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Abstract

Recent approaches have explored language-
guided classifiers capable of classifying exam-
ples from novel tasks when provided with task-
specific natural language explanations, instruc-
tions or prompts (Sanh et al., 2022; R. Menon
et al., 2022). While these classifiers can gen-
eralize in zero-shot settings, their task perfor-
mance often varies substantially between dif-
ferent language explanations in unpredictable
ways (Lu et al., 2022; Gonen et al., 2022).
Also, current approaches fail to leverage unla-
beled examples that may be available in many
scenarios. Here, we introduce TALC, a frame-
work that uses data programming to adapt a
language-guided classifier for a new task dur-
ing inference when provided with explanations
from multiple teachers and unlabeled test exam-
ples. Our results show that TALC consistently
outperforms a competitive baseline from prior
work by an impressive 9.3% (relative improve-
ment). Further, we demonstrate the robust-
ness of TALC to variations in the quality and
quantity of provided explanations, highlight-
ing its potential in scenarios where learning
from multiple teachers or a crowd is involved.
Our code is available at: https://github.
com/WeiKangda/TALC.git.

1 Introduction

Inductive learning from examples has underpinned
many successful machine learning applications.
However, classifiers trained solely from labeled
examples often struggle to generalize in scenarios
with limited labeled data. In contrast, humans can
learn new concepts through natural language con-
versations (Chopra et al., 2019; Tomasello, 1999).
Inspired by this phenomenon, recent approaches
use natural language explanations, instructions, and
prompts to train language-guided classifiers (Sri-
vastava et al., 2017; Andreas et al., 2018; Murty
et al., 2020; Wang* et al., 2020; Ye et al., 2020).
While these classifiers can perform zero-shot classi-
fication, they have several limitations. Firstly, they
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Figure 1: TALC leverages data programming to perform
test-time adaptation of a language-guided classifier. Nat-
ural language explanations (E = {ey, e3, e3}) provided
by multiple teachers and unlabeled examples (X;.,)
for a new task are fed to a language-guided classifier
pair-wise resulting in multiple pseudo-labels for the un-
labeled examples. TALC uses a graphical aggregation
to weigh the pseudo-labels from different explanations
to decide the final predicted label (Y). TALC is highly
flexible in aggregating labels as it can conceptually con-
sider a broad variety of factors, such as the complexity
of explanations, consistency between explanation pre-
dictions, identity of the explanation provider, etc.

lack a principled strategy for weighing language su-
pervision from multiple sources (or teachers). Sec-
ondly, they fail to utilize the available unlabeled
data for a new task during inference. Additionally,
the impact of the quality of sources, and the inclu-
sion of low-quality explanations, remains largely
unexplored.

To address these limitations, we present
TALC (Test-time Adaptation of Language-guided
Classifiers), a framework for adapting language-
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guided classifier on novel tasks during inference,
also known as test-time adaptation. TALC assumes
a priori access to the entire test set (unlabeled sam-
ples) of the novel task and the task-specific expla-
nations, which aligns with real-world situations,
such as developing a product-category classifier
for an e-commerce platform. In the context of
TALC, the multiple explanations available for each
task are considered as distinct supervisory signals.
Leveraging the power of data programming (Rat-
ner et al., 2018b), TALC aggregates and combines
the supervision provided by these multiple expla-
nations effectively.

Figure 1 illustrates the TALC framework. TALC
uses a subset of the test data, called the adaptation
set, for adapting the language-guided classifier. For
each pair of explanation and test example in the
adaptation set, a pseudo-label is generated using
the base language-guided classifier. TALC learns
a label aggregator on the pseudo-labels generated
for the adaptation set using EM (§3). The label
aggregator is trained to consider the contribution of
each explanation during adaptation, thus, in prin-
ciple, allowing it to weigh different sources of lan-
guage supervision. Finally, TALC uses the learned
aggregator over the entire test set to obtain final
predictions for test set examples.

We evaluate TALC on six classification tasks
from the CLUES-Real dataset (R. Menon et al.,
2022), where each task is paired with natural lan-
guage explanations (§4). TALC outperforms strong
baselines by 3.3% on average (absolute). Through
qualitative and quantitative analysis, we investi-
gate TALC’s robustness with respect to the size of
the adaptation set, number of explanations, and ex-
planation quality. In the subsequent sections, we
describe TALC in detail (§3), present experimen-
tal results and analysis (§4), and conclude by dis-
cussing our contributions, limitations, and ethical
considerations. Our contributions are:

* We introduce TALC, a test-time adaptation frame-
work, that uses label aggregation to improve
language-guided classifiers.

* We demonstrate the effectiveness of TALC on
multiple real-world classification tasks from
CLUES-Real (R. Menon et al., 2022).

* We present comprehensive analyses to evaluate
the robustness of TALC w.r.t. the quantity and
quality of explanations.

2 Related Work

Learning From Language Using natural lan-
guage explanations to inform or train classifiers has
garnered significant interest in recent years (Gold-
wasser and Roth, 2014; Srivastava et al., 2017; Han-
cock et al., 2018; Murty et al., 2020). While Murty
et al. (2020) enhance supervised BERT models (De-
vlin et al., 2019) for relation extraction tasks, other
approaches employ language explanations for few-
shot learning. For instance, Hancock et al. (2018)
convert explanations to labeling functions via se-
mantic parsing, leveraging unlabeled data for weak
labels. More recently, R. Menon et al. (2022) uti-
lize natural language explanations in an entailment-
based model for classification decisions.

Test-time Adaptation Test-time adaptation has
been extensively studied in computer vision by em-
ploying batch-normalization statistics (Nado et al.,
2020; Khurana et al., 2021; Schneider et al., 2020),
test-time entropy minimization (Wang et al., 2020;
Sivaprasad and Fleuret, 2021), prediction consis-
tency maximization over augmentations (Zhang
et al., 2021), and classifier adjustment (Iwasawa
and Matsuo, 2021). In the realm of natural lan-
guage processing, Banerjee et al. (2021) explore
test-time adaptation for question-answering using
self-supervision. In contrast, we introduce a new
test-time adaptation approach that leverages data
programming to adapt a base language-guided clas-
sifier during inference by utilizing natural language
explanations.

Data Programming Data programming (Ratner
et al., 2017) employs a combination of multiple
labeling functions and generative models to create
probabilistic training labels for unlabeled datasets.
Prior work (Ratner et al., 2018b; Hancock et al.,
2018) has demonstrated successful applications of
this paradigm to create systems that allow users to
label large datasets programmatically. Here, we
repurpose data programming in the test-time adap-
tation setting to improve classifiers on unseen tasks.

3 TALC

In this section, we present the details of our frame-
work, TALC. TALC leverages data programming to
adapt a base natural language explanation-guided
classifier on a novel task during inference.

