2021; Rashkin
et al., 2021), even when these models are prompted
with human-written instructions and selected ex-
emplars (Liu et al., 2022). These weaknesses are
concerning for executable semantic parsing, as gen-
erated output needs to respect the task constraints
specified by the API documents.

In this work, we investigate the question, can
LLMs with in-context learning respect the task-
specific constraints required for task-oriented se-
mantic parsing? 'To the best of our knowledge,
there is no existing work that categorizes and de-
fines fine-grained task-specific constraints for task-
oriented semantic parsing or systematically ana-
lyzes constraints violations in LLM outputs in the
ICL scenario. We begin by identifying and catego-
rizing the task constraints in Section 2, focusing
on the TOP-V?2 dataset (Chen et al., 2020), an ex-
isting task-oriented semantic parsing dataset, and
detecting constraints violations in the output of
GPT-NeoX (Black et al., 2022), a state-of-the-art
LLM trained on code.

We observe that task-specific constraint violation
are ubiquitous when using ICL in practice (ranging
from 3 — 14.8%), while syntactic constraints are
lower (=~ 0.6%). In Section 3, we show that the
proposed constraint violation metrics serve as a use-
ful diagnostic tool, providing a fine-grained view
and complementing existing evaluation measures
in (Mansimov and Zhang, 2022). Our analysis of

errors based on these constraint violation metrics
reveal important failure modes, such as the lack
of examples pertaining to a particular intent in the
ICL input prompt, dependence on particular task-
specific keywords, scenarios when hallucination is
likely, etc. and inspires us to develop mitigation
strategies that reduces constraint violations.

We investigate two popular mitigation strategies—
retrieval-based augmentation (Pasupat et al., 2021;
Gupta et al., 2022) and constrained decoding (Shin
and Van Durme, 2022). In section 5, we show that
our Semantic-Retrieval of Demonstrations (SRD),
despite its implementation simplicity, improves the
semantic parsing quality in the ICL setting and
can also reduce constraint violation to an extent.
On the other hand, when task-specific APIs are
available, our API-aware Constrained Decoding
(API-CD) strategy can completely eliminate con-
straint violations. An amalgamation of these two
complementary approaches provides the best re-
sults, but incurs some tradeoffs in efficiency. We
analyze this trade-off, offering advice for practi-
tioners. Finally, we plan to release the modified
TOPv?2 dataset to encourage further research in this
direction. In summary, our key contributions are:

(1) Defining and introducing constraint violation
metrics for generated API calls (§2).

(2) Analysis of ICL failure modes using proposed
metrics and proposal of mitigation strategies
(§384).

(3) Showcasing efficacy of solutions to com-
pletely eliminate constraint violations (§5).

2 Defining Constraints Violations

Recent TOD systems, such as Shu et al. (2022) and
Andreas et al. (2020), take (single/multi-turn) ut-
terances of users as input and generate executable
programs (API calls) to achieve user goals. Such
systems are expected to not only generate effec-
tive programming codes but also respect the API
constraints, relevant to the application domains,
specified by developers. To study the task of gener-
ating valid API calls, we convert the popular TOD
benchmark dataset TOPv2 (Chen et al., 2020) to
an utterance-to-API format.! Specifically, TOPv2
consists of pairs of user-utterance and semantic
parse representing the users’ goals; we process the
dataset by converting the semantic parses to API
calls (see Figure 1).

"While the data in (Shu et al., 2022) would have been
appropriate for our study, it is small in size and unreleased.
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Note that the TOPv2 dataset contains many com-
positional/nested queries, where a particular slot
value is the result of another intent. This is reflected
under the dialog-to-API framework as nested calls,
where the argument value to some function can
be the return value from another function. Hence,
an API call can be represented as a flattened list
of functional calls, which we now define as a flat-
tened list representation (examples for flattened list
representations are in appendix A.1).

Definition 2.1. A flattened list representation of an
API call y is a list of tuples {( fi, Ai) Yi=1,..n, where
each f; is a function (corresponding to the intent)
present in the API call and A; is a set of (a,v)
pairs (corresponding to the and slot values).
Each function f; is defined to be associated with
all a's from A;.

