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Abstract

Distant Supervision (DS) is a promising learn-
ing approach for MRC by leveraging easily-
obtained question-answer pairs. Unfortunately,
the heuristically annotated dataset will in-
evitably lead to mislabeled instances, resulting
in answer bias and context noise problems. To
learn debiased and denoised MRC models, this
paper proposes the Contrastive Distant Super-
vision algorithm — CDS, which can learn to
distinguish confusing and noisy instances via
confidence-aware contrastive learning. Specif-
ically, to eliminate answer bias, CDS samples
counterfactual negative instances, which en-
sures that MRC models must take both answer
information and question-context interaction
into consideration. To denoise distantly anno-
tated contexts, CDS samples confusing nega-
tive instances to increase the margin between
correct and mislabeled instances. We further
propose a confidence-aware contrastive loss to
model and leverage the uncertainty of all DS
instances during learning. Experimental results
show that CDS is effective and can even outper-
form supervised MRC models without manual
annotations.

1 Introduction

Machine reading comprehension (MRC) is a fun-
damental NLP task, which aims to answer ques-
tions based on given documents (Hermann et al.,
2015; Chen et al., 2016; Seo et al., 2017). Tra-
ditional MRC models are usually learned using
manually-annotated <question, answer span> pairs
(Rajpurkar et al., 2016), which are labor-intensive
and time-consuming. To learn MRC models un-
der low-resource settings, distant supervision (DS)
is a promising approach that leverages the easily-
obtained <question, answer> pairs to heuristically
annotate training instances. Specifically, given a
<question, answer> pair, a DS-MRC system re-
trieves relevant passages, matches answers with
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Q: When did Apple iPhone 14 come out? A: 2022
P1: Apple released iPhone 14 in 2022. )
P2: Apple announced its 2022 financial results. (X)
P3: The iOS 16 for iPhone came out in 2022. (X)

C1: Apple announced iPhone SE in 2022.  (Counterfactual)

F1: Apple announced its new headquarters. (Confusing)

(a) DS Instances

(b) Contrastive Distant Supervision

Figure 1: (a) Many DS instances are mislabeled (P2
and P3); (b) During contrastive learning, the counter-
factual instance C1 pushes the question towards correct
instance P1 by cutting the “When-2022" shortcut, and
the confusing instance F1 pulls P2 and P3 away from
P1 to due to the similar contexts.

these passages, and uses all matched answer spans
to train MRC models (Chen et al., 2017).
Unfortunately, such a heuristically annotation
process will inevitably result in numerous misla-
beled instances (Min et al., 2019; Lin et al., 2018).
As shown in Figure 1(a), by simply matching the
answer “2022” with retrieved passages, P2 and P3
are mislabeled instances because they do not ex-
press the release-year relation of “iPhone 14” in the
question. These mislabeled instances make learn-
ing effective DS-MRC models a non-trivial task
due to the answer bias and context noise problems:

* Answer Bias problem. By heuristically annotat-
ing all answer spans as correct labels, DS-MRC
models tend to make decisions using only answer
information, while ignoring the question-context
interactions (Ji et al., 2022; Shao et al., 2021).
For example, in Figure 1(a), the model may learn
to answer "When" questions depending on the
When-Date shortcut and ignore all other infor-
mation such as the interaction between "come
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out" in the question and "released" in the con-
text. These spurious correlations cannot general-
ize well to real-world situations.

» Context Noise Problem. Because many instances
are noisy, it is difficult for DS-MRC models to
identify regular answer patterns for questions.
For example, in Figure 1(a), P2 and P3 are misla-
beled and the contexts of all three instances are
different. This makes it hard for the MRC model
to learn the correct "come out"-"released" pattern
from such noisy contexts. How to distinguish
correct instances from mislabeled instances is
critical for distant supervision.

To learn debiased and denoised MRC models,
this paper proposes the Contrastive Distant Super-
vision algorithm — CDS, which can learn to distin-
guish confusing and noisy instances via confidence-
aware contrastive learning. The contrastive learn-
ing framework of CDS is shown in Figure 1(b).

