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Abstract

Large language models (LLMs) have show-
cased remarkable capabilities in complex rea-
soning through chain of thought (CoT) prompt-
ing. Recently, there has been a growing interest
in transferring these reasoning abilities from
LLMs to smaller models. However, achieving
both the diversity and consistency in rationales
presents a challenge. In this paper, we focus
on enhancing these two aspects and propose
Multi-CoT Consistent Knowledge Distillation
(MCC-KD) to efficiently distill the reasoning
capabilities. In MCC-KD, we generate multiple
rationales for each question and enforce con-
sistency among the corresponding predictions
by minimizing the bidirectional KL-divergence
between the answer distributions. We investi-
gate the effectiveness of MCC-KD with dif-
ferent model architectures (LLaMA/FlanT5)
and various model scales (3B/7B/11B/13B)
on both mathematical reasoning and common-
sense reasoning benchmarks. The empirical
results not only confirm MCC-KD’s superior
performance on in-distribution datasets but also
highlight its robust generalization ability on
out-of-distribution datasets.

1 Introduction

Recently, large language models (LLMs) such as
ChatGPT have exhibited impressive emergent ca-
pabilities, showcasing their competence in vari-
ous tasks, including those demanding complex rea-
soning. While directly providing answers without
generating intermediate steps may lead to errors
and limited interpretability, chain of thought (CoT)
(Wei et al., 2022) prompting enables LLMs to break
down reasoning tasks into a series of intermediate
steps, guiding the model to generate the subsequent
steps before arriving at the final answer. The effec-
tiveness of CoT prompting has been demonstrated
on diverse reasoning tasks (Kojima et al., 2022).
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                                    Seal releases 2 songs every month.  He gets $2000 per song.  How much 
money does he get in his first 3 years?

                                    Over 3 years, there are 12*3=36 months. Seal releases 2 
songs every month and is paid $2000 per song. So Seal is paid 2*$2000=$4000 
per month. He will make 36*$4000=$144,000. Therefore, the answer is 144,000.

                                    There are 12 months in a year. Over 3 years, there are 
12*3=36 months. Seal releases 2 songs every month. So he totally releases 
2*36=72 songs. He earns 72*$2000=$144,000. Therefore, the answer is 144,000.

                                    Seal is paid 2*$2000=$4000 per month. In one year, there 
are 12 months. So He get $4000*12=$48,000 per year. Over the course of three 
years, he earns 3*$48,000=$144,000. Therefore, the answer is 144,000.
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Figure 1: An example question from the GSM8K dataset
(Cobbe et al., 2021) and the rationales generated by GPT-
3.5-Turbo. Colored texts indicate the probabilities of
the shared answer across different rationales.

Despite the effectiveness of CoT prompting, re-
cent studies (Wei et al., 2022; Magister et al., 2022;
Fu et al., 2023) have shown that these reason-
ing capabilities only manifest in language models
with over 100 billion parameters, such as PaLM
(540B) (Chowdhery et al., 2022) and GPT-3 (175B)
(Brown et al., 2020). These LLMs with massive
parameter sizes require significant computational
resources during both training and inference, which
restrict their deployment on resource-limited plat-
forms. While LLMs could be accessed through
API calls, there are still several challenges to over-
come, including network instability, difficulty in
customizing the models, and privacy concerns.

Therefore, an alternative approach is to deploy
smaller language models such as LLaMA-7B/13B
(Touvron et al., 2023) and FlanT5-XL/XXL
(Chung et al., 2022), which have fewer than 13
billion parameters. Through knowledge distillation
(KD) (Hinton et al., 2015), the reasoning capabili-
ties can be transferred from LLMs to these smaller
models. However, traditional KD techniques re-
quire the teacher model to provide output logits
or hidden layer features, which cannot be readily
applied to LLMs due to the limited accessibility of
their internals. One potential solution is to leverage
rationales generated by LLMs to train smaller mod-
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els, thereby acquiring their reasoning abilities (Ho
et al., 2022; Magister et al., 2022; Fu et al., 2023).