For compositional/nested API calls, the val-

ues v can be other functions (f), while for non- |

compositional APIs they are resolvable/grounded
values. It follows that in the latter case, the flat-
tened list has only one function call.

2.1 Task-specific Constraints

We define four categories of constraints associated
with the generation of API calls. The first con-
straint imposes a restriction on the overall output.

Definition 2.2 (Structural Constraint C). An API
call expression satisfies this constraint iff the ex-
pression can be parsed into a valid abstract syntax
tree.

The other constraints impose task-specific re-
strictions on the generated functions, the arguments,
and the mutual interactions between them. Con-
cretely, we first define a triple (Vy, V;, V), where
(1) Vs represents the set of valid functions (f); (2)
V, represents the set of valid arguments a, and (3)
V}q is the set of valid pairs of functions (f) and
its associated arguments (a). We now define these
task-specific constraints as follows.

Definition 2.3 (Functional Constraint C'y). An API
call y violates Cf if there is any function f € y
and f & V.

Definition 2.4 (Argument Constraint C,). An API
call y violates C, if there is any argument a € y
and a € V.

Definition 2.5 (Function-argument Association
Constraint C't,). An API call y violates Cy, if
there is any associated function-argument pair

(f,a) € yand (f,a) & Vi

VRN

To measure these constraints, we obtain the
sets V¢, Vi, and Vy, using the functions, argu-
ments, and interactions in the entire training data of
TOPv2. We note that one should use API-specific
documentation, when available, to define these
more efficiently. Further, we defined V; and Vj,
as a set, and represented V7, as a dictionary.

In this work, we focus our attention to hard-
constraint satisfaction, i.e. for every generated API
call y, C is either a 1 or 0. Thus, even if (say)
90% of y forms a valid abstract syntax tree, or
y has a function f that is a synonym of function
names € V/, it gets no brownie points. We feel
this is reasonable given the high standards of API
calls (e.g. even a single character typo in a function
name results in compilation/run-time failures). Let
us consider the metrics for the following example.

[User Utterance ]
show my alarms for tomorrow

[Generated call]

5 SHOW_ALARMS ( DATE_TIME = "tomorrow")
cs =1 « abstract syntax tree
Cy =0 X function name = GET_ALARMS
C, =1  arg name (DATE_TIME), ¥ value (tomorrow)
Cia = 0 ¥ incorrect function name implies no

valid function-argument pair € Vi,

Note how each individual input-output provides a
distinct constraint violation signature. To evaluate
a system’s success at constraint satisfaction, we
compute a constraint violation rate, i.e. the per-
centage of constraint violations for each constraint
violation category over all the test examples. While
existing metrics like exact-match, F1, and accuracy
give a top-level view of the model’s capability for
dialog-to-API scenarios, our metrics can identify
more granular aspects; thereby giving a more com-
plete picture. For example, a model scoring low on
exact-match may still be great at correcting identi-
fying functions and argument names from few-shot
data in prompts and simply be bad at structural
constraints. In addition, the fine-grained diagnosis
can help us design better solutions.

3 Analyzing Constraint Violation

As we noted above, the use of exact match and F1-
scores (Mansimov and Zhang, 2022) can only pro-
vide a bird’s eye view of the model’s failures. Un-
fortunately, recently employed metrics like BLEU
and Execution Match Ratio (EMR) for such scenar-
ios (Shu et al., 2022) are also incapable of provid-
ing a magnified view. Further, these metrics can
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Reasons for violation

Constraint Violation Examples

Constraint Violation Analysis

Misunderstanding task
semantics

violates
't Ca, Cta

Misunderstanding slot-
s/arguments associated
with a task

violates C'y o

Lack of relevant exam-
ples in the prompt

violates C'y, Cgq

Inability to handle
compositionality

violates Cy, Crq

[Utterance]: show me wrecks to avoid on the interstate

[Ground-truth]:

GET_INFO_TRAFFIC ( OBSTRUCTION_AVOID =
" wrecks ", LOCATION = GET_LOCATION ( CATE-
GORY_LOCATION =" the interstate " ) )

[Prediction]:
GET_INFO_WRECKS ( LOCATION = " the interstate" )

The system simply uses the template GET__INFO_*
that is ubiquitous in the training data (and there-
fore in the prompt).  Although it has seen
GET_INFO_TRAFFIC in the prompts, it fails to
make the semantic implicature from wrecks to traffic
during generation, thereby resulting in an undefined
function call GET_INFO_WRECKS and violating
all three task-specific constraints.

[Utterance]: 10 Day forecast please.
[Ground-truth]:

GET_WEATHER ( ="10Day ")
[Prediction]:
GET_WEATHER ( =" today ", FORE-

CAST_DAYS="10")

The system fails to realize that DATE_TIME can
support 10 Day as an argument value. Hence, it
hallucinates a new argument FORECAST_DAYS to
provide this information. Note that its argument
definition for DATE_TIME is correct, and thus it
only violates C'yq.

[Utterance]: show my alarms for tomorrow
[Ground-truth]:

GET_ALARM ( ALARM_NAME = GET_TIME (
DATE_TIME =" for tomorrow " ) )

[Prediction]:

SHOW_ALARMS ( DATE_TIME =" tomorrow " )

The GET_ALARM has a small support in the train-
ing data. Hence, sampling omits it in the example
prompt. The model, oblivious to this function call,
violates C'y by generating an undefined function
SHOW_ALARMS.

[Utterance]: add reminder feed sparky 6pm daily

[Ground-truth]:
CREATE_REMINDER ( TODO = " feed
sparky ", =
GET_RECURRING_DATE_TIME ( ="
6 pm ", FREQUENCY =" daily "))

[Prediction]:

CREATE_REMINDER ( TODO = " feed sparky ",
PERSON_REMINDED = " me ", FREQUENCY ="

Correctly returning the value to
RECURRING_DATE_TIME requires the
execution of a nested function call
GET_RECURRING_DATE_TIME with the
provided time. The models fails to comprehend this
nested call and flattens the information required
by hallucinating arguments, such as AMOUNT and
PERSON_REMINDED, associated with the primary
function call, thereby violating C, and C'y .

daily ", AMOUNT =" 6pm ")

Table 1: Error analysis of constraint violations made by the GPT-NeoX model on the TOPv2 dataset with ICL.

often be difficult to interpret in dialog-to-API sce-
narios. Hence, these metrics cannot help guide us
to analyze particular test examples for insights in
task-specific constraint violations, such as the lack
of meaningful in-context examples, and the mod-
els’ ability to comprehend general API definitions
and process compositionality. In this section, we
first perform the exercise of analysing constraint vi-
olations guided by our constraint violation metrics.
Second, we leverage our analysis to hypothesize
reasons for these violations.

In Table 1, we highlight a few example violations
along with the unique signature generated by our
metrics and analyze the common reasons for such
constraint violations.

Misunderstanding APIs and task semantics In
the first row, we see an example where the gener-
ated API call violates all of the task-specific con-
straints. When we see high counts of this for a
particular domain (eg. traffic) in TOPv2, we can
quickly infer that the system fails to fully com-
prehend the task semantics and is hallucinating
function names, argument names, and making up
associations between these hallucinated functions
and arguments. In such scenarios, we often observe
that the model is unable to make semantic jumps

from words in test utterances to existing function
and arguments. While this could be due to lack
of diverse vocabulary usage in the ICL prompts,
enumerating all such semantic mappings in an ex-
ample prompt may be unreasonable. In the second
row, we observe that with the limited ICL exam-
ples, the model is unable to comprehend the do-
main of an , but realizes the value
‘10 day’ is important. Thus, it hallucinates a new
argument and provides this value to it regardless
of actual association constraints. This motivates
us to consider constrained decoding strategies that
restrict the generation space of function and argu-
ment names thereby limiting hallucinations.