To eliminate answer bias, CDS samples coun-
terfactual negative instances and lets DS-MRC
models learn to distinguish them from positive in-
stances. Concretely, a counterfactual negative in-
stance is an instance with a correct answer but a
wrong counterfactual context. For example, in Fig-
ure 1(a), “Apple announced iPhone SE in 2022.” is
a counterfactual instance because its context does
not express the release-year relation of “iPhone 14”
in the question. By learning to distinguish positive
and counterfactual instances, MRC models need
to consider both answer information and question-
context interaction, and therefore the answer bias
can be addressed.

To denoise distantly annotated contexts, CDS
samples confusing negative instances, and in-
creases the margin between correct and mislabeled
instances by pulling mislabeled positive instances
closer to negative instances and pushing correct
positive instances away. Concretely, a confusing
negative instance contains the wrong answer and
a confusing context. For example, in Figure 1(a),
F1 is a confusing instance because its context is
similar to the mislabeled instances P2 but it does
not contain the answer “2022”. By learning to dis-
tinguish mislabeled instances, CDS can effectively
address the context noise problem.

Finally, because there are no golden labels dur-
ing distant supervision, we propose a confidence-
aware contrastive loss, which iteratively estimates
the confidence of all instances during training, and
optimizes DS-MRC models by taking the uncer-

tainty of training instances into consideration.

We conduct experiments on both close-domain
and open-domain MRC benchmarks. Experimental
results verify the effectiveness of CDS: On close-
domain MRC, CDS significantly outperforms pre-
vious DS-MRC methods and achieves competi-
tive performances with supervised MRC methods.
On open-domain MRC settings, CDS even outper-
forms supervised MRC models by a large margin.

The main contributions of this paper are:

* We propose a contrastive distant supervision ap-
proach, which can effectively alleviate the answer
bias and context noise problems in DS-MRC.

* We design two sampling algorithms and a
confidence-aware contrastive loss for DS-MRC
models learning: counterfactual instance sam-
pling for answer bias elimination, confusing
instance sampling for context denoising, and
confidence-aware contrastive loss for uncertainty
in distant supervision.

* Experimental results show that CDS is effective
and can even outperform supervised MRC mod-
els without manual annotations.

2 Relate Work

Distant supervision for MRC. Distant supervision
has been used to train MRC models in low-resource
settings, and two main kinds of approaches have
been proposed to address the mislabeling prob-
lem: (1) filtering noisy labels, and (2) modeling
answer spans as latent variables. The noise filtering
approaches learn to score and rank DS instances
based on answer span positions (Lee et al., 2019;
Tay et al., 2018; Swayamdipta et al., 2018; Clark
and Gardner, 2018; Lin et al., 2018; Joshi et al.,
2017; Chen et al., 2017), question-passage simi-
larities (Hong et al., 2022; Qin et al., 2021; Shao
et al., 2021; Deng et al., 2021) and model confi-
dences (Chen et al., 2022; Zhu et al., 2022). The
latent variable-based approaches jointly train MRC
models and identify correct answer spans using
hard-EM algorithms (Zhao et al., 2021; Min et al.,
2019; Cheng et al., 2020). In this paper, we address
the mislabeling problem via contrastive learning,
so that DS-MRC models can be debiased and de-
noised by sampling counterfactual and confusing
negative instances and designing confidence-aware
contrastive loss.

Contrastive learning is a promising technique
that learns informative representations by contrast-
ing positive sample pairs against negative pairs
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(Chen et al., 2020). Some studies have leveraged
contrastive learning on weak labels: Hong and
Yang (2021) contrastively debiases noisy labels
by regularizing feature space. Wang et al. (2022a)
learns better-aligned representations of partial la-
bels via contrastive learning. Chen et al. (2022)
proposes an answer-aware contrastive learning ap-
proach to address the translation noise in cross-
language MRC. Wang et al. (2022b) propose to
exploit span-level contrastive learning for few-shot
MRC. Zhang et al. (2021) proposes to sample coun-
terfactual instances and learn inter-modality rela-
tionships by contrastive learning for visual com-
monsense reasoning. Contrastive learning is also
widely used for weakly supervised learning (Du
et al., 2022; Yan et al., 2022; Gao et al., 2022; Xie
et al., 2022; Li et al., 2022b; Zheng et al., 2022;
Wan et al., 2022; Li et al., 2022a; Yi et al., 2022;
Yang et al., 2022; Li et al., 2021; Chen et al., 2021).
In this paper, we leverage contrastive learning to ad-
dress the bias and the noise problems in DS-MRC.