Problem Setup. We assume a language-guided
classifier, M ¢, which can take an explanation e
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from a teacher and example X to predict a label
Mipc(X,e) . Alanguage-guided classifier refers
to a classifier that utilizes one or more natural lan-
guage explanations to make predictions. Our objec-
tive is to make predictions for a batch of test sam-
ples, represented as { Xiest, Yiest F1:n, Where Yiest
represents the unobserved ground-truth labels cor-
responding to the samples in X4, and n denotes
the number of samples. During test-time adapta-
tion, our aim is to effectively adapt the classifier to
the specific task at hand and infer the true labels for
Xiest- Existing methods for test-time adaptation
typically assume an online setting, where exam-
ples are processed one at a time (Sun et al., 2020;
Banerjee et al., 2021). In contrast, we assume a
priori access to the entire test set of the task. This
assumption allows us to leverage the empirical dis-
tribution of the unlabeled data for semi-supervised
learning.

Our setting aligns with real-world scenarios,
such as developing a product-category classifier
for an e-commerce platform, where the complete
database of products (including the test set) is
known in advance. For situations where test sam-
ples are observed one at a time, it is still possible to
utilize TALC for adapting a base classifier. This in-
volves a "warm-up" phase, where the base classifier
is used off-the-shelf for a few samples, followed by
adaptation using TALC. While this usage scenario
is not the primary focus of our work, we provide a
description of how TALC can be employed in such
cases in Appendix §A for brevity.

Overview. As depicted in Figure 1, for a new
task T},ew, we are provided with m natural lan-
guage explanations £ = {ej,ea,...,e,}, and
a set of examples {X; € X5} To generate
the classifier outputs, we iterate through each ex-
planation e; for every example X;, and compute
M;; = Mpc(Xi,ej;). This yields a labeling
matrix M with a shape of n x m. Next, we in-
troduce a test-time adaptation procedure: TALC,
to compute the final labels Y utilizing the M.
This procedure essentially implements a function
f:M e R Y e R" which we describe in
the rest of this section.

Test-time Adaptation. The objective of TALC is
to adapt the language-guided classifier, M, on a
novel task, T},¢,, during inference. We illustrate the
adaptation procedure in Algorithm 1. First, we split
the test set into two disjoint sets - the adaptation

Algorithm 1 TALC
Inputs: Language-guided classifier M ¢, test
set Xyest, task explanations F, adaptation ratio «

Nadapt —aX ‘Xtest|
Xtaecgpt — Xtest[: Nadapt]
Xt};iltd—out — Xiest [N(ldapt :]
Train the label aggregator Li5 on Xfeﬂitzpt
W + argmax P, (X, F; My (using EM)
w

S

5: I~nfer ffT Arc for Xiest using the learned w.
Yrarc = argmax Py (Y |Xiest, B, M)
Y

return YT ALC

set and the held-out test. The adaptation set is
utilized by TALC to adapt M . The proportion of
the test set that forms the adaptation set is defined
by an adaptation ratio, a € [0, 1], defined as o =

|adaptation set| o . .
testse] We also partition the labeling matrix

M into M®ept and Mheld—out by choosing the
rows corresponding to samples in the adaptation
set and held-out set, respectively.

To model the dependence between the (latent)
inferred labels and M %Pt we use data program-
ming techniques (Ratner et al., 2019) to train a
label aggregator, L5, with task-specific param-
eters w. We use the learned parameters (which
correspond to weights learned for each explana-
tion) to aggregate predictions in M (both M Pt
and M"eld—outy and infer the labels, ?T ALC-

Label Aggregator. The label aggregator is a
graphical model that defines the joint probability
of explanations F, examples X and latent (true)
labels Y for a given language-guided classifier as:

P(X,E,Y;Mpc) xexpwl ¢(X,E,Y, M)
ey
Here, ¢ is a feature-vector of features that can
be computed using X, F, Y and M ¢ and w is a
weight vector corresponding to each of those fea-
tures. In general, this can subsume a very broad
range of features, including features that can indi-
cate the complexity of an explanation, or its prove-
nance '. We also note that in particular, since the
labeling matrix M is computed from X, E and
Mo, ¢ can include features that depend on M
and Y. For simplicity, our instantiation incorpo-
rates the labeling rates of each explanation (how
'So, for example, the aggregator can automatically learn to

lean more/less on complex explanations, or trust explanations
from specific sources more than from others
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frequently an explanation assigns a label®) and the
correlations between the pseudo-labels from differ-
ent explanations to estimate the accuracies of each
individual explanation in an unsupervised manner.
Specifically, the label aggregator is defined in terms
of two types of features: accuracy (¢4 € R™ ™)
and propensity (¢77°P ¢ R"*™). Each value in
A< and ¢T7P is defined as:

G(M,Y) = 1{M; j = yi} (2)

2y

st;Op(M’ Y) = ]I{Mi,j 7é yabstain} (3)

where y; is the label for ith sample and Yqpstqin 1S @
special label that denotes M 1 has abstained from
predicting a label based on the j** explanation. The
accuracy factor fires if the inferred label (Y;) for
an unlabeled example X; matches the predicted
label from an explanation j. The propensity factor
fires whenever the classifier doesn’t abstain from
predicting a label from an explanation.

Since here we only define two types of features
for each explanation, w € R?™ is a learnable
vector corresponding to weights for the accuracy
factor and propensity factor for each explanation.
The weights are learned by maximizing the log-
likelihood log P(X, E) = log )y Py(X,E,Y)
using the expectation-maximization (EM) algo-
rithm (since we don’t have ground-truth labels for
Y at test-time). We compute the MAP estimate
Yrarc = argmax Py (Y| X, E) using Gibbs sam-

pling to predicz/ the final labels. Note that while we
learn the weights w on the adaptation set (line 4 in
Algorithm 1), the learned weights are used to aggre-
gate predictions in both the adaptation and the held-
out examples, to predict the labels, YT arc (line 5
in Algorithm 1). We implement the label aggre-
gator using Snorkel-Metal® (Ratner et al., 2018a).
Appendix §C provides task-specific details of the
label aggregator training.

4 Experiment and Analysis

In this section, we evaluate the zero-shot adaptation
performance of TALC on classification tasks, fol-
lowed by a detailed analysis of TALC’s robustness.

4.1 Data

We assess the performance of TALC on real-world
classification tasks from the CLUES (R. Menon

2The pseudo-label corresponding to an explanation can
either be a class label, or a special label, Yqabstain (€.g. if an
explanation does not apply for an example)

*https://www.snorkel.org/

et al., 2022) benchmark. Out of the sixteen real-
world tasks in the test split of CLUES, we focus
on six tasks for evaluation due to the limited num-
ber of test samples (< 10) in the remaining tasks,
which restricts their suitability for test-time adap-
tation. Figure 1 presents an illustrative example
showcasing the nature of these tasks and provides
examples of the corresponding natural language
explanations. Appendix §B provides further details
regarding the six tasks selected for evaluation.