However, these methods for rationale distilla-
tion also face several challenges. Firstly, the lim-
ited diversity in reasoning paths may lead to a
dilemma where the student model simply mimics
the superficial style of the teacher model’s outputs
(Gudibande et al., 2023) or overfits the training
data, resulting in limited generalization capabilities.
Secondly, despite the existence of multiple ratio-
nales leading to the same answer for each given
question (as depicted in Figure 1), these methods
neglect the consistency among different rationales
in reaching the predicted answer when training the
student model. Such oversights can undermine the
stability of student models during training and im-
pair their generalization capabilities.

To address these challenges, we propose Multi-
CoT Consistent Knowledge Distillation (MCC-
KD), a novel solution that incorporates two piv-
otal characteristics. Firstly, this approach leverages
multiple diverse rationales for each given question
and aims to improve their consistency in predict-
ing the answer. This improvement is expected to
enhance the stability and generalizability of the stu-
dent models. Secondly, we introduce a similarity-
based method to facilitate the selection of diverse
rationales. MCC-KD draws inspiration from real-
world teaching scenarios, where presenting multi-
ple distinct solutions to one problem benefits the
student’s learning process. With these inherent ad-
vantages, MCC-KD enables the smaller models to
acquire reasoning capabilities from larger models
through effective knowledge distillation.

We conduct extensive experiments with LLaMA
(Touvron et al., 2023) and FlanT5 (Chung et al.,
2022) on both mathematical reasoning and com-
monsense reasoning benchmarks. The empirical
results demonstrate the effectiveness and superior-
ity of MCC-KD over previous CoT-based knowl-
edge distillation methods. For example, MCC-
KD achieves an accuracy improvement from point
38.01 to 41.58 on the GSM8K (Cobbe et al., 2021)
dataset with LLaMA-7B. Moreover, the general-
ization experiments reveal that MCC-KD achieves
a substantial accuracy improvement, raising the
performance from point 47.69 to 49.52 on the out-
of-distribution dataset ASDiv (Miao et al., 2020)
using FlanT5-XXL. These findings provide com-
pelling evidence of the effectiveness and robustness
of MCC-KD.

2 Related Work

In this section, we briefly review the related work
on chain of thought and knowledge distillation.

2.1 Chain of Thought

The idea of using natural language rationales to
solve mathematical problems through a series of
intermediate steps is first pioneered by Ling et al.
(2017). Then it has been further shown that natural
language rationales or intermediate steps can im-
prove language models’ performance (Yao et al.,
2021; Hase and Bansal, 2022) and robustness
(Chen et al., 2022) on various reasoning tasks. Fol-
lowing this idea, chain of thought (Wei et al., 2022)
prompting enables LLMs to generate CoTs or ra-
tionales themselves using in-context learning (Min
et al., 2022) and few-shot prompting (Brown et al.,
2020), thereby enhancing the models’ capabili-
ties to solve complex reasoning tasks. Wang et al.
(2022b) introduce a multi-round voting mechanism
to further improve the CoT prompting. On the other
hand, Kojima et al. (2022) propose zero-shot-CoT
prompting that leverages zero-shot prompting to
guide LLMs, revealing their capabilities to generate
CoTs or rationales without the need for manually-
written contextual prompts. However, Hoffmann
et al. (2022) and Chowdhery et al. (2022) unveil
that CoT prompting requires the model’s parame-
ters to reach a certain scale to be effective.

2.2 Knowledge Distillation

Knowledge distillation (KD) (Hinton et al., 2015)
aims to train smaller models by distilling knowl-
edge from larger models, reducing model size
while preserving high performance and generaliza-
tion abilities. However, existing methods, such as
response-based KD (Hinton et al., 2015; Turc et al.,
2019), feature-based KD (Sun et al., 2019), and
relation-based KD (Park et al., 2021), all require
access to the internal parameters of the teacher
model, which are often impractical for LLMs.

Considering that many LLMs are capable of gen-
erating high-quality rationales, an alternative ap-
proach to knowledge distillation is to leverage the
rationales generated by LLMs as distillation train-
ing data. Motivated by this, previous works (Shrid-
har et al., 2022; Hsieh et al., 2023; Ho et al., 2022;
Magister et al., 2022) employ LLMs as teacher
models to generate chain of thought data as ra-
tionales, using the data to transfer the reasoning
capabilities into smaller student models. Further-
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James creates a media empire.  
He creates a movie for $2000.  
Each DVD cost $6 to make.  
He sells it for ...  
How much profit does he 
make in 20 weeks?