3 Background

Base MRC Model. The MRC model used in this
paper is
Pstart, Pend = M((Lp) (1)

where ¢ and p are the question and the passage,
respectively, and the model outputs two proba-
bility distributions Pgiqr: and Pe,q representing
the probabilities of each token being the start
and the end positions of the answer span. Our
confidence-aware contrastive learning algorithm
can be used in any MRC model, and this paper
uses the BERT-based MRC model, the same as
Devlin et al. (2019).

Vanilla Distant Supervision for MRC. Given
a <question, answer> pair, the DS-MRC method
first retrieves K relevant passages from a corpus.
Following Karpukhin et al. (2020), this paper uses
the Wikipedia corpus and splits all texts into 100-
token chunks. Then, we heuristically match the
answer with retrieved passages, and all matching
answer spans are used to form <question, passage,
answer span> instances. The passages that do not
contain the answer are labeled as negative passages.
Finally, all DS instances are used to train MRC
models as in Chen et al. (2017).

As shown above, the main drawback of vanilla
distant supervision for MRC is that many DS in-
stances are mislabeled, resulting in answer bias
and context noise problems. In the next section,

we describe how to resolve these problems via con-
trastive distant supervision.

4 Contrastive Distant Supervision for
Machine Reading Comprehension

In this section, we present our contrastive dis-
tant supervision (CDS) algorithm, which can learn
to distinguish confusing and noisy instances via
confidence-aware contrastive learning. Specifically,
CDS samples counterfactual negative instances to
eliminate answer bias, and samples confusing neg-
ative instances to denoise distantly annotated con-
texts. Then, a confidence-aware contrastive loss is
proposed to estimate and leverage the uncertainty
of all instances during learning. In the following,
we describe them in detail.

4.1 Counterfactual Negative Instance
Sampling

By simply annotating all matched answer spans
as correct labels, DS-MRC models tend to make
decisions using only answer information, while
ignoring the question-context interactions. To elim-
inate this answer bias, CDS samples counterfactual
negative instances and ensures that DS-MRC mod-
els can distinguish them from positive instances.
Concretely, a counterfactual instance is an instance
with the correct answer but a counterfactual con-
text irrelevant to the question. Figure 1(a) shows a
counterfactual instance C1 which does not express
the correct release-year relation of “iPhone 14 but
with matched answer span “2022”.

Specifically, we sample counterfactual instances
from low-confidence DS instances via a rank-based
sampling algorithm. The basic assumption is that if
the MRC model predicts lower answer probability
for an instance, the instance is less relevant to the
question (Qi et al., 2021; Izacard and Grave, 2021).
Based on this assumption, for a <question, answer>
pair, we first predict the answer probability P(x) of
each DS training instance x using the current MRC
model, where P () is the npes-softmax probability
of the answer span as the same as Cao et al. (2020).
Then, for each training instance x, we sample in-
stances that have significantly lower probabilities
than z as its counterfactual instances USF':

U = {sj|P(sj) <Plx) —m}

where s; represents a counterfactual instance,
and m is the probability margin. We set m =
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max,(P(x)) — median, (P(x)) for flexibility on
different P(x) distributions.

After sampling S, the answer bias can be ad-
dressed by learning to distinguish counterfactual
instances contrastively. Firstly, given a training
instance x and an MRC model M, we obtain the
current representations of the question, answer, and
counterfactual instance correspondingly as 9, %,
and s?. Then, we minimize the distance between
the question x? and the answer x“, while maxi-
mizing the distances between question x and the
counterfactual negative instances s7 via the debias
loss in Section 4.3.

