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Abstract

Large Language Models (LLMs) exhibit im-
pressive performance on a range of NLP
tasks, due to the general-purpose linguistic
knowledge acquired during pretraining. Ex-
isting model interpretability research (Tenney
et al., 2019) suggests that a linguistic hierar-
chy emerges in the LLM layers, with lower
layers better suited to solving syntactic tasks
and higher layers employed for semantic pro-
cessing. Yet, little is known about how encod-
ings of different linguistic phenomena interact
within the models and to what extent process-
ing of linguistically-related categories relies
on the same, shared model representations. In
this paper, we propose a framework for testing
the joint encoding of linguistic categories in
LLMs. Focusing on syntax, we find evidence
of joint encoding both at the same (related part-
of-speech (POS) classes) and different (POS
classes and related syntactic dependency rela-
tions) levels of linguistic hierarchy. Our cross-
lingual experiments show that the same patterns
hold across languages in multilingual LLMs.

1 Introduction

Recent advancements in natural language process-
ing (NLP) can be attributed to the development and
pretraining of large language models (LLMs) such
as BERT, GPT-3, and many others (Devlin et al.,
2019; Brown et al., 2020; Touvron et al., 2023). For
their intended use of providing general-purpose lan-
guage representations suitable for many NLP tasks,
these models must efficiently capture a wide range
of linguistic features within their finite capacity.
Despite their success, little is known about the way
in which different types of linguistic information
are organized in these models. Systematically un-
derstanding how these models represent linguistic
phenomena and their interaction is crucial for the
development of more effective NLP methods.

* Corresponding author: giulio.starace@gmail.com.

Existing research probed LLMs for their en-
coding of various linguistic properties such as
agreement (Jawahar et al., 2019), word order and
sentence structure (Tenney et al., 2018; Hewitt
and Manning, 2019), co-reference (Tenney et al.,
2019), semantics (Ettinger, 2020) and multilin-
guality (Ravishankar et al., 2019; Libovicky et al.,
2020). Taking a step further, Tenney et al. (2019)
and Clark et al. (2019) studied where linguistic in-
formation is encoded in LLMs by probing different
layers. Their results demonstrated that a linguistic
hierarchy emerges in BERT representations, with
lower layers capturing local syntax and higher lay-
ers being employed in higher-level semantic and
discourse tasks. However, we do not yet understand
how encodings of different linguistic phenomena
interact within the models and to what extent pro-
cessing of linguistically-related categories relies on
the same, shared model representations.

There are many dependencies between process-
ing different linguistic phenomena: for instance, in-
formation about a word’s part of speech is likely to
be employed when disambiguating its word sense.
Alternatively, lower-level syntax is an important
first step for semantic composition and natural lan-
guage understanding tasks. In this work, we inves-
tigate how the (hierarchical) dependencies between
different linguistic categories are encoded in LLMs,
focusing on syntax. We ask a set of novel questions:
(1) how related syntactic categories (e.g. different
parts of speech (POS), such as noun or verb) are
encoded within the models; (2) how syntactic cate-
gories at different levels of the linguistic hierarchy
(e.g. POS classes and syntactic dependency rela-
tions) interact within the model; and (3) whether
the observed patterns hold across languages.

To answer these questions, we propose a frame-
work for testing the joint encoding of linguistic
categories in LLMs. Specifically, we investigate
to what extent the information about distinct lin-
guistic categories is shared in the parameters of the
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Figure 1: A diagram illustrating the three steps of our method: 1) Representation classification. 2) Centroid
estimation. 3) Cross-neutralization. The complete methodology is outlined in Section 3.

model. Our approach (see Fig. 1) is inspired by the
work of Choenni and Shutova (2022), who studied
how LLMs share information across languages. We
employ their cross-neutralization method, but ex-
tend it to study how information is encoded across
linguistic categories in two syntactic tasks—part-
of-speech (POS) tagging and dependency (DEP)
labeling. In short, we test whether removing infor-
mation on one syntactic category results in a failure
to process another, related one. For instance, would
removing a representation of the verb class hurt the
model’s ability to identify the verbs’ syntactic de-
pendencies, while still succeeding in this task on
other categories, e.g. nouns? This provides insight
into whether these categories are jointly encoded.
We study joint encoding patterns within both
a monolingual and multilingual LLM, namely
RoBERTa (Liu et al., 2019b) and XLM-R (Con-
neau et al., 2020). For the latter, we focus our
analysis on English, Greek, and Italian, investi-
gating to what extent multilingual models encode
information for POS tags and DEP relations in a
language-agnostic manner. We find that POS tags
that are linguistically related are indeed jointly en-
coded by both the monolingual and multilingual
models, and observe similar joint encoding pat-
terns across all three languages. Moreover, we
obtain further evidence of both language-agnostic
and language-specific encoding within multilingual
models, given that representations specific to POS
tags and DEP relations can be approximately trans-
ferred across languages without a substantial im-
pact on performance. Lastly, we find evidence of
joint encoding between related POS tags and DEP
relations, suggesting information sharing across