We utilize the ExEnt model (R. Menon et al.,
2022) as the base language-guided classifier
(M) in alignment with our choice of the CLUES
dataset*. The ExEnt model leverages textual en-
tailment to establish the correspondence between
explanations and tabular inputs, enabling label pre-
dictions. To aggregate predictions from multiple
explanations, ExEnt adopts a mean-pooling strat-
egy, aggregating the predictions obtained from each
explanation-input pair to derive the final label. It’s
important to note that ExEnt is not trained for ab-
stention, meaning it always assigns a label regard-
less of the quality of the explanations. In §4.4, we
further explore the scenario of abstention, which
we consider a more realistic use case for language-
guided classifiers.

4.2 Baseline and Evaluation Metrics

We compare TALC against the following baselines:

1. ExEnt: This refers to the base ExEnt
model (R. Menon et al., 2022) that has been
trained on real-world training tasks from the
CLUES dataset.

2. ExEnt-MV: For each example X;, we generate
a set of pseudo-labels corresponding to each of
the m task explanations. The final predicted
label is determined by selecting the label that
appears most frequently among the m pseudo-
labels (majority vote). Unlike ExEnt, which
uses mean-pooling for aggregation, ExEnt-MV
applies a mode-pooling operation.

3. ExEnt-FT: Similar to our approach of fine-
tuning TALC with the predicted labels from the
label aggregator, L£i5¢, we also include a self-
training baseline approach by fine-tuning ExEnt.
This involves utilizing ExEnt’s own predictions
as labels on the adaptation set.

We use classification accuracy as the evaluation

metric to compare the utility of different methods.

*At the time of writing, this is the best model on CLUES
with publicly available code.
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4.3 Results

Table 1 shows the zero-shot classification accuracy
of TALC and the baselines on the six evaluation
tasks. The findings reveal several key insights.
Firstly, we observe that majority voting (ExEnt-
MYV) performs better than vanilla ExEnt on av-
erage across the six tasks. Secondly, fine-tuning
ExEnt on its own predictions (ExEnt-FT) results
in better zero-shot accuracies than the base ExEnt
model, demonstrating the value of self-training on
unlabeled data. Furthermore, the performance of
ExEnt-FT increases with an increase in the amount
of test data used for adaptation (35.7 — 36.8 as
we increase the adaptation ratio from 0.5 — 1.0).

We note that TALC obtains better performance
on average across all evaluation tasks compared to
the three baselines. Specifically, TALC improves
the accuracy by around 3.3% on average (abso-
lute) over the state-of-the-art ExEnt model. In fact,
both TALC variants, at adaptation ratio 0.5 and 1.0,
perform better than ExEnt on all tasks except for
indian-liver-patient. The utilization of the label ag-
gregator in TALC results the biggest improvement
(~ 25% relative) on the tic-tac-toe-endgame task.
We attribute this improvement to the label aggre-
gator’s ability to give higher weightage to high-
quality explanations, resulting in more accurate
predictions. For the tasks where the performance
of TALC is close for « = 0.5 and o = 1.0 in Table
1, we observed that the aggregation weights for
each explanation learned by the data programming
framework are roughly similar for the two settings.
As aresult, the aggregation over the pseudo labels
in the labeling matrix produces similar final predic-
tions and hence similar accuracies.

4.4 Analysis

Abstention. Our previous experimental results
treat labels from individual explanations the same,
irrespective of the confidence of the model in its
predictions on those examples. This is because
the base-language classifier used in experiments,
ExEnt, always chooses a label during inference
rather than performing selective predictions. How-
ever, the TALC framework allows for differential
modeling of abstentions, where a model can choose
to refrain from assigning a class label if the expla-
nation does not apply to the example. To explore
this, we design a variant of ExEnt, referred to as
ExEnt-A, that can refrain from assigning a class la-
bel during inference. This is straightforward since

ExEnt is based on NLI (R. Menon et al., 2022),
where a neutral label can be naturally mapped to
an abstention. We train ExEnt-A on the same tasks
as ExEnt with the modification of having ‘abstain’
as an additional class label for each task.

Table 2 shows the results of TALC-A, and the
baselines when abstention is allowed (‘-A’ denotes
abstention). We find that TALC-A achieves the best
overall accuracy. More importantly, comparing
Table 1 and Table 2, we observe that TALC has
a smaller drop in performance in comparison to
ExEnt and ExEnt-FT suggesting that TALC is bet-
ter at adapting to multiple teachers even when cer-
tain teachers choose to abstain from prediction.

40
> 38}
o
>0
8
< 36t
1 1 1 1 1
3402 04 06 08 7.0
Adaptation Ratio
& ExEnt-FT  —— TALC

Figure 2: Accuracy (averaged over 6 tasks) of ExEnt-FT
and TALC when training label aggregator with different
adaption set sizes. Overall, increasing the adaptation
ratio does not impact performance of ExEnt-FT, but
improves performance of TALC.

Effect of adaptation set size. We analyze the
performance of ExEnt-FT and TALC by varying
size of the adaptation set. Specifically, we vary the
adaptation ratio, «, from 0.2 to 1.0 (in increments
of 0.1) for all six evaluation tasks. >

Intuitively, we expect that the accuracy of ExEnt-
FT and TALC to improve with increase in adaptation
ratio. However, we empirically observe that the
performance of ExEnt-FT fluctuates with change
in o and does not show a consistent trend of im-
provement as shown in Figure 2. Meanwhile, as
shown in Figure 2, we observe that a larger adap-
tation set enhances the performance of TALC from
37.6% — 38.8% as « increases from 0.2 — 1.0.

Robustness to number of explanations. Next,
we analyze the robustness of ExEnt-FT and TALC
to changes in the number of explanations provided
for adaptation on the new task. We will refer to the
fraction of explanations used for adaptation as the

>The results of TALC and ExEnt-FT on each individual task
with different adaptation ratios can be found in Appendix §G.

7072



Nor;;AdaP tation Adaptation Ratio 0.5 Adaptation Ratio 1.0
aselines

Tasks ExEnt EK/IE\I,E ExEnt-FT TALC | ExEnt-FT TALC
banknote-authentication 46.9 48.4 45.1(0.5) 49.5(0.0) 45.20.2) 49.70.3)
tic-tac-toe-endgame 32.8 32.3 32.3(0.0) 41.10.0) 32.3(0.0) 41.10.0)
car-evaluation 10.7 17.6 4.6(2.3) 14.1(3.4 3.8(0.4) 16.5(0.0)
contraceptive-choice 42.7 43.7 43.40.00 44.0¢0.7) 43.4(0.0 43.8(0.3)
indian-liver-patient 48.7 40.0 54.5(7.8) 44.3(2.8) | 62.0(4.6) 47.8(0.0
travel-insurance 31.9 33.9 | 34.200.0) 34.200.0) | 34200 34.20.0
Average 35.6 36.0 \ 35.7 37.9 \ 36.8 38.9

Table 1: Comparison of zero-shot accuracies (higher is better) between non-adaptation-based ExEnt baselines,
ExEnt-FT, and our proposed method, TALC, on the 6 different tasks from CLUES-Real. We report the mean and
standard deviation for the accuracy across three runs for adaptation-based methods. The numbers in bold indicate

the best accuracies across methods.