Because all counterfactual instances are matched
with the answer span but are negative, the counter-
factual instances will ensure DS-MRC models to
answer questions based on both answer informa-
tion and question-context interaction. In this way,
the answer bias can be resolved. For example, as
shown in Figure 1(b), the counterfactual negative
instances will cut the "When-Date" shortcut, and
push the question representation towards the cor-
rect instance P1, meanwhile away from mislabeled
P2 and P3.

4.2 Confusing Negative Instance Sampling

Because many DS instances are noisy, it is difficult
to learn to identify regular answer patterns for ques-
tions. To denoise contexts, CDS samples confusing
negative instances which are used to pull misla-
beled positive instances closer to the confusing
negative samples. In this way, the margin between
correct and mislabeled instances will increase. Con-
cretely, a confusing negative instance should not
contain the correct answer but should have a simi-
lar context to mislabeled instances. For example,
Figure 1(a) shows a sampled confusing instance
F1, which is similar to the mislabeled instances P2
and P3 but does not contain the answer.

To sample confusing negative instances, we de-
sign a retrieval-based algorithm. Specifically, for a
training instance x, we retrieve its similar passages,
filter out passages with answers, and use the top-
K remaining passages as the confusing negative
instances U<:

Uy = TOpr{pj Jagtp; S (2, D) 3)

where p; represents a confusing instance, a is the
answer, and sim(x, p;) is the similarity function in
passage retrieval (this paper uses BM25).

After sampling S, we learn to denoise con-
texts by learning to distinguish confusing instances.
Given a mislabeled instance x, we minimize the
distances between its context representation  and
the representations of confusing negative instances
pj, while maximizing the distances between con-
text ¢ and the context representations of positive
instances x via a denoise loss in Section 4.3.

By sampling confusing negatives and pulling
mislabeled instances closer to confusing negatives,
the context noise problem can be effectively ad-
dressed. For example, as shown in Figure 1(b),
the confusing negative instances will pull the mis-
labeled instances P2 and P3 closer to confusing
negative F1, therefore the influence of these noisy
instances will be reduced.

4.3 Confidence-Aware Contrastive Learning

Traditional contrastive learning usually needs
golden labels of positive and negative instances.
Unfortunately, this is not the case in distant super-
vision, where all labels are uncertain. To address
this label uncertainty problem, our contrastive dis-
tant supervision algorithm designs a confidence-
aware contrastive loss, which iteratively estimates
the confidence of all instances during training and
optimizes DS-MRC models by taking the uncer-
tainty of instances into consideration. In the fol-
lowing, we introduce how to optimize DS-MRC
models using the confidence-aware contrastive loss
and how to estimate the confidence scores during
training.

Confidence-aware contrastive loss. To take into
consideration the label uncertainty in DS-MRC, the
confidence-aware contrastive loss uses confidence
to weight the importance of all instances. The
overall loss is:

Lcps = Z(aLdebias + ﬁLdenoise + LCE) @

x

where Lgepiqs 18 the debias loss used to ensure the
model can distinguish counterfactual negative in-
stances, L jenoise 1S the denoise loss used to denoise
contexts by distinguishing confusing negative in-
stances, Lo g is cross-entropy loss used to learn
the answer span prediction ability, o and (3 are
hyper-parameters. Given a training instance z, we
describe these losses in the following.

Debias Loss. The debias loss of x is used to
ensure the MRC models can distinguish z from its
corresponding counterfactual instances:
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Ldebias(x) -
exp(x? - x)
oxp(@l @)+ 5

Sj EUQ?F

— wyl
Watog exp(z? - %)

&)
where w,, € [0, 1] is the confidence score of the
instance z. In this way, the loss will be dominated
by highly confident correct instances, and the in-
fluence of uncertain DS instances will be reduced.
By minimizing this loss, the question representa-
tion x? is pushed towards the representations of
high-confidence instances £* and away from the
representations of counterfactual instances s7.