tasks at different levels of the linguistic hierarchy.

2 Background and related work

A wide range of methods have emerged to study the
inner workings of neural networks (Belinkov and
Glass, 2019; Madsen et al., 2022). Our approach
is situated within the field of probing (Conneau
et al., 2018), which typically involves the use of a
simple auxiliary “probing” network trained to per-
form a specific task on the representations from a
pretrained LLM. By keeping the probing network
shallow and the pretrained model frozen, the pre-
dictions can be used to identify which information
was already captured by the pretrained LLM.

Previous work on probing Shi et al. (2016) are
the first to introduce the idea of probing, training
a logistic regression classifier on top of the em-
beddings from two neural machine translation en-
coders to study the syntactic information learned
by them. Similarly, Adi et al. (2017) probe sen-
tence representations for sentence length and word
order by training auxiliary task classifiers on pre-
dicting these exact properties from the represen-
tations. Continuing on this work, Conneau et al.
(2018) introduce a suite of probing tasks. Ten-
ney et al. (2019) apply these to BERT’s hidden
states, quantifying where linguistic information is
captured within the network. They find that the
model follows the hierarchy of the traditional NLP
pipeline, with lower-level, syntactic features ap-
pearing earlier than more complex semantic roles
and structures. Ravishankar et al. (2019) bring the
same analysis to the multilingual setting. Dalvi
et al. (2021) find more supporting evidence of this
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through an unsupervised approach. Manning et al.
(2020) probe the attention mechanism in BERT
for correspondence between linguistic phenomena
such as syntactic dependencies and coreference.
They also make use of structural probes (Hewitt
and Manning, 2019), finding that the representa-
tions from BERT capture parse tree structure.

Syntactic knowledge in BERT Various ap-
proaches have been used to study what knowl-
edge LLMs capture about syntax (Rogers et al.,
2021). Previous probing studies have shown that
BERT embeddings encode information about parts
of speech, syntactic chunks, constituent and de-
pendency labeling (Tenney et al., 2018; Liu et al.,
2019a) as well as a broader set of syntactic fea-
tures, such as tree depth and tense (Conneau et al.,
2018). Yet, while it has become evident that syntax
is captured to some extent, less is still known about
where and how this information is acquired. Some
works suggest that syntactic information is encoded
in the token representations as they can be used
to successfully reconstruct syntactic trees (Vilares
et al., 2020; Kim et al., 2019; Hewitt and Manning,
2019). Others have instead studied syntactic knowl-
edge at the level of attention heads, and show that
particular heads specialize to specific aspects of
syntax (Htut et al., 2019; Clark et al., 2019). How-
ever, Htut et al. (2019) find that these heads can
not recover syntactic trees, suggesting that atten-
tion heads do not reflect the full extent of syntactic
knowledge that these models learn.

Information sharing in LLMs Multiple works
study information sharing in LLMs (Blevins et al.,
2018; Sahin et al., 2020), with most focusing on
cross-lingual sharing (Chi et al., 2020; Shapiro
et al., 2021; Stanczak et al., 2022). Libovicky
et al. (2020) propose a simple method that removes
language-specific information from model repre-
sentations by capturing it through the mean of a
set of representations from the respective language.
Ravfogel et al. (2020) iteratively remove gender
information in word embeddings through projec-
tion onto the nullspace (INLP) in order to mitigate
bias in biography classification (De-Arteaga et al.,
2019). Elazar et al. (2021) use INLP to build coun-
terfactual representations for “amnesic probing”.
Here, the utility of a property for a given task is es-
timated by measuring the influence of removing the
property via INLP, treating the removal as a causal
intervention. Our work is inspired by Choenni and

RoBERTa XLM-R
en_gum en_gum it_vit el_gdt
POS 95.6% 95.5%  974% 97.9%
DEP 90.9% 914%  93.9% 94.8%

Table 1: Classification accuracy of our probing classi-
fiers on English, Italian and Greek datasets for part-of-
speech tagging and dependency labeling.