Large LM

                          He sells each DVD for 
6*2.5=$15. So he makes a profit of  … 
Therefore, the answer is 448,000.

                          He sells each DVD for 
6*2.5= $15. And he makes a profit of  …
Therefore, the answer is 448,000.

                          He makes a profit of $6* 
1.5=$9 per DVD sold. So each DVD … 
Therefore, the answer is 448,000.

Small LM
James creates a media empire.  
He creates a movie for $2000.  
Each DVD cost $6 to make.  
He sells it for ...  
How much profit does he 
make in 20 weeks?

Rationale FilteringRationale Extraction

Multi-CoT Consistent Distillation

Question

Question

Rationale #1

Rationale #2

Rationale #3

                            He sells each DVD for 
6*2.5= $15. And he makes a profit of  …
Therefore, the answer is 448,000.

Rationale #3

                         He sells each DVD for 
6*2.5=$15. So he makes a profit of  … 
Therefore, the answer is 448,000 .

Rationale #1

                         He makes a profit of $6* 
1.5=$9 per DVD sold. So each DVD … 
Therefore, the answer is 448,000 .

Rationale #2

Pairwise Jaccard Similarity

Filtering

                          He sells each DVD for 
6*2.5=$15. So he makes a profit of  … 
Therefore, the answer is 448,000.

                          He makes a profit of $6* 
1.5=$9 per DVD sold. So each DVD … 
Therefore, the answer is 448,000.

Rationale #1

Rationale #2

consistency

Figure 2: Overview of the MCC-KD framework. Firstly, it leverages a LLM to generate multiple rationales.
Subsequently, a filtering process is employed to preserve highly diversified rationales. Then the student model
undergoes training by ensuring the consistency of the final answer predictions across various rationales.

more, Fu et al. (2023) specialize the model’s ability
towards a target task using chain of thought distilla-
tion. Jiang et al. (2023) explore a teacher-feedback
mechanism relying on LLMs to generate rationales
of challenging instructions, aiding student mod-
els to learn from difficult samples. Wang et al.
(2022a) introduce a pipeline consisting of a ratio-
nalizing module and a reasoning module, resem-
bling the teacher-student architecture, but it still
requires LLMs to generate rationales for smaller
models during the inference. The key distinction
between these previous works and ours lies in that
we explore the consistency among diverse ratio-
nales when training the student model to improve
its stability.

3 Method

We introduce Multi-CoT Consistent Knowledge
Distillation (MCC-KD), an approach designed
to enhance the generalization and robustness of
smaller student models during knowledge distil-
lation. In particular, MCC-KD enforces the con-
sistency among diverse chain of thoughts (CoTs)
generated by the teacher LLMs in three key steps.
Firstly, given an input question, we utilize zero-
shot CoT prompting (Kojima et al., 2022) to obtain
multiple CoTs as rationales from a LLM such as
GPT-3.5. Secondly, we filter out rationales that
exhibit limited diversity. Lastly, we impose con-
straints on the outputs from multiple rationales to

facilitate their consistency. The overall framework
of MCC-KD is illustrated in Figure 2.

3.1 Rationale Extraction
Following (Kojima et al., 2022), we prompt the
teacher model to generate rationales for each ques-
tion. Formally, let x represent a question, r denote
a rationale generated by the teacher, and a indicate
the final answer predicted by the teacher from x
and r. A resulting training sample is constructed by
concatenating x, r, and a in the following format:
<x> <r> Therefore, the answer is <a>.

To ensure the abundance and diversity of the
generated rationales, we employ a combination
of techniques. Firstly, we increase the sampling
temperature τ (τ = 1.3 in this study) along with
the number of sampling iterations. This approach
aids in generating a greater variety of rationales.
Secondly, to ensure the accuracy of the generated
samples, we conduct verification for both the an-
swer and the rationale. For answer verification, we
compare the predicted answer a with the ground
truth answer to confirm its correctness. For ratio-
nale verification, we find that the correctness of
rationales typically aligns with the correctness of
answers under most circumstances.