Denoise Loss. The denoise loss of x is used to
ensure the MRC models can identify mislabeled
instances via the relations to its confusing negative
instances:

Ldenoise(x) = _(1 - wl)

> exp(p; - z)
Pj EZ/{QCC

log 7

> exp(pj - z€) + > wyexp(x§ - x€)
pjeUs J=1
(6)

where J is the total number of instances of the
<question, answer> pair. This loss is dominated
by low-confidence mislabeled instances using the
1 — w, term, and therefore it will not influence the
high-confident instances. By minimizing this loss,
the context representation x¢ of low-confidence
instances is pulled towards the confusing instance
representations p; and pushed away from the high-
confidence instances x§ selected by the w,; term
at the bottom.

Cross-Entropy Loss. To learn the answer span
prediction ability for MRC, we design a confidence-
aware cross-entropy loss:

LCE(.%’) = _wx(log ,Pstart(l;mrt>+

7
log Pena(15™)) @
where 15197 and 1" are the start and end positions
of the answer span of instance x. This loss function
is weighted by the confidence w, for each instance,
so that high-confidence instances will have larger
effects on the learning of answer span prediction.

Confidence Estimation. To model the uncer-
tainty of DS instances, we estimate their confidence
by deriving confidence evidence from the current

MRC model. Specifically, we employ an iterative
estimation strategy: we start with initial confidence
scores and iteratively update them during training.
Given an instance z for a question g, we use
its question-passage matching score to initialize
its confidence score. The intuition here is that the
matching scores measure the relevance between the
question and the passages, providing a reasonable
start for confidence. Specifically, we use the BM25
score during retrieval and normalize the confidence
scores of all instances of the same question ¢:

0o _ Slm(q7$l)
T, J .
Zj:l sim(q, x;)

(®)

where w? is the initial confidence score for the
i-th instance of the <question, answer> pair, and
sim(q, ;) is the BM25 matching function.

To update the confidence during training at each
time step ¢, we apply a moving-average strategy
and update w' as:

wh, = )\wi,zl +(1-

)zt )

)

where 2! is the confidence evidence derived from
the current MRC model, and A € (0,1) is a con-
stant for moving average. The moving-average
strategy smoothly updates the estimated confidence
and ensures training stability.

To get model confidence score z!, we design
three approaches including Soft Weighting, Hard
Max, and Positive Average.

For Soft Weighting (SW), z; is computed as:

P@' — Pstart(lfmrt) X ,Pend(lfnd) (10)
2z = in’ (11)
Zj:l Pj

where P; is the predicted span probability for the -
th instance. This approach assigns a soft weight for
each instance according to its predicted probability
by the MRC model.

For Hard Max (HM), z; is computed as:

1
2 = 0

where Py, is calculated through Equation 10. This
approach assumes that only one of the instances for
a <question, answer> pair is correct, and picks the
one that has the highest probability as the correct
instance.

if i = arg max; <<y P

(12)
else
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For Positive Average (PA), z; is computed as:

1 if arg max, Psiart(c) = lft“”
Z = and arg max,Penq(c) = 1" (13)
0 else
y= (14)

Zj:l Zj
This approach is inspired by Zhao et al. (2021)
that if the span predicted by the model matches
the labeled answer span, the instance is marked as
correct.

Through iteratively refining the confidence of
all instances and optimizing the confidence-aware
contrastive loss, CDS can estimate and exploit the
label uncertainty of DS instances. Therefore the
uncertainty problem can be effectively addressed.

5 Experiments

5.1 Experiment setup

Datasets. We evaluate our method on two stan-
dard MRC datasets: NaturalQuestions and Trivi-
aQA. NaturalQuestions (NQ) (Kwiatkowski et al.,
2019) is an MRC benchmark with manually an-
notated passages and answer spans. In this paper,
we only use the answer strings for training. We
use the modified NQ dataset provided by Sen and
Saffari (2020), which is a subset of NQ and the
MRC task is defined as finding the short answer
in the long answer. This offers a more standard
context for MRC tasks, whereas the official NQ
dataset involves reading long documents or multi-
document retrieval, which does not align with our
focus. Therefore, the modified NQ dataset provides
a suitable setting for evaluating our model’s perfor-
mance. TriviaQA (Joshi et al., 2017) is a DS-MRC
dataset collected from trivia quiz websites without
golden passages and answer spans’.