Shutova (2022), who probe for joint encoding of
typological features across different languages. In
particular, they probe LLMs for typological lan-
guage properties and test whether subtracting lan-
guage “centroids” from model representations neg-
atively affects performance in typologically-related
languages. While they focus on representations of
specific languages, we target the representations of
linguistic categories (e.g. nouns), and test whether
these are jointly encoded across classes and tasks.

POS tagging and dependency labeling We
study the joint encoding of POS categories and
syntactic dependencies. Given a sentence, POS
tagging is the task of mapping each word to the
appropriate part of speech. For instance, in “The
sailor dogs the hatch.”, “dogs” is a verb, while in
“He chases the dogs”, “dogs” is a noun. Depen-
dency labeling is the higher-level task of labeling
the dependency relation between a “head” word
and a “dependent” (or “parent” and “child”). For
instance, in “That is a black car.”’, “black” is an
adjectival modifier of “car”.

3 Methodology
3.1 Probing

To study the representations from a given encoder
network, we train a shallow classifier, or “probing
classifier" on a probing task, using the representa-
tions from the encoder as input. By keeping the
encoder frozen, we can ascribe all the learning to
the relatively inexpressive probing classifier, allow-
ing us to probe whether the representations from
the encoder contain the information necessary to
solve the task at hand.

3.1.1 Probing tasks

We focus on POS tagging and DEP labeling as
our probing tasks. For both cases, our encoders
take sentences as input, producing token-level em-
beddings at each layer. We extract the token-level
embeddings from a given layer and pool them into
word embeddings (detailed in Section 3.5). For
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POS DEP
Encoder / treebank Layer Aggr. Layer Aggr.
RoBERTa/en_gum 3 max 3 mean
XLM-R /en_gum 9 max 9 first
XLM-R /it_vit 9 first 9 mean
XLM-R /el_gdt 12 mean 9 mean

Table 2: Optimal combination of embedding layer and
subword pooling function for each encoder (RoBERTa
& XLM-R), task (POS & DEP) and language (English,
Italian & Greek) combination, chosen as outlined in Sec-
tion 3.5 and used throughout our experiments. When
neutralizing across languages (Section 5) and across
tasks (Section 6), we use the configuration of the neu-
tralizer for both neutralizer and target.

POS tagging, the probing classifier receives the
word embeddings and is trained to classify them
across 17 categories. For DEP labeling, we aim
to label the dependency between child and parent.
Thus, we pair each word in the sentence with its
head as labeled in the dataset and concatenate their
representations'. The probing classifier takes this
concatenation as input and is trained to classify the
dependency relation between the corresponding
words across 36 categories.

3.1.2 Datasets

We use the Universal Dependencies treebanks
(Nivre et al., 2020), manually annotated for POS
tagging and DEP labeling. We choose the GUM
(Zeldes, 2017), VIT (Delmonte et al., 2017), and
the GDT (Prokopidis and Papageorgiou, 2017)
datasets for English, Italian, and Greek respectively.
All datasets contain word-level annotations with a
total of 17 POS tags and 36 DEP relations shared
across languages”.

3.1.3 Models

Encoders We use RoBERTa (Liu et al., 2019b)
and XLM-R (Conneau et al., 2020) as the encoders
we probe. RoBERTa is an optimized version of
the encoder-only transformer BERT (Devlin et al.,
2019), and XLM-R is its multilingual variant, sup-
porting 100 languages. Unlike BERT, both models
are trained exclusively on the masked language
modeling (MLM) objective. We use the “base”
version of each model, comprising of 12 encoder
layers, 12 attention heads and an embedding size of

'Different methods such as adding the mean vector or
absolute difference of the pair resulted in similar performance.

2We summarize the split sizes and an overview of the pre-
processing pipeline for all three languages in Appendix A.

768, with a total parameter count of ~125 million?.

Probing classifier For our probing classifier, we
use a multilayer perceptron (MLP) consisting of
two linear layers with a tanh activation function in
between. We train our probing classifier using the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a learning rate of 10~3 and weight decay of
1072, and employ an early stopping criterion based
on the validation set. We report the classification
accuracy for the best configurations in Table 1.