Non-Adaptation Baselines Adaptation Methods
ExEnt
Tasks ExEnt-A MV-A ExEnt-FT-A TALC-A
banknote-authentication 8.0 36.7 27125y 53.9(0.1)
tic-tac-toe-endgame 2.6 30.2 32.300.1) 32.4(0.9)
car-evaluation 2.3 2.6 14.8(1.8) 13.3(0.8)
contraceptive-choice 22.7 32.8 19.3¢2.7 31.6(1.3)
indian-liver-patient 36.5 34.7 30.1¢0.2) 40.2(g.9)
travel-insurance 15.3 24.6 15.2(2.6) 23.4(0.0)
Average 14.6 26.9 | 23.1 32.5

Table 2: Comparison of zero-shot accuracies between TALC and the baselines when allowing the ExEnt model to
abstain from making a prediction (the modified model is denoted as ExEnt-A). ‘A’ stands for ‘Abstention’ for all the
models in the table. For the adaptation methods (ExEnt-FT, TALC), we report mean and standard deviation across 9
adaptation ratios (0.2 to 1.0). Numbers in bold denote the best accuracies across methods.

Accuracy
w w
(o] 0]
T T

w
D
T

1 1 1
0.2 0.4 0.6 0.8 1.0
Ratio of Explanations Used

—@— EXEnt-FT  —&— TALC

w
N

Figure 3: Results for ExEnt-FT and TALC when varying
the number of explanations used for training the label
aggregator. Results are averaged over the six evaluation
tasks. With increase in number of explanations, the
accuracies using TALC improve while performance of
ExEnt-FT is not affected.

. - __ # of available expls .
explanation ratio = =~ = s Specifically,

we vary the explanation ratio from 0.2 to 1.0, by
randomly choosing explanations without replace-
ment, when training the ExEnt-FT model and the
label aggregator in TALC. We keep the adaptation

ratio () fixed at 1.0 for this analysis.

Figure 3 shows the variation in performance of
ExEnt-FT and TALC with changes in the explana-
tion ratio averaged over the six evaluation tasks.
The accuracy of TALC drops when increasing the
explanation ratio as 0.3 — 0.5, buts shows a consis-
tent increasing trend (from 33.5% — 38.8%) when
increasing the explanation ratio from 0.5 — 1.0. In
contrast, the performance of ExEnt-FT fluctuates
as the number of available explanations changes.
This shows that TALC is comparatively more sensi-
tive to the number of explanations used for adapta-
tion.

Robustness to quality of explanations. Here we
analyze the role of explanation quality on the per-
formance of TALC. However, quantifying the qual-
ity of explanations in the absence of annotations
is a challenging and open research problem. To
circumvent this issue, we explore two approaches
to quantify explanation quality:
* Individual explanation accuracy: Here, we as-
sume there exists an oracle which has access to
all the explanations, the base language guided-

7073



classifier, and the labeled examples. This oracle
evaluates the accuracy of each individual expla-
nation of the task by evaluating it on the labeled
examples with the base language-guided clas-
sifier. We term this accuracy as the individual
explanation accuracy and use it a proxy for quan-
tifying the quality of an explanation. For each of
the six evaluation tasks, we provide the individ-
ual explanation accuracies in Appendix §F.

* Perplexity of an explanation: Assuming access
to all labeled examples (needed for the above
approach) may be unrealistic for many scenarios.
Hence, we also explore a surface-level metric,
the perplexity of the explanation, to quantify the
quality of an explanation. We obtain perplexity
scores for each explanation by using the GPT2-
Large pre-trained model (Radford et al., 2019).
We provide perplexity scores of each explanation
for the six evaluation tasks in Appendix §F.

These aforementioned approaches to quantify
the quality of an explanation) can filter out poor
quality explanations or selectively choose good
quality explanations for adapting the base language-
guided classifier. We explore the following scenar-
ios (with adaptation ratio, = 1) to understand the
impact of explanation quality:

» Using the top X percentage of explanations:
We rank the explanations by accuracy or
perplexity for each task and only use the top
X percent of the ranked explanations for TALC,
where X = 20, 40,60, 80, 100. The results are
shown in Figure 4. On average, we observe
that TALC performs the best when using only
the top 20% of explanations ranked by both
accuracy and perplexity. As X increases from
20 — 40 — 60, the average performance of
TALC decreases, and then keeps increasing. We
attribute this trend to the fact that the training of
the label aggregator may be sub-optimal with a
smaller number of explanations, and improve
with more explanations. These results also
clearly show that the label aggregator is able
to distinguish explanation quality. We note a
roughly similar trend when the explanations are
ranked by lowest perplexity instead of highest
accuracy. This is an encouraging result, and
indicates that perplexity of explanations can
actually be a reasonable basis for filtering from a
large pool of explanations.

* Removing the best explanation: We remove the
best (highest accuracy or lowest perplexity) ex-

TALC: Using Top X% Explanations (Ranked by Accuracy)

Accuracy (%)
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TALC: Using Top X% Explanations (Ranked by Perplexity)
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Figure 4: TALC’s performance only using the top X %
explanations, where X = 20, 40, 60, 80, 100. On aver-
age, TALC has the best performance when only using the
explanations with the highest quality. The performance
of TALC decreases and then increases as we add explana-
tions with lower quality. We see this trend because only
the explanations with high quality are used at first and
adding explanations with lower quality distract the label
aggregator at first, but the label aggregator is able to
distinguish high-quality explanations when the number
of explanations keeps increasing.

TALC: Removing the explanation with highest accuracy
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Figure 5: When ranking the explanations by their indi-
vidual accuracy, removing the best explanation leads to
a 1.3% drop in performance on average.

planation from the set of explanations for each
the task and adapt TALC. Figure 5 shows that re-
moving the best explanation hurts performance
consistently across tasks, as expected. We ob-
serve a 1.3% in accuracy drop when ranking the
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explanations by accuracy and a 1.0% drop when
ranking by perplexity on average across the six
tasks (shown in Appendix §I).

TALC: Adding the explanation with lowest accuracy
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explanation licious explanations. On average, TALC’s performance

drops by 7.3% as good explanations are replaced by
Figure 6: Comparison of TALC’s performance before ~ malicious explanations.

and after adding a low-quality explanation to a set of
high-quality explanations. On average, the performance
decreases by 1.5% when ranking by accuracy.