Baselines. We compare our method with state-of-
the-art supervised and DS-MRC methods. For su-
pervised MRC, we use the original training datasets
to train MRC models. For DS-MRC, we compare
with two types of methods: noise filtering methods
(Xie et al., 2020; Swayamdipta et al., 2018) and a
latent variable-based method (Min et al., 2019). We
further compare with DS-Top (Chen et al., 2017),
which matches overlaps between questions and
contexts and picks top-scored answer spans for

'The licenses of these datasets are Apache License 2.0.

training, DS-All, which uses all individual DS in-
stances to train the MRC model, and DS-Average,
which assigns an averaged confidence vector to all
instances for a <question, answer> pair. For open-
domain DS-MRC, we compare with DistDR (Zhao
et al., 2021) which iteratively improves a dense pas-
sage retriever through an EM approach, and two
state-of-the-art open-domain MRC methods, DPR
(Karpukhin et al., 2020) and ANCE (Xiong et al.,
2021).

Training configurations. We initialize our
model using the pre-trained BERT-large model (De-
vlin et al., 2019). Our model is trained with a learn-
ing rate of 2e-5, and the batch size is 32. The model
is trained for 3 iterations. We pick the top 20 re-
trieved passages for training and evaluation. We
take K = 5 for confusing instance sampling. We
set « = 1 and 8 = 1 for the contrastive loss. For
confidence estimation, the moving-average factor
Ais 0.8.

5.2 Close-Domain MRC Results

We first evaluate our CDS method under the close-
domain MRC setting, where the passages are pro-
vided in the dataset. We use the exact match (EM)
and F1 scores of the output answers as in Rajpurkar
et al. (2016) for evaluation. From the results shown
in Table 1, we find that:

Confidence-aware contrastive loss is effective
for distant supervision. In experiments, all three
confidence estimating approaches CDS-SW, CDS-
HM, and CDS-PA achieve good performances in
Table 1, and CDS-PA is slightly better than the
other two approaches. These results verify that it is
important to take label uncertainty into considera-
tion for effective distant supervision.

5.3 Open-Domain MRC Results

This section evaluates our CDS method under the
open-domain MRC setting. In the first experiment,
We use retrieval results (BM25 and DPR-Positive)
from open-domain MRC as passages, so that the
robustness of different MRC models under noisy
retrieved passages can be assessed. Specifically, for
BM25, we use the top-20 retrieved results as the
passages. For DPR-Positive, we use the “positive
contexts” provided by Karpukhin et al. (2020) as
the passages. In the second experiment, we apply
an ensemble of our three MRC models (CDS-SW,
-HM, -PA) in an open-domain MRC pipeline. We
use DistDR (Zhao et al., 2021) as the retrieval sys-
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Model NQ TriviaQA
Close BM25 DPR-Positive Close BM25 DPR-Positive

Supervised Model 63.01/75.50 | 11.91/21.50  61.40/74.28 | 71.50/76.56 | 43.97/48.36  29.16/30.87
Swayamdipta et al. (2018) /- /- —/— 51.60/56.00 /- /-
Hard-EM (Min et al., 2019) —/- /- —/- 66.90/ - 50.70/ - —/-
DS-Top (Chen et al., 2017) | 50.37/64.44 | 14.92/23.29  63.10/72.72 | 70.64/74.38 | 48.86/51.15  58.54/61.50
DS-All 48.71/63.30 | 14.21/23.26  69.14/77.99 | 78.37/80.69 | 49.94/52.97  63.36/65.25
DS-Average 49.54/63.79 | 13.61/23.10  69.26/78.15 | 77.39/79.99 | 49.99/53.00  62.97/65.16
Xie et al. (2020) —/- —/- —/- —/- 54.40/60.20 —/-
CDS-SW 50.73/64.97 | 15.49/24.95  70.24/78.91 | 78.57/81.29 | 55.20/58.57  63.80/66.04
CDS-HM 51.93/65.60 | 15.85/25.24  71.16/79.56 | 77.76/80.50 | 57.15/60.24  64.23/66.25
CDS-PA 52.16/65.71 | 16.40/25.49  70.65/78.81 | 78.52/81.18 | 57.96/61.03  64.86/66.85

Table 1: Evaluation results (EM/F1) on the development sets of NQ and TriviaQA under close-domain MRC
setting (Close) and open-domain MRC setting with passages from BM25 and DPR-Positive (Karpukhin et al., 2020)

retrieval results.