Lack of meaningful in-context examples In the
third row, we notice a scenario that has more to
do with the ICL paradigm as opposed to shortcom-
ing of the LLM itself. While the model can learn
from in-context examples, lack of certain function
(or argument) names in the prompts can derail the
model to come up with incorrect (although seman-
tically similar) function names. This motivates us
to consider demonstration retrieval strategies.

Inability to handle compositionality In the fi-
nal row, we highlight a failure mode that is ubig-
uitous in generated API calls across all domains
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of TOPv2. Specifically, when dealing with compo-
sitional queries (nested functional calls), the gen-
erated API calls tend to flatten the call structure
and bypass necessary nested API calls to correctly
fulfil these function queries. In turn, these violate
several task-specific API constraints. We further
highlight these in our experiments (§5).

4 Mitigation Strategies

We study two popular mitigation strategies to re-
duce constraint violations— (1) a semantic retrieval
approach for in-context example selection that im-
proves the prompt design, and (2) an API-aware
constrained decoding strategy that constrains token
generation based on API information.

4.1 Semantic Retrieval of Demonstrations

Under the in-context learning approach, language
models takes a list of input-output pairs in the
prompt, referred to as in-context examples or
demonstrations. In the context of our API genera-
tion task, such demonstrations consist of pairs of
an utterance and corresponding ground-truth API
calls (u, a). In the examples shown in §3, these ex-
ample demonstrations are randomly sampled from
the same domain in the TOPv2 dataset and result in
task-specific constraint violations. In this method,
the key is to leverage the user’s test utterance to
strategically select the in-context demonstrations
in the ICL prompt.

Consider user’s utterance u; from the test dataset.
We use a dense retriever model to obtain an embed-
ding for the text u;. We then retrieve top-k (u;, a;)
pairs from the training set based on the cosine sim-
ilarity distance between u; and u; and arrange then
in descending order to obtain the demonstrations
for our prompt. For the dense retriever model, we
leverage SBERT that has been trained on one bil-
lion sentence pairs using a contrastive learning ob-
jective (Reimers and Gurevych, 2019).

4.1.1 API-aware Constrained Decoding

In §2, we use the sets Vy, V,,, and Vy, to define the
set of possible values for function, arguments and
associations for a particular domain. Looking at the
hallucinations during our analysis in §3, adapting
the model’s generation capabilities to adhere to
the API-specification is a proactive approach that
can reduce constraint violations. We explore this
direction in API-aware constrained decoding.
Previous works have proposed a constrained de-
coding algorithm that generates a “canonical form”

of meaning representation (instead of natural lan-
guage or programming code) (Shin et al., 2021;
Shin and Van Durme, 2022). The canonical form is
then mapped to semantic parse expressions associ-
ated with a pre-defined set of grammars written by
humans. As we aim to generate API calls, instead
of generating outputs that are then post-processed
by human-written grammatical rules, we simply
constrain the model to generate valid expressions
according to the API constraints. For example,
when the model generates the API call for a func-
tion x, we restrict the decoding algorithm to only
generate arguments a tokens that are the dictio-
nary indexed with z, V,[x]. We can also ensure
we generate well-formed API calls by enforcing
syntactic constraints (eg. parenthesis closure) and
other task-specific constraints (function and argu-
ments names). A minor detail is that the function
and arguments names are often tokenized (by the
pre-trained model’s tokenizer) to a sequence of
sub-tokens; thus, we need to, define all the valid se-
quences of sub-tokens that form a valid function’s
(or argument’s) name. For this purpose, we use a
dynamic programming approach with backtracking
to extract all such possible sequences and restrict
the LLMs generation according to the extracted
sub-token sequences.

S Experiments

Using the constraints defined in the previous sec-
tion, we now benchmark the performance of in-
context learning with large language models on
constraint satisfaction. In addition, we use the pro-
posed mitigation strategies, namely retrieval-based
and constrained-decoding-based, and show their
effectiveness in reducing the constraint violation
rates compared to the baselines. Finally, we discuss
important practical considerations that accompany
the proposed mitigation strategies.