* Adding a low-quality explanation to a set of
high-quality explanations: Next, we study the
impact of low-quality explanations on TALC.
For this, we consider two setups. In the first
setup TALC utilizes just the top-3 explanations
as per their individual accuracies. The indi-
vidual explanations accuracies can be found
in Appendix §F. In the second setup, TALC
utilizes the top-3 and the worst explanation
(as per individual explanation accuracy) for
adaptation. Figure 6 shows the performance
of TALC for these settings. When ranking by

malicious explanations. When explanations are
ranked by perplexity, the results are similar (de-
tails in Appendix §I). Surprisingly, for the ‘car-
evaluation’ task, the performance increased from
16.5% to 21.4% on modifying the best expla-
nations to malicious explanations when ranking
by accuracy. From the average drop in perfor-
mance, we can conclude that TALC is susceptible
to text-based attacks that may occur through the
explanations provided during adaptation. Future
work can address the challenge of learning to
distinguish between beneficial and adversarial
explanations.

accuracy, the average decrease in performance  Agnostic nature of TALC w.r.t language-guided
due to the addition of low-quality explanation  classifier. The flexibility of choosing different
is 1.5%, demonstrating the robustness of TALC ~ models as the underlying language-guided classi-
to low-quality explanations. We observe a fiers is an advantage of the TALC framework. The
similar trend in results when the explanations  modular design of TALC, i.e, decoupling of (1) how
are ranking by their perplexity (details in  we obtain predictions w.r.t each explanation using
Appendix §1). a language-guided classifier and (2) how we com-
* Replacing best explanations with malicious  bine these individual predictions, makes TALC a
explanations: Next, we create malicious expla-  highly generalizable and flexible framework. To
nations by flipping the labels mentioned by the  empirically validate this flexibility, we experiment
original explanations. For example, taking the ex-  with different LLMs as the underlying language-
planation from Figure 1 for the travel-insurance  guided classifier. Table 3 compares the accuracies
task, we convert ‘most college graduates have  of TALC and two baselines by using TO-3B (Sanh
taken travel insurance’ to ‘most college gradu- et al., 2022), OPT-2.7B (Zhang et al., 2022), and
ates have not taken travel insurance’. We repeat  Flan-T5-XXL (Chung et al., 2022) as the underly-
this process for the top-3 explanations ranked by  ing language-guided classifiers. As baselines, we
accuracy or perplexity for each of the six evalua-  consider two settings, (1) MV - majority vote of
tion tasks. The results in Figure 7 show a dropin  the predictions made by the LLM corresponding
performance of TALC (from 38.8% to 31.5%), as  to individual explanations and (2) Concat - predict-
expected, when the top-3 explanations (ranked  ing by considering all explanations (concatenated)
by their individual accuracies) are modified into  together in the context of the LLM. For both set-
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TO3B) OPT(2.7B) FLAN-T5-XXL
Tasks Concat MV TALC | Concat MV TALC | Concat MV TALC
banknote-authentication 44.7 447 44.7 0.0 44.7  45.1  44.70.0) 54.2 31.3 43.6(0.0)
tic-tac-toe-endgame 67.7 67.7 67.70.0 32.3  49.0 64.901.3) 32.3 40.6 56.8(0.0)
car-evaluation 3.8 T1.7 T1.70.0 2.3 3.8 3.8(0.0) 3.8 26.6 26.6(0.0)
contraceptive-choice 23.4 239 23.4(0.0) 275  33.2 332000 38.3 454 45.4(.0
indian-liver-patient 67.8 33.0 48.7 (0.0 322 322 32200 66.1  48.7 56.5(0.4)
travel-insurance 38.9 65.8 65.8(0.0) 42,5  65.8 65.8(0.0) 719 719 T72.6(0.4)
Average 41.1 51.1 53.7 ‘ 30.2 38.2 40.8 ‘ 44.4 44.1 50.3

Table 3: Comparison of accuracies between TALC and baselines when using different LLMs as the language-guided
classifier on the 6 different tasks from CLUES-Real. We report the mean and standard deviation for the accuracy
across three runs for adaptation-based methods. The numbers in bold indicate the best accuracy across methods.

ting, the prediction is done by prompting the LLM.
We provide the prompt templates in Appendix §D.
Table 3 shows that TALC outperforms both base-
lines for all of the three LLLMs demonstrating the
robustness of TALC to the choice of the underlying
language-guided classifier.

5 Discussion & Conclusion

In this paper, we introduce TALC, a framework for
test-time adaptation of language-guided classifiers
that leverages multiple sources of supervision. One
conceptual advantage of TALC is its agnosticism
towards the choice of language-guided classifier,
leaving room for future exploration with different
models. TALC is flexible in terms of what aspects
of explanations, teachers and unlabeled examples
are used to train the label aggregator. While our
approach here trains a label-aggregator for every
new task (since our features for the label aggrega-
tor include identities of individual explanations),
in principle it should be possible to train a unified
label aggregator across tasks based on featurized
representations of tasks and explanations. Scaling
up TALC to new datasets with a larger number of
tasks would provide valuable insights into its gen-
eralizability. Our experiments reveal TALC’s sus-
ceptibility to malicious attacks and bad-faith actors,
which future works can improve on. Despite these
challenges, TALC suggests exciting opportunities
for harnessing the collective wisdom of teachers in
real-world applications.

Limitations

To analyse the impact of quality of an explanation
during test-time adaptation, we use individual ex-
planation accuracy as a surrogate measure for its
quality in lieu of a standardized metric of expla-
nation quality. However, developing standardized

metrics to judge the quality of an explanation re-
mains an open and pressing research challenge.

To analyse robustness of TALC w.r.t malicious
explanations, we created malicious explanations by
flipping the labels mentioned in the best explana-
tion for a task. However, there could be other ways
of creating malicious or adversarial explanations,
which are more subtle than just flipping a label.
For example, one subtle way of altering an existing
explanation to a malicious one could be by estab-
lishing unwanted correlations between a protected
attribute (e.g. gender) and the label for a down-
stream task (e.g. whether the loan should be ap-
proved). Analyzing and improving the robustness
of TALC to more nuanced adversarial/malicious ex-
planations remains to be explored.

The adapted model obtained by using TALC is
task dependent, as it uses explanations and unla-
beled data specific to the downstream task for adap-
tation (specifically, for training the label aggregator
component). Hence, for every novel task for which
we want a adapt a base language-guided classifier,
we need access to explanations and unlabeled sam-
ples. This requirement (especially obtaining good
explanations for adaptation) can be a challenging
issue for some real-world scenarios. Improving
TALC to reduce its dependence on the amount of
explanations and/or unlabeled data while still re-
taining downstream accuracy (post-adaptation) is
an interesting direction for future work. The base
language-guided classifier used in our experiments,
ExEnt, is designed to work with a maximum of
512 tokens in its context. Usage of longer context
models or even large-scale pre-trained models re-
mains to be explored. The effectiveness of TALC
under multilingual setting is also unexplored.
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Ethics and Broader Impact

The experiments described in this work are per-
formed over tasks from a publicly available bench-
mark, CLUES (R. Menon et al., 2022). The data for
these tasks do not contain any personally identifi-
able information. We do not collect or annotate
any additional data. For all the experiments in the
paper we evaluate using automatic metrics and do
not perform any human evaluation.