3.2 Rationale Filtering
The diversity of reasoning rationales plays a cru-
cial role in transferring reasoning capabilities from
teacher LLMs to student models (Gudibande et al.,
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2023). However, based on our observations, the
teacher model still tends to generate similar ratio-
nales even with different sampling temperatures (as
shown in Table 16 in Appendix B.3). In order to
obtain more diverse rationales, we develop a filter-
ing strategy based on N-gram. For each rationale,
we convert it into a set of N-gram (specifically, 3-
gram in this study) segments. Subsequently, we
calculate the Jaccard similarity among these sets.
To be more specific, considering that there are M
rationales {r1, r2, . . . , rM} extracted for the input
question, each rationale ri is decomposed into a
set Si of segments. We then compare each pair of
segment sets using the Jaccard similarity score to
identify the most similar rationales:

(k, l) = argmax
1≤i,j≤M,i ̸=j

|Si ∩ Sj |
|Si ∪ Sj |

, (1)

where k and l represent the indices of the selected
rationale pair, rk and rl, respectively. Subsequently,
we randomly retain one of the two rationales while
discarding the other. This iterative process con-
tinues until we accumulate a predefined number,
denoted as K (set to 5 in our experiments), of ra-
tionales for the given question.

3.3 Multi-CoT Consistent Distillation

As previously discussed, LLMs typically generate
multiple valid rationales for a given input question.
This work is built on the assumption that ensuring
consistency among the predicted answers is crucial
when training the student model with these ratio-
nales. For the input question and the K retained
rationales (r1, r2, ..., rK) after filtering, we ensure
consistency in the predictions of the student model
by minimizing the variations in the probabilities of
the answers from these different rationales.
Single-token answer We first consider the sce-
nario where the answer consists of a single token,
where the prediction corresponds to a probability
distribution over the vocabulary. For a given ratio-
nale ri, let p represent the predicted distribution
obtained for the answer, and for another rationale
rj , let q represent the predicted distribution. In
order to ensure consistency between these two ra-
tionales, we apply bidirectional KL-divergence to
their corresponding distributions as our training
objective:

Lkl(p, q) =
V∑

i=1

(pi log
pi
qi

+ qi log
qi
pi
), (2)

where V denotes the size of the vocabulary.
Multi-token answer As for the answer consisting
of T tokens, each token having its own distribu-
tion, we define P = {p1,p2, . . . ,pT } as the set
of predicted distributions for the answer obtained
through rationale ri, where pt represents the prob-
ability distribution of the t-th token in the answer.
Similarly, we use Q = {q1, q2, . . . , qT } to repre-
sent the predicted distributions obtained through
rationale rj . To achieve multi-CoT consistency, we
calculate the bidirectional KL-divergence for each
token according to Equation 2 and take the average
divergence to obtain the training objective:

Lkl(P ,Q) =
1

T

T∑

t=1

Lkl(pt, qt). (3)

Pairwise rationale sampling Since there are K
rationales available for each question, we randomly
select two distinct ones from the set of rationales
in each training epoch to compute the Lkl loss.

3.4 Overall Objective
The overall objective function is defined as a com-
bination of the cross-entropy loss (Lce) in tradi-
tional causal language modeling, computed on ra-
tionale and answer tokens, and the multi-CoT con-
sistent loss (Lkl), which ensures consistency in the
model’s answer distribution. The objective func-
tion can be represented as follows:

L = Lce + αLkl, (4)

where α is a hyperparameter used to adjust the
strength of the KL-divergence constraint.

4 Experimental Setup

In this section, we present the datasets and back-
bone models utilized in our experiments.

4.1 Datasets
To evaluate our method, we adopt both mathemat-
ical reasoning and commonsense reasoning tasks,
following Ho et al. (2022) and Fu et al. (2023).
For in-distribution mathematical reasoning, we em-
ploy the benchmarks GSM8K (Cobbe et al., 2021),
SVAMP (Patel et al., 2021), and ASDiv (Miao
et al., 2020). Additionally, we also employ out-of-
distribution (OOD) mathematical reasoning bench-
marks to assess the OOD generalization capabil-
ity, including SingleEq (Koncel-Kedziorski et al.,
2015), AddSub (Hosseini et al., 2014), and Multi-
Arith (Roy and Roth, 2015) from the Math World
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Problem Repository (Koncel-Kedziorski et al.,
2016). In the realm of commonsense reasoning,
we employ CommonsenseQA (Talmor et al., 2019)
as the in-distribution dataset. For OOD evaluations
of commonsense reasoning, we utilize Date Un-
derstanding, Tracking Shuffled Objects from the
BIG-bench (Srivastava et al., 2022), Coin Flip from
Kojima et al. (2022), as well as the StrategyQA
(Geva et al., 2021) dataset. Further statistics of
these datasets are provided in Appendix B.