Large Language Model (LLM) To understand
how well LLMs perform at generating API rep-
resentation for utterances in the TOPv2 datasets,
we use the GPT-NeoX model (Black et al., 2022),
which is a 20B parameter model trained on the
Pile data consisting of ~ 825GB of raw text
data (Gao et al., 2020). Given the training data
contains textual sources (eg. books, subtitles,
emails, Wikipedia, etc.), and API/code like data
(eg. GitHub, stack exchange, hacker news), we
find it befitting for our context. Other suitable LLM
options for our setting were either under behind a
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Sampler Query Types Constraints Violations Metrics (%) (]) Semantic Parsing Metrics (%)(1)
Cs Cy Ca Cta Exact Match  Intent F1 ~ Slot F1
Flat 0.63 76 277 9.6 34.7 75.4 453
Random Compositional 0.67 12.8 3.36 15.4 7.0 61.8 34.8
All 0.64 98 3.02 12.1 22.9 68.0 39.4
SPIS-1 All 0.00 14.8 3.00 17.8 24.0 68.7 43.9

Table 2: Constraint violations metrics using ICL with GPT-NeoX on the TopV?2 dataset. Using a SPIS-1 sampling
strategy (that ensures coverage of all functions and arguments) in the ICL examples improves semantic parsing
metrics, but degrades constraint violation metrics (rows 3, 4). Also, models commit more constraint violations when

dealing with compositionality (rows 1, 2).

paywall (eg. OpenAl Codex) or smaller in scale
(eg. GPT-Neo-2.7B, GPT-J-6B). 2

Dataset To study the constraint violations from
generating API calls in task-oriented settings, we
use the TOD Semantic Parsing dataset TOPv2
(Chen et al., 2020). The TOPv2 dataset contains
pairs of utterances and aligned semantic represen-
tations for a diverse set of source domains . The
semantic representation can either be flat or com-
positional in nature. For low-resource setting, the
TOPv2 dataset restricts the training data using the
samples per intent and slot label (SPIS) strategy
(lower o scarce) in two domains— Reminder and
Weather. For completeness of evaluation, we use
the SPIS sampling method and obtain low-resource
training datasets for all domains in TOPv2 (and
will release the data for future research). For the
test datasets, we sample 200 examples from the
test split for each of the eight domains in TOPv2
(including 100 flat queries and 100 compositional
queries in each domain).

Task Prompt Creation The in-context learning
approach allows language models to output predic-
tions based on carefully constructed natural lan-
guage text inputs (prompts). The prompt contains a
task description, followed by input-output demon-
strations, and finally the fest input, for which an
output prediction is desired. We then ask the lan-
guage model to take the prompt as input and output
API calls for the test query by greedy decoding.
While our task descriptions and test inputs remain
consistent across prompts, we consider different
sampling strategies for composing in-context ex-
amples in the experiments below.

*We run GPT-NeoX on a single machine with 8 V-100
GPUs, each with 16GB memory, and take 18 hours to com-
plete the in-context learning inference for our test examples.

3alarm, event, messaging, music, navigation, reminder,
timer, and weather

16

5.1 Constraint Violation with LLMs

In these experiments, we use two sampling
strategies— random and SPIS-1 sampling— to sam-
ple 10 in-context examples from a domain in the
ICL prompt followed by a test utterance from the
same domain. The SPIS-1 sampling ensures that
every function and argument is represented at least
once in the in-context examples, whereas the ran-
dom sampler selects examples randomly from the
training data. We construct the ICL prompt by
concatenating the task descriptions, the in-context
examples and the test query. For example, a prompt
for the test query Driving directions to the Eagles
game (from the navigation domain) looks as fol-
lows:

#[TASK DESCRIPTION |
Follow the examples below and generate API Calls
from the users’ utterances

#[IN-CONTEXT EXAMPLES]
Example 1:
User: What’s traffic going to be like on Saturday

API Call: GET_INFO_TRAFFIC ( DATE_TIME = "on
Saturday" )
Example 2:

User: How long is the flight from Fort Lauderdale
to Jamaica
API Call: GET_ESTIMATED_DURATION ( METHOD_TRAVEL =

"flight", SOURCE = "Fort Lauderdale",
DESTINATION = "Jamaica" )

... [10 examples]

#[TEST QUERY]

Example 11:

User: Driving directions to the Eagles game

API Call:

Note that for this baseline, we do not consider any
mitigation strategies. In Table 2, we evaluate the
corresponding output API call using the constraint
violation metrics and traditional semantic parsing
metrics.