TALC is agnostic to the base language-guided
classifier. We do not foresee major risks with our
framework if the inputs provided are appropriate.
Like any other natural language guided method
there are potential concerns of misguiding a model
deliberately by providing erroneous inputs. Mea-
sures to detect such bad actors and rectifying er-
roneous inputs is beyond the scope of this work.
However, there is a risk of classifiers perpetuat-
ing biases present in the input natural language
explanations (for example, some explanations may
describe the label in terms of sensitive or inappro-
priate features). Biased or discriminatory explana-
tions can result in biased predictions and contribute
to unjust outcomes.

The broader impact of this work can lead to de-
velopment of frameworks that enable efficient adap-
tation of Al systems. Developing language-guided
adaptable systems can improve the impact and us-
ability of Al systems in daily life, especially on the
long tail of tasks with limited labeled data. How-
ever, the responsible development and deployment
of these models would require domain-specific ex-
pertise, involving collaboration with experts and
stakeholders to understand the implications and en-
sure ethical considerations are met. Close attention
should be paid to the specific contexts in which the
classifiers are applied to minimize negative conse-
quences and maximize positive impacts.
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Appendix

A Usage of TALC

1. An example of real-world cases where the
entire set of test samples can be realistically
accessed:

Let’s consider the case of a product cate-
gory classifier for products on the Amazon
database. In this case, developers will first
define classifiers using some training data and
deploy the classifier on the entire database to
label examples.

2. Method to use TALC when test samples are
observed one-by-one:

Even if we do not have access to the entire
test set and the classifier observes unlabeled
samples one by one, TALC can be deployed
in practice as:

(a) For a predetermined number of sam-
ples, the language-guided classifier is de-
ployed off-the-shelf (Note: In this work,
this would be the same as using ExEnt
for those samples).

(b) The aforementioned samples can now be
pooled together as an adaptation set, and
we can adapt the language-guided classi-
fier using TALC.

In other words, we incur a “warm-up” phase,
where the un-adapted classifier is used, follow-
ing which we adapt the classifier using TALC
by considering the set of samples observed
during warm-up as an adaptation set.

B Details of evaluation tasks

We use 6 real world classification tasks from
R. Menon et al. (2022) as our evaluation tasks. The
tasks considered are — uci/banknote-authentication,
uci/tic-tac-toe-endgame, uci/car-evaluation,
uci/contraceptive-method-choice, uci/indian-
liver-patient, and  kaggle/travel-insurance.
Examples of these tasks can be found at
the CLUES website with the following link:
https://clues-benchmark.github.io.
Among the above tasks, uci/car-evaluation and
uci/contraceptive-method-choice are multi-class
classification tasks while the rest tasks are
binary classification tasks. The numbers of
examples in test set of each task are 275, 195, 346,
295, 115, 398 for uci/banknote-authentication,

Models| Prompt

Explanations: <explanation_1>. <explana-

tion_2>. .... <explanation_n> Note Details:

TO
FLAN-
T5

<feat_1> equal to <feat_1_value>. <feat_2>
equal to <feat_2_value> ... From the expla-

nations, is the note fake or original? Answer:

The following is a classification task that
uses the following explanations. Based on
the explanation classify the subsequent sam-

ple:

Explanations:
- <explanation_1>

- <explanation_2>

OPT

- <explanation_n>

Note Details:

<feat_1_value>.

<feat_1> equal to
<feat_2> equal to
<feat_2 value> ...

From the explanations, is the note fake or

original?

Answer:

Table 4: Prompt templates used for large language
model experiments in 4.4.

uci/tic-tac-toe-endgame, uci/car-evaluation,
uci/contraceptive-method-choice, uci/indian-liver-
patient, and kaggle/travel-insurance respectively.

C Hyperparameter and Compute Details

We train the ExEnt model following the hyperpa-
rameters in R. Menon et al. (2022), e.g. a learning
rate of le-5 for 5 epochs, batch size of 2, and eval-
uation batch size of 16. For the label aggregator
training, we did hyper-parameter search for each
of the tasks and report the best hyper-parameters in
Table 5.

For fine-tuning the ExEnt model, compute time
ranged from 1 hr for the shortest jobs with smaller
data sizes to 2 hours on 1 RTX 2080Ti GPU. For
fine-tuning the label aggregator, compute time is
within 1 minute.

D Prompt Templates for LLM Experiments

For the experiments using large language models,
we used the prompts elaborated in Table 4.
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TASK LEARNING RATE | EPOCH
banknote-authentication 4.38e — 08 500
tic-tac-toe-endgame 7.31le — 08 40
car-evaluation 2.48e — 04 500
contraceptive-method-choice 5.53e — 03 100
indian-liver-patient 7.91e — 03 50
travel-insurance 7.31e — 08 40

Table 5: The best hyper-parameters for training label
aggregator.

E Learned Label Aggregator Explanation
Weight

We analyze the learned values of the weights in the
label aggregator, L£y5°, to interpret the contribution
of each explanation towards the final prediction of
TALC at an adaptation ratio of 1.0. First, we cal-
culate the accuracy of each individual explanation
of a task by using it with ExEnt for classification
on the entire test set. These individual explanation
accuracies serve as a proxy for their relative quality.
The visualization for the 6 datasets’ learned expla-
nation weights of label aggregators and the learned
explanation weight trends are shown in Figure 9.

Here, we also show the average learned explana-
tion weight for explanations with/without quanti-
fiers and the average learned explanation weight for
explanations with/without conjunctions in Table 6.
Quantifiers are words like "always’ and "usually’.
Conjunctions are words like and” and “or’. We use
the same quantifier and conjunction words follow-
ing R. Menon et al. (2022)

Dataset Quantifier No Quantifier ‘ Conjunction No Conjunction

banknote

note 0.18 0.14 - 0.14
authentication
tie-tac-toe 0.20 0.12 0.29 0.16
endgame
car, 0.01 0.18 0.15 0.18
evaluation
contraceptive 0.15 0.21 0.14 0.22
choice
indian-liver 0.51 0.33 0.57
patient
 travel 0.18 0.17 0.16 0.18
msurance
Average 0.14 0.22 | 0.21 0.24

Table 6: The average learned explanation weight for
explanations w/wo quantifiers and explanations w/wo
conjunctions of label aggregators for each task. Empty
values in the table indicate that the linguistic element
was absent in the explanations for the corresponding
dataset.