3.2 Probing Classifier Selectivity Baseline

A sufficiently expressive probing classifier may be
capable of learning any task given representations
as input. This would render its probing functional-
ity obsolete since the information localized by the
probing classifier would no longer be necessarily
attributed solely to the input representations. To
ensure that our probing classifier is not overly ex-
pressive, we conduct a baseline check as outlined
by Hewitt and Liang (2019). Here, we construct an
analogous control task for POS tagging, where we
randomly assign each word in the training set to
one of N arbitrary labels, where N is the number
of POS tag labels (i.e. 17). A good probe should
have high selectivity, computed as the difference
between the accuracy on the probing task and the
accuracy on the control task. The more selective
the probe, more likely it is that the information it
accesses is specific to the input representations. If
the probe performs equally well on the control task,
it suggests that the probe may be leveraging some
inherent properties of the model architecture or the
data distribution, rather than specifically extracting
useful information from the representations. We
train a new checkpoint of our probing classifier
on the control task, ending training after the same
number of update steps performed when training
on the POS tagging task, and report the outcome in
Section 4.

3.3 Centroid estimation

To study the joint encoding of linguistic categories
(e.g. nouns, verbs, etc.) in our encoders, we use the
probing classifier to localize the subspace of the en-
coder that corresponds to each of these categories
by obtaining their mean vector representation, or
“centroid”, similarly to the language centroids of

3We report the results of a brief parameter scaling experi-
ment in Appendix B.
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Libovicky et al. (2020). The intuition is that repre-
sentations that repeatedly result in predictions of
a particular class will encode information specific
to that class, which can be captured through ag-
gregation such as averaging. For POS tagging, the
centroid u; of each target POS class ¢ is defined as

(posy 1
llt = @ Z v (1)

veV}

where V! is the set of the representations of the
words in our validation set that were predicted as
tag ¢t when probing the /th layer of our the encoder.
For DEP labeling, each prediction depends on both
the representation of the head h and the child c of
the DEP relation. The centroid of each target DEP
relation ¢ is computed as:

1
Wi pn 2 bd @
t (h,d)eP!

where P} is the set of (head, dependent) represen-
tation pairs that were predicted as DEP relation ¢
when probing the [-th layer of our encoder, and
[h ; d] is the concatenation of the representations.*

3.4 Cross-neutralization

To study whether different linguistic categories
are jointly encoded within LLMs, we use a cross-
neutralization method. We first evaluate the class-
specific accuracy of our probing classifier on the
original representations of our encoder. We then
take a neutralizer centroid estimated as outlined
in Section 3.3, and subtract it from the encoder
representations corresponding to some target cat-
egory. For instance, taking verbs as neutralizer and
nouns as target, we subtract all verb information
from the noun representations. We then repeat prob-
ing classification on these “neutralized” encoder
representations. The intuition behind this is that if
the encoders were to represent linguistic categories
in independent ways, we expect the performance
to deteriorate only for the linguistic category that
we use for computing the centroids, i.e. remov-
ing verb information only negatively affects the
representations of verbs. However, in the case of
joint encoding, we expect to see substantial perfor-
mance drops for other target categories as well,

“We test the quality of the predicted centroids by comput-
ing gold centroids based on the gold labels, and computing
cosine similarity between the two. We find that they are near
identical (~1 similarity), see Appendix C.

suggesting that some features of the encoder play a
role in encoding both categories. As a baseline, we
additionally experiment with subtracting random
vectors (rather than centroids) from the encoder
representations. If the centroids are indeed respon-
sible for the drop in performance, then we should
not observe similar performance drops when sub-
tracting random vectors. We report the outcome of
this experiment in Section 4.

3.5 Choosing a configuration for probing

Understanding where to best localize the task-
specific information within the models is not trivial.
For instance, while Tenney et al. (2019) show that
syntax information is more localized in lower lay-
ers, de Vries et al. (2020) demonstrate that such
findings do not automatically port to multilingual
models. Moreover, Del and Fishel (2022) show
that for multilingual models, the pooling method
used can have important effects on the knowledge
that is captured. Thus, we first study which layer
[ and pooling function maximizes the amount of
information that is captured in our centroids. As
such, we employ the notion of self-neutralization,
the case in which the same linguistic category is
both the target and the neutralizer.