4.2 Backbone Models
We use GPT-3.5-Turbo as the teacher model and
prompt it to generate chain of thought samples
(rationales). Following the filtering process intro-
duced in Section 3.2, we retain K=5 rationales for
each question across all our training datasets. As
for the student models, we employ the instruction-
tuned FlanT5-XL/XXL (3B/11B) (Chung et al.,
2022) and LLaMA-7B/13B (Touvron et al., 2023),
which are initialized with pre-trained weights ob-
tained from Hugging Face1. For the purpose of
accelerating training and conserving GPU mem-
ory, we apply LoRA (Hu et al., 2021) throughout
all of our experiments. The model configurations
are summarized in Table 1, and additional details
regarding the settings can be found in Appendix A.

Models
Sequence
Length

#GPUs
LoRA
Rank

Precision

FlanT5-XL 196/384 4 64 float32
FlanT5-XXL 196/384 8 128 float32
LLaMA-7B 512 4 64 float16
LLaMA-13B 512 8 128 float16

Table 1: Model configurations. For FlanT5 models, the
encoder and decoder have input lengths of 196 and 384,
respectively. For LLaMA models, the input length is
512. To optimize memory usage and accelerate training,
we leverage LoRA (Hu et al., 2021) and employ varying
data precision. All models are trained on multiple GPUs
and adopt a greedy decoding strategy.

4.3 Baseline Methods
In order to evaluate the effectiveness of MCC-KD,
we conduct experiments and compare its perfor-
mance with existing CoT-based distillation meth-
ods (Ho et al., 2022; Fu et al., 2023; Magister et al.,
2022), which utilize LLMs as teacher models to
generate rationales and distill their reasoning abili-
ties directly into smaller student models. For a fair

1https://huggingface.co/models

comparison, we also implement a baseline method
called Vanilla KD on our training datasets. Vanilla
KD is a CoT-based distillation method that does not
incorporate diversity filtering and the multi-CoT
consistency constraint.

5 Results and Analysis

In this section, we present the main results, ablation
studies, and additional experiments.

5.1 Main Results

The main results for mathematical and common-
sense reasoning tasks are provided in Table 2. The
baseline results are obtained from their respective
original papers (Ho et al., 2022; Magister et al.,
2022; Fu et al., 2023). We evaluate the perfor-
mance of the teacher model through our own test-
ing. It can be observed that MCC-KD outperforms
current baseline methods in all mathematical rea-
soning tasks, namely GSM8K, ASDiv, and SVAMP,
when compared with models of similar size. These
results highlight significant improvements achieved
by MCC-KD. The performance gap between the
FlanT5 (Vanilla KD) that we implement and Fu
et al. (2023) can be explained by the difference in
teacher model selection. Fu et al. (2023) utilize
code-davinci-002 as the teacher model, while we
utilize GPT-3.5-turbo as the teacher model. For
the commonsense reasoning tasks, MCC-KD sur-
passes current baseline methods and even exceeds
the performance of the teacher model on the Com-
monsenseQA dataset. This outcome clearly demon-
strates the effectiveness of MCC-KD in address-
ing commonsense reasoning tasks. Notably, the
distilled models are able to generate reasoning
paths directly, eliminating the necessity for any
CoT prompting throughout our experiments.