In line with our observation in §3, we observe
a higher rate of constraints violation for composi-
tional queries in the first two rows of Table 2. In
this case, the semantic parsing metrics offer a simi-
lar conclusion, showcasing the poor performance
of the model on nested queries compared to flat
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Sampler

Constraints Violations Metrics (%) (]

Semantic Parsing Metrics (%)(1)

Cs Cy Ca Cta Exact Match  Intent F1 ~ Slot F1
Random 0.64 980 3.02 12.10 229 68.0 394
SRD (ours) +SPIS-5 0.00 349 1.00 6.20 37.7 81.4 522
+SPIS-10  0.20 2.60 0.70 4.84 40.6 82.4 55.7
+SPIS-25  0.10 1.84 1.10 4.34 432 86.0 589
+SPIS-50  0.10 1.10 1.00 2.88 44.4 86.7 60.4
+SPIS-100 040 120 0.89 2.96 49.6 88.2 63.5

Table 3: Applying a query-based Semantic Retrieval for Demonstrations (SRD) reduces both the constraint violation
rates and improves the semantic parsing metrics. Increasing the training data subset from which SRD samples

in-context examples improves results further.

queries.

In contrast, observing the last two rows of the
table (where we consider All query types); it shows
the impact of different samplers, and therefore
different set of in-context examples, on the in-
context learning performance. Given SPIS-1’s
more comprehensive coverage of functions and

compared to the random sampler, we ob-
serve higher semantic parsing metrics (EMs, intent
and slot Fl1s). However, this higher coverage does
not necessarily equate to a lower constraint viola-
tions rate— we notice a higher violation rate for C'y
and C'y,. Not only does this highlight the added di-
agnostic value our metrics offer complementary to
semantic parsing metrics, but it also showcases that
SPIS-1 sampling may not be sufficient to eliminate
function name hallucination errors (see example in
the third row of Table 1).

5.2 Efficacy of Mitigation Strategies

Semantic Retrieval of Demonstrations (SRD)
Table 3 shows that by simply applying semantic
retrievals to obtain top-10 demonstrations exam-
ples, we can reduce the constraint violations signif-
icantly. We cannot expect the availability of the full
training data in a few-shot setting, as that is often
the motivation for using ICL. Thus, we sample the
top-10 demonstrations for semantic retrieval from a
pool of SPIS sampled training set. While larger and
more comprehensive training sets (higher SPIS) in-
crease the effectiveness of our retrieval strategy in
reducing constraint violations, we see gains even
in the most extreme few-shot setting (SPIS-5). In
addition to reducing constraint violations, the se-
mantic retrieval is a simple strategy to implement
that only augments the input prompt. Further, it
also leads to better performance according to the
traditional semantic parsing metrics. However, we
also observe that the reductions in constraint vio-

lations with retrieval strategies start to reduce in
magnitude after SPIS-50 although the increase in
exact match continues at a steady pace up to SPIS-
100. This indicates that constraints violations are
more difficult to eliminate and necessitates the need
for other mitigation strategies.

API-aware Constrained Decoding (API-CD)
As shown in Table 4, our algorithm is able to elimi-
nate all categories of constraint violations and im-
prove on semantic parsing metrics (although the
magnitude of improvement is disproportionately
less for the latter metrics). One may ask how can
constraint violation metrics be zero while semantic
accuracy metrics are only a little better. For this,
consider an example where the generated function
name belongs to V¢ but is not the correct function
name as per the input text. In addition, we find that
the constrained decoding algorithm is 20% slower
than original decoding as it needs to extract at run-
time the appropriate sub-sequences that form the
well-formed function and/or argument names. Im-
proving its efficiency can be a promising future
direction.