We hypothesize that a large drop in accuracy
after self-neutralization is indicative of a high
amount of relevant information being captured by
the centroid. This drop should be relative to a
high accuracy. We thus select the top quartile
of our configurations in terms of original-encoder
accuracy, and from this subset use the configu-
ration with the highest relative drop due to self-
neutralization. We consider representations from
layers [ € {1,3,6,9,12} and pool subwords by
either taking the first token in a word, or by max-
pooling or mean-pooling over the token represen-
tations. For each encoder, language and task, we
separately find the optimal probing configuration
and report them in Table 2. We make use of the
validation set for this portion of the methodology.

4 Joint encoding of POS tags

We begin by examining whether representations
of different POS tags share information. For each
POS tag, we compute its centroid and re-classify
representations neutralized by the centroid. With
regard to our baselines, we find that subtracting
random vectors leaves the performance relatively
unchanged, with no evidence of systematic drops.
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Figure 2: Relative change in accuracy when cross-
neutralizing POS tags (RoBERTa).

For our selectivity baseline, we find that our prob-
ing classifier achieves an average accuracy of 96%
on the POS tagging task and 63% on the control
task, giving a selectivity value of 33%. This is in
line with probes for similar tasks accepted for their
validity in the literature (Hewitt and Liang, 2019).

To facilitate visualization and discussion, we
select an illustrative subset® of POS tags that cov-
ers both open- and closed-class words, as we ex-
pect potentially different patterns between these
two groups. For instance, we expect neutraliza-
tion to be symmetric (neutralizer and target can be
swapped for similar results) in the case of open-
class words as we hypothesize that joint encoding
here is dictated by co-occurrence patterns. Con-
versely, we expect asymmetric neutralization in
the case of close-class neutralizers, supposing that
joint encoding here may be dictated by functional
dependencies, which may not necessarily be recip-
rocal.

Results We find that linguistically related cat-
egories generally tend to be jointly encoded in
RoBERTza (see Fig. 2). For instance, the relative
decrease of VERB classification accuracy by 53%
when neutralizing using auxiliaries (AUX) suggests
information sharing. This may be explained by the
fact that auxiliaries themselves are verbs (e.g. “has
done”), and that they functionally modify verbs.
We note that the information flow in this pairing
is asymmetric, as noted by the much smaller 11%
drop in the reciprocal case. This aligns with our

5See Appendix F for results between all classes.

hypothesis that joint encoding for closed-class neu-
tralizers may be explained by their functional role,
which is often not reciprocal (verbs will generally
not modify auxiliaries).

While we observe further evidence of linguis-
tically related categories being jointly encoded
(e.g. VERB and ADV), this is not ubiquitous. For
instance, joint encoding is not found when neutral-
izing nouns (NOUN) with determiners (DET). Here,
the relative percentage decrease is only 2%, despite
determiners acting as modifiers for nouns. In gen-
eral, we do not find distinct patterns of joint encod-
ing unique to closed-class and open-class words.
Our hypothesis of symmetry due to co-occurrence
is at best supported by the ADV-ADJ pairing, with
relative drops of -21% and -29%. In most other
pairings information sharing appears to be asym-
metric, suggesting functional dependence or an-
other root cause as explanation.

Moreover, we note that open-class words tend to
be “adept” at cross-neutralizing, sharing informa-
tion as neutralizers with many other tags as shown
by the NOUN, ADJ and VERB neutralizers rows suc-
cessfully neutralizing several columns. However,
we note similar patterns when neutralizing with the
closed-class DET. Overall, we find evidence of joint
encoding of POS tags in RoBERTa, but further
work is necessary to establish which mechanisms
lead to specific pairs sharing information or not.

4.1 Joint encoding in multilingual models

We now investigate how our findings transfer to
other languages. We examine to what extent mul-
tilingual models demonstrate language-specific or
language-agnostic information-sharing behavior.
Additionally, we verify the consistency of our
method across models as we can directly compare
the results between ROBERTa and XLLM-R in En-
glish, and also across languages, as we can compare
the effects of cross-neutralization on English, Ital-
ian, and Greek. Our setup is the same as in Section
4, replacing RoBERTa with XLLM-R and repeating
the experiment in the three languages.

Monolingual vs. multilingual model When
comparing ROBERTa and XLLM-R on the English
dataset, we observe similar patterns across POS
tags (see Fig. 2 and the left-most column of Fig. 3).
For instance, for both models, we see that nouns
have a neutralization effect on adjectives, numerals,
and adverbs. This suggests that given a language,
multilingual models jointly encode POS tags simi-
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Figure 3: Relative change in accuracy when cross-neutralizing POS tags using embeddings from XLM-R in
(left-to-right respectively) English, Italian and Greek, labeled by their universal dependencies treebank.

larly to their monolingual counterparts.