5.2 Ablation Study

This ablation study aims to examine the influence
of components in MCC-KD. Results are averaged
over three runs using randomly selected seeds.
Multi-CoT consistency constraint To assess the
impact of the multi-CoT consistency constraint, we
perform ablation experiments on different variants
of MCC-KD using LLaMA-7B models without the
consistency constraint. As presented in Table 3,
we observe a significant decrease in performance
on both mathematical and commonsense reasoning
tasks when the consistency constraint is removed.
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Models # Params GSM8K ASDiv SVAMP CommonsenseQA

GPT-3.5-Turbo (teacher) - 73.98 79.64 75.14 74.35

GPT-3-babbage (Ho et al., 2022) 1.3B 4.70 - 8.00 43.08
GPT-3-curie (Ho et al., 2022) 6.7B 6.75 - 12.67 56.76
T5-XXL (Magister et al., 2022) 11B 21.99 42.12 - -
FlanT5-XL (Fu et al., 2023) 3B 22.4 28.4 23.8 -
FlanT5-XXL (Fu et al., 2023) 11B 27.1 37.6 35.6 -
FlanT5-XL (Vanilla KD) 3B 22.76 29.41 29.33 81.13
FlanT5-XXL (Vanilla KD) 11B 33.33 48.24 51.33 84.32
LLaMA-7B (Vanilla KD) 7B 38.01 64.01 62.67 75.10
LLaMA-13B (Vanilla KD) 13B 47.19 68.79 68.0 78.42

FlanT5-XL (MCC-KD) 3B 24.28 31.35 30.0 82.88
FlanT5-XXL (MCC-KD) 11B 33.99 48.73 52.67 84.93
LLaMA-7B (MCC-KD) 7B 41.58 65.76 64.67 76.41
LLaMA-13B (MCC-KD) 13B 48.71 69.11 68.66 78.46

Table 2: Overall test accuracy for arithmetic and commonsense reasoning tasks. The reported results are averaged
over three runs using randomly selected seeds. Baseline results from other studies (Ho et al., 2022; Magister et al.,
2022; Fu et al., 2023) are included, while the performance of GPT-3.5-Turbo is assessed through our own evaluation.

Method GSM8K ASDiv SVAMP Common
SenseQA

MCC-KD 41.67 65.18 64.17 74.28
w/o Lkl 40.45 64.22 63.28 73.20
w/o filtering 39.55 63.90 62.96 73.49

Table 3: Results of ablation study of multi-CoT consis-
tency and diversity filtering on development sets.

Rationale filtering We then explore the effec-
tiveness of rationale filtering in MCC-KD. In the
experiment setting without rationale filtering, we
randomly sample 5 rationales for each question,
maintaining the same quantity as the experiment
setting with rationale filtering. Additionally, we
ensure that the correctness rate of the selected ratio-
nales remains consistent between both experiment
settings. As demonstrated in Table 3, we observe
a noticeable decline in performance after remov-
ing the rationale filtering process, highlighting the
critical importance of rationale diversity.

Student model architecture Furthermore, we
examine the effectiveness of MCC-KD on two
distinct model architectures: FlanT5-XL for
the encoder-decoder Transformer architecture
(Vaswani et al., 2017) and LLaMA-7B for the
decoder-only architecture. We compare MCC-KD
with the vanilla knowledge distillation (KD) ap-
proach. As presented in Table 2, MCC-KD con-
sistently enhances performance in comparison to
vanilla KD across various model architectures.

5.3 Out-of-Distribution Generalization

In line with the work of Fu et al. (2023), we ex-
plore the ability of MCC-KD to enhance the gener-
alization capabilities of models. We apply MCC-
KD to the in-distribution mathematical reasoning
dataset (GSM8K) and select the optimal check-
points for evaluation on out-of-distribution mathe-
matical reasoning datasets (ASDiv, SVAMP, Mul-
tiArith, SingleEq, and AddSub). Similarly, we
assess the generalization performance on common-
sense reasoning tasks using both the in-distribution
dataset (CommonsenseQA) and out-of-distribution
datasets (StrategyQA, Date Understanding, Track-
ing Shuffled Objects, and Coin Flip). The re-
sults are presented in Table 4 and Table 5, re-
spectively. In mathematical reasoning, MCC-KD
demonstrates further improvements in models’ gen-
eralization capabilities compared to the findings of
Fu et al. (2023) as well as the vanilla KD approach.
In commonsense reasoning, MCC-KD exhibits a
consistent trend of enhancing generalization capa-
bilities when compared to the vanilla KD approach.