Combined Approaches (SRD + API-CD) Note
that we can combine our proposed methods seam-
lessly as they are designed for different phases of
ICL - (1) SRD for prompt generation and, (2) API-
CD for decoding. In the last row of Table 4, we
observe that this approach yields the best results,
where SRD primarily improves the Semantic Pars-
ing Metrics (SPM) and API-CD improves the Con-
straint Violation Metrics. Interestingly, the cases
where API-CD improves the SPM are a subset of
the cases where SRD improves SPM. Thus, we
see the same SPM numbers as the SPIS-5 row of
Table 3.

For practitioners, we note that implementing
SRD is both simple and incurs little latency com-
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Sampling Decoding Constraints Violations Metrics (%) () Semantic Parsing Metrics (% )(71)
Cs Cr  Ca Cta Exact Match  Intent F1 ~ Slot F1
Random Original 0.64 9.80 3.02 12.10 22.9 68.0 394
API-CD (ours) 0.00 0.00 0.00 0.00 24.2 71.7 39.5
SRD + SPIS-5 (ours)  API-CD (ours) 0.00 0.00 0.00 0.00 37.7 814 52.2

Table 4: Applying API-aware Constrained Decoding (API-CD) eliminates all four categories of constraint violations
(constraint violation rate = 0%) and improves the semantic parsing metrics. Combining both the semantic retrieval

and constrained decoding reaps complementary benefits.

pared to random sampling. On the other hand, API-
CD requires the API documentation to be fully
available and can increase the latency costs by
~ 20% compared to the original decoding strat-
egy. In the future, one can consider a tighter in-
tegration, where the knowledge obtained during
the SRD phrase reduces the decoding output space
during API-CD, thereby offering a speed-up. Un-
fortunately, the development complexity may out-
weigh the latency cost benefits (and some semantic
parsing metric improvement) in this case.

6 Related Work

Generating semantic representation from natural
language is a beast with many heads (Zettlemoyer
and Collins, 2012; Berant and Liang, 2014; Dong
and Lapata, 2018; Wang et al., 2019). In our work,
we look at a subclass of this problem where the in-
put is a task-oriented utterance and the output takes
the form of API call representations. Our input
format aligns us closely to work in task-oriented
semantic parsing (Gupta et al., 2018), task-oriented
dialog (Mansimov and Zhang, 2022; Xuan, 2020),
and intent classification and slot filling (Agha-
janyan et al., 2020; Weld et al., 2022), while our
output representation invites challenges similar to
ones seen in generating executable semantic parses
(Liang, 2016; Zhong et al., 2020), database queries
(Berant and Liang, 2014; Li and Jagadish, 2014;
Zhang et al., 2019; Yu et al., 2020; Choi et al.,
2021), and AWS API calls (Shu et al., 2022). Our
problem borrows the API-styled output, similar to
Shu et al. (2022), but does not rely on an entire
conversation or dialog as the input medium. To
this extent, we enhance the existing TOPv2 dataset
(Chen et al., 2020), leveraged in task-oriented set-
tings, with API-styled output representations.
With the recent popularity of Large Language
Models, adapting them for various tasks with the
abilities to use different tools is becoming ubiqui-
tous. Qin et al. (2023) fine-tunes language models