F Individual Explanation for Each Task

We show all the available natural language expla-
nations for the six CLUES-Real dataset we use in

this paper in Table 8 to 13. In Table 8 to 13, We
also report the accuracy when using only one ex-
planation at a time with ExEnt and the perplexity
of each explanations. In Figure 10, we analyze
the correlation between accuracy and perplexity
of all explanations. There is a positive correlation
between accuracy and perplexity of all the explana-
tions.

G Results for Models Without Abstention

Here, we show ExEnt-FT and TALC experiment re-
sults without abstention on different adaptation size
for each 6 tasks from CLUES-Real in Figure 11.

H Few Shot Learning

Here, we run a few-shot supervised version of
ExEnt. We fine-tune the ExEnt model using &
samples with gold labels from the evaluation tasks,
where k£ = 4,8,16,32. We report the results in
Table 7. We observed that the test accuracy of this
few-shot trained ExEnt is better than TALC. The
performance with a few-shot model is better as
the gold labels are quite different from noisy ag-
gregated labels used by TALC for adaptation. We
observed a huge label imbalance in the intermedi-
ate ExEnt model that results in lower accuracy for
both TALC and ExEnt-FT, both of which leverage
ExEnt ’s predictions as noisy pseudo labels.

Dataset k=4 k=8 k=16 k=232
auzlitlli?c(:t?on 475@n 51205 54962 53.6uy
tfl;(tlzzrtrle 55.6(5.1) 59.1(65) 63.7(25) 64.215)
eval(;a;tion 61.762) 526016y 68114 694023
coniﬁ:;itive 34443 3294y 368002 40.023
inij:tli::ﬁ:er 66.92.5) 67415 638¢.0) 67503
iniruar\;ilce 53.9103) 57.0¢7.1) 53.97) 625037
Average 53.3 53.4 56.9 59.5

Table 7: Few-shot fine-tuning with ExEnt. We report
the mean and standard deviation for the accuracy across
three runs using different seeds.

We would like to emphasize that a few-shot su-
pervised model is not an ideal baseline for our
framework. This is because TALC is designed to
work as an unsupervised approach for test-time
adaptation. Hence, few-shot fine-tuning would
represent an upper bound for TALC. Alternatively,
few-shot finetuning can be treated as a comple-
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(e) indian-liver-patient

tic-tac-toe-endgame Label Aggregator Learned Explanation Weight

explanation
weight

(b) tic-tac-toe-endgame

contraceptive-choice Label Aggregator Learned Explanation Weight

explanation
weight

(d) contraceptive-method-choice

travel-insurance Label Aggregator Learned Explanation Weight
explanation
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(f) travel-insurance

Figure 8: Learned label aggregator accuracy factor for the 6 CLUES-Real evaluation datasets used in our work.

mentary approach to TALC and can be paired with
TALC for real-world test time adaptation scenarios.
Combining these two paradigms for improved test
time adaptation is an interesting direction for future
work and is beyond the scope of this paper.

I Ranking by Perplexity

We show the results of the ablations studies de-
scribed in Section 4.4 ranking by perplexity here
in Figure 12 to 14.

For the setting where we add one low-quality ex-
planation to a set of high-quality explanation, when
ranking by perplexity, the average performance in-
creases by 0.6%, caused by the performance in-
crease of the banknote-authentication task while
the other tasks’ performance either decreases or
stays the same. According to Table 8, the added
explanation for banknote-authentication has the
highest perplexity and the second highest accuracy,
suggesting the accuracy metric may have stronger
impact to the performance than perplexity does.
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(e) Pearson correlation coefficient = -0.68.
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(b) Pearson correlation coefficient = 0.12.
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(d) Pearson correlation coefficient = -0.21.

travel-insurance
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Figure 9: Relationship between learned accuracy factor weight and the corresponding explanations’ accuracy
for (a) banknote-authentication, (b) tic-tac-toe-endgame, (c) car-evaluation, (d) contraceptive-method-choice, (e)

indian-liver-patient, and (f) travel-insurance.
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Figure 11: Performance of ExEnt-FT and TALC with different adaptation ratios for each of the 6 evaluation tasks.
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NoO. | EXPLANATION ACCURACY | PERPLEXITY

0 | If the variance of the note is a negative number, it’s more likely 56.7% 25.05
to be an original note.

1 If the kurtosis of the bill is a negative number, it’s more likely 41.1% 31.82
to be a fake note.

2 | A fake banknote has a variance level over 4.0. 46.2% 177.85

3 | Notes that have a negative Variance level will also have a 45.1% 39.02
negative Entropy level.

4 | Notes that have a positive Skewness level will have a negative 45.8% 61.06
Kurtosis level.

5 | Variance above 4 leads to the results of FAKE. | 433% | 160.22

6 ‘ Below 3.80 skewness leads to the original. ‘ 56.0% ‘ 548.93

7 | Variance above 1.00 leads to the FAKE. | 531% | 10515

8 | Below the 3.75 Sketwness leads to the ORIGINAL. | 542% | 41040

9 | Entropy is low value so it is fake. | 49.1% | 160.25

10 | Kurtosis is high value so it is original. | 549% | 346.58

Table 8: All explanations for banknote-authentication task used in this paper.
NO. | EXPLANATION | ACCURACY | PERPLEXITY

0 | The game is usually not over yet when there are at least two 34.4% 56.82
blank squares.

1 The game is usually over when the players have taken all the 42.7% 51.84
middle squares.

2 ‘ The top middle square results in X winning. ‘ 33.3% ‘ 800.38

3 ‘ The bottom middle square results in X winning. ‘ 32.3% ‘ 1132.84

4 | When the middle-right-square is left blank, x is less likely to 32.3% 94.01
win.

5 ‘ Whoever marks the top-left-square is unlikely to win. ‘ 38.5% ‘ 78.83

6 | The player who moves second is much more likely to lose if 37.0% 45.58
they place in the middle-left-square.

7 | The middle-right-square is the square that is most likely to go 35.9% 36.20
unused during a game.

8 | Top left square X indicates the Negative group. 61.5% 969.94

9 | Without b categories in middle middle square comes under the 32.3% 2158.20
Positive group.

10 | An O in both the top-left and bottom-right is likely to be posi- 39.6% 24.43
tive.

11 | A blank in the middle-right will likely lead to negative. 65.1% 139.76

Table 9: All explanations for tic-tac-toe-endgame task used in this paper.
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No. \ EXPLANATION \ ACCURACY \ PERPLEXITY

0 | If safety is high, then the car will not be unacceptable. | 223% | 5695

1 If maintenance cost is medium, then the car will not be unac- 42.8% 121.90
ceptable.

2 | A capicity for 4 or more persons makes the vehicle acceptable 9.0% 115.36
for resale.

3 High safety ratings generally make vehicles acceptable for 9.8% 158.10
resale.

4 | Alow buying cost is a good indicator of a vehicle being accept- 8.4% 55.96
able for resale.