Model Exact Match
Supervised DPR 41.5
Supervised ANCE 46.0
Distantly Supervised DPR 37.9
Distantly Supervised ANCE 38.3
DistDR (Zhao et al., 2021) 40.5
DistDR + CDS 40.9

Table 2: Evaluation results for open-domain DS-MRC
pipeline on the test set of NQ.

tem because it is trained under the distant supervi-
sion setting, which is consistent with ours. Table 1
and Table 2 show the results, and we can see that:

(1) By designing debiasing and denoising
strategies, our MRC models can achieve robust
performances on noisy passages, and even out-
perform supervised models. As shown in Table
1, our models significantly outperform the super-
vised models in both BM25 and DPR-positive set-
tings. The highest improvement is on TriviaQA
with DPR-Positive: 35.70 points on EM and 35.98
points on F1 score. On TriviaQA, our CDS models
achieve significant improvements compared with
both noise filtering and latent variable-based DS-
MRC methods. These results show that noise
is a critical problem for DS-MRC models, and
CDS can effectively learn debiased and denoised
DS-MRC models, therefore improving the robust-
ness of MRC models under the noisy open-domain
MRC setting.

(2) Contrastive distant supervision can be
an on-the-fly plug-in for improving the open-
domain DS-MRC system. As shown in Table
2, using our model as the reader module in the
DistDR (Zhao et al., 2021) pipeline (DistDR +
CDS) achieves higher performance than existing
distantly supervised open-domain MRC systems
and further minimizes the gap between distant and
full supervision. This shows that contrastive distant

supervision is model-free, which can be directly
used in existing open-domain MRC systems and
complements other promising techniques.

5.4 Ablation Studies

We conduct ablation experiments in Table 3 to fur-
ther show the effectiveness of our method designs.

Effect of counterfactual negative instance sam-
pling. We study the effect of counterfactual nega-
tive instance sampling by removing the debias loss
L gepias from the overall contrastive loss. As shown
in Table 3, there are performance drops in all three
settings compared with the full method, especially
in the BM25 setting. These results show that the
answer bias problem is critical for DS-MRC mod-
els, and our counterfactual instance sampling is
effective for addressing the answer bias.

Effect of confusing negative instance sampling.
We study the effect of confusing negative instance
sampling by removing the denoise 10ss Lgenoise
from the overall contrastive loss. As shown in Ta-
ble 3, this results in significant performance drops
compared with our full method. This verifies that
context noise is a critical problem in DS-MRC, and
sampling and contrasting with confusing negative
instances is effective for denoising distantly anno-
tated contexts.

Effect of confidence-aware contrastive loss.
We replace our confidence-aware contrastive loss
with traditional contrastive loss by simply using
instances that contain answers as positive samples
and using passages without answers as negative
samples. This results in severe performance drops,
especially in the close-domain and BM25 settings.
We believe this is because too many positive sam-
ples are actually mislabeled in this case, which
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Model Close BM25 DPR-Positive

CDS-PA 78.52/81.18 | 57.96/61.03 64.86/66.85
w/o debias contrastive loss 78.24/80.90 | 53.72/56.96 63.43/65.52
w/o denoise contrastive loss 77.75/80.19 | 56.31/59.41 63.66/65.71
w/o confidence-aware contrastive learning | 74.14/77.92 | 52.05/54.29  63.78/66.06

Table 3: Ablation results (EM/F1) on the TriviaQA dataset.

Question: What is the capital of Nicaragua in Spanish?
Answer: Managua

Correct instance: Nicaragua is the largest country in the
Central American isthmus...Managua is the country’s
capital and largest city...