Joint encoding within languages We find that
XLM-R exhibits similar sharing patterns within
different languages (see Fig. 3). For instance, we
see that adjectives consistently neutralize adverbs
across all languages (-31%, -44% and -40% in En-
glish, Italian and Greek). This suggests that the rep-
resentations responsible for predicting these tags
contain some language-agnostic information.

However, we also observe some language-
specific behavior. For instance, VERB categories
cross-neutralize adjectives (ADJ) more prominently
in Italian (-63%) than in English (-26%) and Greek
(-18%). This may be explained by the postnominal
use of adjectives in Italian which may overlap more
closely with the positioning of verbs, particularly
in the past participle tense (Cinque, 2010) (in con-
trast to the strictly prenominal use in the other lan-
guages). The results suggest that XLM-R discovers
and leverages language-agnostic information when
possible, while also learning language-specific in-
formation when necessary.

5 Information sharing across languages

Our findings for individual languages on XLM-R
raise the question of whether information about
linguistic categories from two different languages
can also be jointly encoded. To further probe for
language-agnostic joint encoding of linguistic cat-
egories, we extend our experiment to test whether
information between two linguistic categories from
two different languages is jointly encoded. We
posit that if categories share information across

languages, this is evidence that the models learn
at least partially language-independent representa-
tions for these categories. We test this hypothesis
by cross-neutralizing every linguistic category in
a language A with another category from a lan-
guage B, e.g. neutralizing all Italian POS tags with
English nouns. Aside from probing for language-
agnosticism, this allows for further exploration of
joint encoding of linguistic categories. To enable
consistent neutralization, we use the same layer and
pooling function configuration (see Section 3.5) for
both neutralizer and target. We do this by utilizing
the neutralizing language configuration for both
neutralizer and target in cases where they differ.

Results Fig. 5 shows results of cross-neutralizing
for Italian POS tags when using the corresponding
English centroids from each linguistic category. On
the diagonal, neutralizer and targets correspond to
the same linguistic category, but for different lan-
guages. Accuracy drops substantially here (~ 70%
on avg.). This is evidence of language-agnostic en-
coding of these linguistic categories, as centroids
in one language neutralizing targets in another lan-
guage points to information in the representations
being shared across both languages.

We also observe joint encoding of different
linguistic categories, for instance with English
NOUNs neutralizing Italian numerals (NUM) (-48%),
or English adjectives (ADJ) neutralizing Italian ad-

®Note that because the linguistic categories are now dif-
ferent between neutralizer and target, the diagonal no longer
represents self-neutralization, and is simply an artifact of the
ordering of the categories to favor legibility.
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verbs (ADV) (-47%). An alternative explanation to
language-agnostic representation learning in XLM-
R may be that instances of code-switching or lan-
guage borrowing in the pretraining data may have
encouraged XLM-R to jointly encode different lin-
guistic categories across languages. Future work
may investigate why joint encoding occurs across
different categories of different languages.

We repeat the experiment using English neu-
tralizers on the Greek corpus, and observe sim-
ilar but milder trends. This may be due to En-
glish being phylogenetically closer to Italian than
Greek (Chang et al., 2015), leading to a higher de-
gree of information sharing between the former two
languages, but further work in determining which
language pairs share more information is needed
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Figure 5: Relative change in accuracy when cross-
neutralizing XLM-R embeddings in Italian using cen-
troids from English.

to draw solid conclusions. For more detailed plots
on cross-lingual cross-neutralization, we refer the
reader to Appendix F, where we present results
from all combinations of neutralizer and target
across the three languages.

6 Information sharing across tasks

To study whether information is shared across the
linguistic hierarchy, we cross-neutralize between
tasks using POS neutralizers and dependency rela-
tion targets. Since a given parent may have several
dependents while the child will only have one par-
ent, we posit that most of the information for the
child-parent dependency is captured by the child.
We therefore subtract the POS centroids from the
child representations in the child-parent concatena-
tions for dependency labeling. We also complete
the complementary experiment of subtracting the
child portion of the dependency relation centroids
from the POS embeddings for POS tagging, to test
whether joint encoding happens in both directions.
As in Section 5, we use the neutralizer configura-
tion for both neutralizer and target for consistency.