to use tools with external APIs to execute com-
plex instructions. Schick et al. (2023) demonstrates
that language models can learn to use external
tools via simple APIs in a self-supervised way by
in-context learning. Similar to our setup, the in-
context learning approach (Brown et al., 2020) has
been considered for intent and slot filing (Yu et al.,
2021), semantic parsing (Shin et al., 2021), by pre-
dicting English-like canonical representations first
(Shin et al., 2021), meaning representations directly
(Shin and Van Durme, 2022), and dialog-to-API
output (Shu et al., 2022). None of these works con-
sider, like us, fine-grained constraint violation met-
rics that can help to decipher the failure modes of
ICL in their settings. Hence, benefits of in-context
example retrieval do not show the shortcomings
of these approaches in mitigating constraint vio-
lations (Shin et al., 2021; Liu et al., 2022; Rubin
et al., 2022). While lexically constrained decoding
has been beneficial in a wide variety of setting such
as image captioning, machine translation, seman-
tic parsing, and paraphrase generation (Anderson
et al., 2017; Post and Vilar, 2018; Hu et al., 2019;
Li et al., 2020; Lertvittayakumjorn et al., 2021a;
Shin and Van Durme, 2022), dynamic adaptation
of the generation lexicon by leveraging API defini-
tions has not been investigated before.

7 Conclusion

In this paper, we consider the problem of generat-
ing an API-call-styled representation given an input
task-oriented utterance using in-context learning
(ICL) approaches with Large Language Models.
We propose a set of fine-grained constraint viola-
tion metrics that align with the API specifications
and show that it lets us diagnose fine-grained fail-
ure modes. Our analysis leads us to investigate two
simple mitigation strategies than can be used along-
side the ICL approach. A query-based Semantic
Retrieval of Demonstration in ICL prompts helps
obtain gains on traditional metrics while API-aware
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constraint decoding helps eliminate the proposed
constraint violations. Coupling the two approaches
with ICL yields the best of both worlds. Future
works may focus on speeding up the mitigation
approaches, and finding solutions that couple the
approaches in a tighter fashion.

Limitations

Focus on the in-context learning approach We
explored generating API representations with the
in-context learning approach due to its wide ap-
peals to practitioners in the low-resource settings.
The in-context prompts allow the model to make
use of examples in the low-resource settings, with-
out the need to update model parameters. However,
our investigation in mitigating constraint violations
is limited because when the practitioners are able to
pre-train large language models, there may be other
approaches, such as incorporating the constraints
in the language model pre-training stage, that may
help reduce constraint violations.

Focus on "hard" constraints Additionally, in
this work, we focus on categorical constraints (e.g.
structural constraints, function constraints, argu-
ment constraints ...), which can be automatically
detected without any ambiguity by checking the
generated API calls against pre-defined dictionar-
ies that stipulate the constraints according to API
documents. Other forms of constraints, such as
knowledge-driven constraints (Lertvittayakumjorn
et al., 2021b), which requires common-sense rea-
soning, are not included in our study. Future works
may investigate detecting and mitigation of con-
straints that require external knowledge.

Ethical Considerations

Our study makes use of the GPT-NeoX model, a
large pre-trained language model trained on col-
lections of internet text. Large language models
like GPT-NeoX are known to generate text that
may reflect and spread biases from their training
data. Hence, we advise post-processing on the gen-
erated outputs to remove generated content that is
potentially offensive. Additionally, our constrained
decoding strategy limits the output space and may
therefore reduce the risk of using these language
models.
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A Appendix
A.1 Flattened API Calls

Given an API call, we flatten it to a list of function calls, where each function is represented by a function
name f and a set of argument-value pairs A (Table 5).

Users’ Utterances Ground-Truth API Calls  Flattened List Representation of the Ground-Truth API calls

[Utterance]: [

add reminder feed sparky 6pm daily (fi=CREATE_REMINDER,

[Ground-truth]: Ai={ : "feed sparky",

CREATE_REMINDER ( = "feed ‘GET_RECURRING_DATE_TIME }),

sparky", (f2=GET_RECURRING_DATE_TIME, _

= GET_RECURRING_DATE TIME ( A2={ "6 pm”, : "daily” }),
="6 pm" s = 1

"daily" ) )

[Utterance]: [

What’s traffic going to be like on Saturday (f1=GET_INFO_TRAFFIC,

[Ground-truth]: Ar={ : "on Saturday” })

GET_INFO_TRAFFIC ( ="on

Saturday")

Table 5: Examples of API calls and their flattened list representations
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