(Confidence change: 0.099 — 0.287 — 0.352)

Mislabeled instance: Lake Managua is a lake in
Nicaragua. The Spanish name is Lago de Managua...
(Confidence change: 0.119 — 0.037 — 0.032)

Counterfactual instance: Managua consists of more
than one-sixth of the overall population of Nicaragua...

Confusing instance: The second largest lake in
Nicaragua has an indigenous name Cocibolca (Sweet
Sea)...

Table 4: A case of confidence updating in NQ dataset
with counterfactual and confusing instances.
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mClose-F1  mBM25-F1 DPR-Positive-F1
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Figure 2: Model performances with different moving-
average factor A on TriviaQA dataset with CDS-PA.

should be close to the negative samples in the rep-
resentation space. Viewing them as positives will
mislead the model learning. This shows the impor-
tance of estimating and leveraging label uncertainty
in distant supervision, and our confidence-aware
contrastive loss is effective for taking the uncer-
tainty into consideration.

Effects of hyper-parameter \. We analyse the
sensitivity of moving-average factor A by using dif-
ferent values of A\. We test the model performance
with A € {0.0,0.2,0.4,0.6,0.8,1.0} on TriviaQA
dataset. From Figure 2, we can see that the model
performances with Close, BM25 and DPR-Positive
settings show similar trends on A, and our method
achieves the best results at A = (.8.

5.5 Case Study

To better demonstrate the effect of CDS, Table 4
shows an example of negative instance sampling
and confidence estimation from the NQ dataset.
The correct instance is the same as the manually
annotated positive passage in the NQ dataset that
describes the relation “Managua is the capital of
Nicaragua”. The mislabeled instance contains the
answer “Managua”, but instead of describing the
city Managua, it is about Lake Managua which is
not related to the question.

This case demonstrates the results of counter-
factual instance sampling and confusing instance
sampling. For the counterfactual instance, our
method samples an instance that does not express
the “capital-of” relation but contains the answer
“Managua”. For the confusing instance, our method
retrieves a passage based on the mislabeled in-
stance which does not contain the answer. This
case shows that our counterfactual and confusing
negative sampling algorithms can effectively sam-
ple high-quality and helpful negative instances for
eliminating answer bias and denoising DS contexts.

For confidence estimation, in the beginning, the
mislabeled instance has a higher confidence score
than the correct instance. Along with the learning
process, the confidence score of the mislabeled in-
stance decreases to 0.032, and the correct instance
gains the highest confidence for this <question, an-
swer> pair. This demonstrates that CDS can suc-
cessfully distinguish correct instances during train-
ing. By using these confidence scores as weights
in the contrastive loss, our method can effectively
leverage the uncertainty of DS-MRC instances.

6 Conclusion

This paper proposes Contrastive Distant Supervi-
sion — CDS, which can debias and denoise DS-
MRC models by learning to distinguish confus-
ing and noisy instances via confidence-aware con-
trastive learning. Specifically, CDS samples coun-
terfactual negative instances to eliminate answer
bias, and samples confusing negative instances
to denoise noisy contexts. Then, a confidence-
aware contrastive loss is proposed to estimate and
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leverage the uncertainty of all DS instances dur-
ing learning. Experimental results verify the ef-
fectiveness of CDS: On close-domain MRC, CDS
significantly outperforms previous DS-MRC meth-
ods and achieves competitive performances with
supervised MRC methods. On open-domain MRC
settings, CDS even outperforms supervised MRC
models by a large margin. Furthermore, contrastive
distant supervision is model-free and thus can effec-
tively complement other MRC techniques. We will
release all codes, models and datasets on GitHub.

Limitations

Current DS-MRC systems still need an external
passage retrieval component, and we leave the fully
end-to-end MRC systems for future work, i.e., the
retrieval, the reading, and the answering are jointly
modeled and learned. Besides, we use BM25 for
passage retrieval and do not use recent dense re-
trieval models which may further increase the per-
formance of our DS-MRC models.

The introduction of additional counterfactual
and confusing instances will increase the time of
training?, because DS-MRC models need to learn
to distinguish more contrastive and confusing in-
stance pairs.
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