5.4 Diversity of Rationales

In this section, we delve into the significance of
rationale diversity within the context of MCC-KD.
We contend that diversity among the rationales gen-
erated by the teacher model is a crucial factor for ef-
fective reasoning learning by the student model. To
measure the degree of diversity among rationales,
we employ the Jaccard similarity metric, where a
higher score indicates greater similarity and vice
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Models # Params GSM8K ASDiv SVAMP MultiArith SingleEq AddSub Avg

FlanT5-XL (Fu et al., 2023) 3B 22.4 28.4 23.8 42.3 - - -
FlanT5-XXL (Fu et al., 2023) 11B 27.1 37.6 35.6 63.0 - - -
FlanT5-XL (Vanilla KD) 3B 22.76 26.84 24.67 42.0 26.84 16.65 27.4
FlanT5-XXL (Vanilla KD) 11B 33.33 47.69 39.67 78.0 46.26 37.82 49.89
FlanT5-XL (MCC-KD) 3B 24.28 28.98 26.67 44.44 27.32 15.58 28.6
FlanT5-XXL (MCC-KD) 11B 33.99 49.52 38.67 77.78 47.06 39.50 50.51

LLaMA-7B (Vanilla KD) 7B 38.01 56.37 39.3 84.44 52.94 43.69 55.35
LLaMA-13B (Vanilla KD) 13B 47.19 65.18 55.34 91.11 62.75 51.38 65.15
LLaMA-7B (MCC-KD) 7B 41.58 57.64 41.0 86.67 54.90 45.38 57.12
LLaMA-13B (MCC-KD) 13B 48.71 66.45 57.33 93.33 61.45 52.10 66.13

Table 4: Out-of-distribution performance of MCC-KD on mathematical reasoning. We train our models on the
in-distribution dataset (GSM8K) and evaluate the best checkpoints on the out-of-distribution datasets (ASDiv,
SVAMP, MultiArith, SingleEq, and AddSub).

Models # Params Common
SenseQA StrategyQA Date

Understanding
Shuffled
Objects

Coin
Filp

FlanT5-XL (Vanilla KD) 3B 81.13 65.74 46.2 30.8 46.2
FlanT5-XL (MCC-KD) 3B 82.88 67.05 46.61 30.4 48.0

LLaMA-7B (Vanilla KD) 7B 75.10 52.77 43.36 30.53 49.6
LLaMA-7B (MCC-KD) 7B 76.41 57.43 45.53 33.33 49.6

Table 5: Out-of-distribution performance of MCC-KD on commonsense reasoning. We train our models on the
in-distribution dataset (CommonsenseQA) and evaluate the best checkpoints on the out-of-distribution datasets
(StrategyQA, Date Understanding, Tracking Shuffled Objects and Coin Filp).
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Figure 3: The performance of MCC-KD on ASDiv
and SVAMP development sets with different rationale
diversities. JS stands for Jaccard similarity.

versa. By manipulating the diversity of training
instances, we assess the efficacy of MCC-KD. In
our experiments, we utilize the LLaMA-13B model
as the student model and incorporate two rationales
for each question during training. As illustrated in
Figure 3, the performance of MCC-KD exhibits a
corresponding improvement with increasing diver-
sity among the rationales, as observed on both the
ASDiv and SVAMP development sets.

5.5 The Number of Rationales

We also examine the performance of MCC-KD
with varying numbers of rationales on the SVAMP
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Figure 4: The performance of MCC-KD on ASDiv and
SVAMP with different numbers of rationales.

and ASDiv datasets. Note that for each training
epoch, our method randomly selects two distinct
rationales from a set of K rationales per question
as the training instances. Hence, we modify the
value of K for each question to assess its impact.
To ensure sufficient training, we empirically set
the number of training epochs to 24. The student
model employed in these experiments is LLaMA-
7B. As depicted in Figure 4, we observe that as
the number of rationales increases, the model’s per-
formance on both the ASDiv and SVAMP datasets
improves correspondingly. Specifically, when the
number of rationales is increased from 2 to 5, there
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Figure 5: The performances of MCC-KD on the ASDiv
and SVAMP datasets with different correctness rates of
the teacher generated rationales.

is a significant enhancement in performance on
both datasets. However, when the number is fur-
ther increased from 5 to 10, the performance gains
become less pronounced. Therefore, taking into
account computational efficiency, we opt to use 5
rationales in our experiments.