5 | Most people having the passenger capacity of 4 or more have 18.2% 117.22
good acceptability for car resale.

6 | Cars with low buying and maintenance cost are highly accept- 5.5% 436.58
able for resale

7 | Cars with higher safety and capacity are highly acceptable for 12.4% 156.38
resale.

8 | Cars with higher safety and medium luggage boot size are 4.0% 323.92

highly acceptable for resale.

Table 10: All explanations for car-evaluation task used in this paper.
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NoO. | EXPLANATION ACCURACY | PERPLEXITY

0 | A husband’s education has a high chance of a long-term con- 44.7% 85.88
traceptive being used.

1 A wife’s education level usually determines if a long term 46.8% 166.37
contraceptive was used.

2 | Women with low education are more likely to use short-term 39.3% 12.18
contraception.

3 | Women with high education age 40 and under are more likely 43.4% 22.01
to use long-term contraception.

4 | Women with two or more children used short and long term 42.7% 47.27
methods.

5 | The least educated women either used short-term method or 24.1% 72.05

didn’t use any contraceptive method.

6 | If the wife’s education is high, then the contraceptive method 41.0% 44.04
used is long-term.

7 | If the wife’s education is not high, then the contraceptive 27.5% 41.12
method used is no-use or short-term.

8 | If the wife’s education is not high, then the contraceptive 23.4% 31.23
method used is not long-term.

9 | If the wife’s education is not high, then the contraceptive 38.6% 37.03
method is short-term.

Table 11: All explanations for contraceptive-method-choice task used in this paper.

No. \ EXPLANATION ACCURACY \ PERPLEXITY

|
0 ‘ The SGPT High percentage so the liver patient was yes. ‘ 49.6% ‘ 4184.78
1 ‘ The SGPT Low percentage so the liver patient was no. ‘ 52.2% ‘ 4891.02
2 ‘ Patients over the age of forty are liver patients. ‘ 42.6% ‘ 54.92
3 | Patients who has SGOT range greater than forty are liver pa- 42.6% 373.03
tients.
4 ‘ Decreased SGPT Value ensures no liver patient. ‘ 52.2% ‘ 4404.52
5 ‘ Age group above 40 ensures liver patient. ‘ 37.4% ‘ 4994.60
6 | Some people have more age and have the SGOT and they are 54.8% 272.55
liver patient.
7 50.4% 226.11

Some people have minimum age and they are liver patient.
They are somewhat accurate.

Table 12: All explanations for indian-liver-patient task used in this paper.
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NoO. | EXPLANATION ACCURACY | PERPLEXITY

0 | Frequent flyers with an annual income over 1 million usually take travel insur- 33.2% 104.36
ance.
1 People with an annual income over 1 million and under 30 years old usually 30.4% 53.40

take travel insurance.

2 | Travelers who are 29 and older take traveler insurance. 34.4% 105.36

3 | Travelers who have not traveled abroad before are more likely to take traveler 34.2% 22.74
insurance.

4 | Frequent flyer travelers with an annual income above 1 million frequently take 31.2% 121.70

travel insurance.

5 | Travelers older than 25 years old and with an income below 1 million do not 42.5% 27.45
usually take travel insurance.

6 ‘ Most passengers who are not frequent fliers do not use travel insurance. ‘ 65.8% 33.28 ‘

7 ‘ Most passengers who have not traveled abroad do not use travel insurance. ‘ 77.1% ‘ 42.87
8 ‘ Most passenger with an income higher than 100,000 use travel insurance. ‘ 27.9% ‘ 131.69
9 | People who have never traveled abroad before are more likely to have taken 34.2% 15.95

travel insurance.

10 | People with an annual income below 1,000,000 are less likely to have traveled 23.1% 8.36
abroad than those with annual incomes above 1,000,000.

11 | People with an annual income above 1,000,000 are more likely to have taken 39.9% 26.63
travel insurance.

12 ‘ More frequent flyers have taken travel insurance. ‘ 34.9% ‘ 334.32

13 ‘ More people that travel abroad have taken travel insurance. ‘ 34.2% ‘ 114.91

14 | People who are non-frequent flyers and are college graduates are less likely to 27.4% 22.28
get travel insurance.

15 | People who make a million or more and are frequent fliers are more likely to 32.4% 22.73
get travel insurance.

16 ‘ Most people who didn’t travel abroad before had taken Travel Insurance. ‘ 34.2% ‘ 84.50

17 ‘ Most college graduate have taken Travel Insurance. ‘ 64.8% ‘ 780.98

18 | Those who are college graduates and in their 20s are somewhat likely to pur- 22.9% 28.62
chase travel insurance.

19 | Those who have never travelled abroad and are not frequent flyers often do not 67.1% 23.85
purchase travel insurance.

20 | Travelled Abroad Before "No" categories indicates the "No" Travel Insurance 24.4% 490.45
Taken.

21 ‘ College Graduate "Yes" categories leads to the "Yes" Travel Insurance Taken. ‘ 30.9% ‘ 678.44

22 ‘ Frequent Flyer "No" indicates the "No" Travel Insurance Taken. ‘ 53.8% ‘ 194.31

23 | Annual income categories above 1049999 indicates the "Yes" Travel Insurance 43.5% 2291.89
Taken.

24 | Most college graduates that make more than 1000000 annually have taken travel 37.2% 231.38
insurance.

25 | Most college graduates from 26 to 34 have taken travel insurance. 43.2% 185.20

26 | About have of college graduates that have not travelled abroad before have 34.2% 186.52
taken travel insurance.

27 | Frequently flyer "No" categories indicates the "No" travel insurance taken 65.6% 586.77
group.

28 ‘ Annual income above 1049999 indicate the "Yes" travel insurance taken group. ‘ 37.4% ‘ 769.28

29 ‘ Frequent flyer "No" categories indicates the "No" travel insurance taken group. ‘ 29.6% ‘ 375.25

30 ‘ Annual income above 1049999 indicates the "Yes" travel insurance taken group. ‘ 42.5% ‘ 695.34

Table 13: All explanations for travel-insurance task used in this paper.
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TALC: Removing the explanation with lowest perplexity
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Figure 12: When ranking the explanations by their indi-
vidual perplexity, removing the best explanation leads
to a 1.0% drop in performance on average.

TALC: Adding the explanation with highest perplexity
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Figure 13: Comparison of TALC’s performance before
and after adding a low-quality explanation to a set of
high-quality explanations. On average, the performance
increases by 0.6% when ranking by perplexity.

TALC: Replacing low-perplexity explanations
with malicious explanations
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Figure 14: Comparison of TALC’s performance before
and after replacing good-quality explanations with ma-
licious explanations. On average, TALC’s performance

drops by 5.6% as good explanations are replaced by
malicious explanations.
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