Results Fig. 4 (top) shows the results when neu-
tralizing RoBERTa representations for DEP labels
using POS centroids. We find further evidence of
linguistically related units being jointly encoded.
For instance, adverb POS tags (ADV) neutralize ad-
verbial modifier (ADVMOD) dependency labels, as
can be seen by the 97% relative drop in accuracy.
The fact that POS tag representations jointly con-
tain information that is crucial for encoding DEP
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Figure 6: Relative change in accuracy for a sample of dependency relations when cross-neutralizing XLM-R DEP
embeddings using XLM-R POS centroids in (left-to-right respectively) English, Italian and Greek.

labels shows that LL.Ms learn hierarchically, remi-
niscent of the classical NLP pipeline.

To study whether our findings generalize beyond
English and RoBERTa, we repeat the experiment
on XLM-R (see Fig. 6). Large drops in accuracy
on the diagonal suggest that many information-
sharing patterns hold across languages and models,
consolidating our findings from sections 4.1 and 5.
We also find language-specific results: pronouns
(PRON) neutralize nominal subjects (NSUBJ) only in
English (-56%), having surprisingly little effect on
the other languages (-5% and -2%). On occasion,
we find evidence of bidirectional sharing between
different levels of the linguistic hierarchy. In Fig.
4 (bottom), we note that certain pairs highlighted
by the diagonals such as adpositions (POS: ADP)
and case relations (DEP: CASE) present evidence of
joint encoding both when neutralizing DEP with
POS centroids (-55%) and when neutralizing POS
with DEP centroids (-84%). This seems to suggest
that the hierarchical nature of the representations
learned by these LLMs is not necessarily unidi-
rectional: information appears to be shared both
upwards and downwards in the linguistic hierarchy.

7 Conclusion

We study information sharing between linguistic
categories in LLMs, finding evidence of joint en-
coding between pairs of related POS tag classes.
By applying our method to XLM-R, we find ev-
idence of joint encoding in XLM-R across lan-
guages, showing that our findings hold for both the

monolingual (RoBERTa) and multilingual (XLM-
R) case. Lastly, we cross-neutralize between POS
tagging and DEP labeling, and find evidence of
information sharing across the linguistic hierarchy.
We test specifically for joint encoding of different
syntactic categories that rely on the same linguistic
concept, such as an “amod” dependency imply-
ing some relationship with the adjective and the
noun POS tags. However, our method could be
extended to test for joint encoding of categories in
other tasks that can be expected to share informa-
tion. This in turn could be informative on whether
an LLM indeed captures this shared information
between different tasks. A more complete map
of this knowledge could help develop better mod-
els in many application scenarios: for instance, in
a multitask learning setting where negative inter-
ference between parameter updates from different
tasks is known to hamper performance (Zhao et al.,
2018) or a lifelong learning setting where learning
a new task often leads to (catastrophic) forgetting
of the previously learned ones (Biesialska et al.,
2020). Future work may additionally seek to ex-
plore more languages, particularly low-resource
and typologically distant languages, or consider
including higher-level semantic tasks from the clas-
sical NLP pipeline, such as semantic role labeling,
word sense disambiguation and coreference resolu-
tion. Further work is also necessary for understand-
ing why certain representations share information
while others do not.
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Limitations

In this work, we limit our experiments to an
encoder-only architecture. Further research could
be carried out on encoder-decoder or decoder-only
architectures.

Additionally, our experiments only examine
three languages. Future work may therefore aim to
extend the experiments to include more languages,
particularly low-resource languages. Similarly, our
discussion of the linguistic hierarchy is limited to
two tasks from the early stages of the classical NLP
pipeline. As mentioned, further work may extend
the experiments to higher-level semantic tasks.

Lastly, the lack of cross-neutralization effects
between some linguistic categories does not neces-
sarily indicate the absence of joint encoding, but
merely that our representations were not sufficient
to prove its existence.
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A Dataset pre-processing

Table 3 presents the train, validation and test split
sizes (in terms of number of sentences) for each
language considered in our work.

The sentences in the corpora from the Universal
Dependencies framework are already tokenized to
the word level and stored as lists of words in the
tokens field. However, since we use sub-word to-
kenizers, namely the Byte Pair Encoding (Sennrich
et al., 2016) and SentencePiece (Kudo and Richard-
son, 2018) tokenizer, we further split the words
into their sub-word tokens. Depending on the task,
we also include either the upos field, which is a
list of integers corresponding to one of the 17 uni-
versal POS tags available, or the head and deprel
fields which contain the head and one of the 36
dependence relations for dependency labeling’. It
should be noted that we only keep the language-
independent relations, as some of them appear only
with a language-specific modifier, and including
them would make comparisons across languages
less straightforward?.

Furthermore, upon inspecting the datasets we
observed that the annotators had split contractions
into their parts and included them next to the orig-
inal contraction for the Italian and Greek corpora.
However, ground-truth labels were only provided
for the sub-words, with the compound words an-
notated as a special class “_”. Hence, we filtered
out the compound words from these datasets and
retained their sub-parts. In addition to that, for de-
pendency labeling, we ignored words with the root
dependency label, as they have no head and their
prediction is trivial.

B Scaling to larger models

We repeat the experiments from Sections 4 & 5 to
verify whether they hold across different model
sizes. More specifically, we scale the English
POS tag cross-neutralization from RoBERTA-base
to ROBERTA-large (Fig. 10a), and from XLM-R-
base to XLM-R-large (Fig. 10b) and XLM-R-XL
(Fig. 10c). We notice that similar patterns occur
across all tested model sizes (e.g. NOUN neutraliz-
ing ADV). The effect appears to be generally less
pronounced for larger models, although we also
did find instances where the drop in accuracy is the
same or higher.

8A full list of POS tags and dependency relations can be
found on the Universal Dependencies website.

C Golden and Predicted Centroid
Similarity

We present the cosine similarity between golden
and predicted centroids for the POS tagging setup
in table 4, as mentioned in Section 3.3.

D Self-neutralization visualization

Figs. 8 and 7 showcase the decrease in ac-
curacy when self-neutralizing in the POS tag-
ging/dependency labeling task for RoBERTa and
XLM-R accordingly.

E Engineering Logistics

We rely on PyTorch Lightning (Falcon and The
PyTorch Lightning team, 2019) and Hugging
Face Datasets (Lhoest et al., 2021) and Trans-
fomers (Wolf et al., 2020) for our implementa-
tion. We run our experiments on an NVIDIA
A100 GPU, with each training run taking approx-
imately three minutes. Our code is available at
github.com/thesofakillers/infoshare.

F Detailed Cross-Neutralizing Results

We display the complete results for our cross-
neutralization experiments in Figs. 9 — 18. More
specifically, Fig. 9 corresponds to the monolingual
setting with RoBERTa on English, and Fig. 11
to the multilingual setting with XLM-R on En-
glish, Italian and Greek. Figs. 12 — 14 show the
cross-lingual setting for every possible pairing of
our three languages with XLM-R. Finally Figs. 15
and 16 show the monolingual cross-task setting in
RoBERTa in POS-DEP and DEP-POS directions
while Figs. 17 and 18 show the same but in the
multilingual setting with XLM-R.

Train Validation Test
English (GUM) 4287 784 890
Italian (VIT) 8277 743 1067
Greek (GDT) 1662 403 456

Table 3: Sentence count in each split of each of the
datasets we consider, averaging 24 words per sentence.
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Figure 7: Decrease in performance for XLM-R when self-neutralizing in the POS tagging (left) and dependency
labeling (right) tasks using embeddings extracted from different layers and setup configurations, for each of for
English (en_gum), Italian (it_vit) and Greek (el_gdt) treebanks. For dependency labeling, we use the best child-head
concatenation mode (ONLY) based on the results we aquired with ROBERTa, as shown in Fig. 8b.

Table 4: Cosine similarities between golden and pre-
dicted centroids for the RoOBERTa POS tagging setup.

POS Tag Cosine Similarity
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Figure 8: Decrease in performance for RoOBERTa when
self-neutralizing in the POS tagging (top) and depen-
dency labeling (bottom) tasks using embeddings ex-
tracted from different layers and setup configurations.
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Figure 12: Relative change in accuracy when cross-neutralizing Italian (left) and Greek (right) POS tag embeddings
using English centroids, using XLM-R representations.
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Figure 13: Relative change in accuracy when cross-neutralizing English (left) and Greek (right) POS tag embeddings
using Italian centroids, using XLM-R representations.
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Figure 14: Relative change in accuracy when cross-neutralizing English (left) and Italian (right) POS tag embeddings
using Greek centroids, using XLM-R representations.
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