5.6 Rationale Correctness

Ensuring LLMs to generate completely accurate ra-
tionales poses a challenge, especially when dealing
with complex reasoning datasets. Striking a bal-
ance between a higher correctness rate and larger
data quantity is crucial, considering the increased
expenses associated with LLMs’ API calls. To
investigate the impact of the correctness rate for
teacher-generated rationales, we randomly select
two rationales from the raw rationales as training in-
stances for each question. We approximate the cor-
rectness of rationales by comparing the predicted
answers with the ground-truth answers. Figure 5
illustrates the impact of the correctness rate of the
generated rationales on the ASDiv and SVAMP
datasets, using LLaMA-7B as the student model.
As depicted in the figure, there is minimal perfor-
mance difference when the correctness rate exceeds
90%. However, a significant degradation in model
performance is observed when the correctness rate
falls around 80% or below. To maintain high per-
formance, we ensure a correctness rate of over 90%
throughout our experiments.

5.7 Consistency Weight

In the training objective of MCC-KD, we introduce
hyperparameter α to balance the multi-CoT consis-
tency constraint. To investigate its impact on the
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Figure 6: Results on GSM8K and CommonsenseQA
development sets with different consistency weights (α).

performance of LLaMA-13B, we present results
for two different values of α on the GSM8K and
CommonsenseQA datasets in Figure 6. The results
indicate that our method shows a preference for a
smaller α of 0.01 on the mathematical reasoning
task of GSM8K, while it favors a larger α of 0.1
on the commonsense reasoning task of Common-
senseQA. Therefore, we empirically select α values
close to 0.01 for mathematical reasoning datasets
(GSM8K, ASDiv, and SVAMP), and close to 0.1
for the commonsense reasoning dataset (Common-
senseQA) throughout our experiments.

5.8 Combining with Self-Consistency

We note that self-consistency (Wang et al., 2022b)
also employs a consistency strategy for maintain-
ing consistency among diverse rationales, which
shares similarities with our method. However, self-
consistency requires LLMs to generate multiple
rationales and answers during the inference phase,
determining the final answer based on the highest
vote count. In contrast, our MCC-KD involves the
imposition of consistency constraints on diverse
rationales during the training phase.

In this section, we investigate the incorporation
of self-consistency (SC, 5 rationales for voting) and
MCC-KD on the GSM8K dataset, employing the
LLaMA-7B model. As observed in Table 6, while
both MCC-KD and self-consistency can improve
the Vanilla KD approach, the performance of MCC-
KD can be further enhanced through the application
of self-consistency. Note that MCC-KD and self-
consistency work in distinct phases, making direct
comparisons of their results inappropriate.

6812



Models #Params GSM8K

LLaMA-7B (Vanilla KD) 7B 38.01
LLaMA-7B (Vanilla KD + SC) 7B 40.06
LLaMA-7B (MCC-KD) 7B 41.58
LLaMA-7B (MCC-KD + SC) 7B 42.49

Table 6: Results of combining our MCC-KD approach
and the self-consistency (SC) method.

6 Conclusion

In this paper, we propose Multi-CoT Consistent
Knowledge Distillation (MCC-KD) to transfer rea-
soning capabilities from larger language models
(LLMs) to smaller models. The primary objective
is to address the diversity and consistency chal-
lenges present in existing knowledge distillation
methods for this purpose. Our approach leverages
multiple rationales for each given question and fo-
cuses on improving their consistency in predict-
ing the answer. Extensive experiments are con-
ducted using different model architectures, includ-
ing LLaMA and FlanT5, and a range of model
scales, such as 3B, 7B, 11B, and 13B. The experi-
ments cover both mathematical and commonsense
reasoning benchmarks. The results clearly demon-
strate the superior performance of MCC-KD on
both in-distribution and out-of-distribution tasks.
These findings confirm that MCC-KD enhances the
stability and generalizability of the student models.
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Limitations

There are three potential limitations of our work.
First, the reliance on LLMs for generating ratio-
nales introduces a potential limitation in terms of
cost associated with API calls. Second, there still
exists a significant gap between the student model
and the teacher model in mathematical reasoning
tasks, requiring future efforts to reduce this dispar-
ity. Third, this work focuses solely on exploring
only one single teacher model, overlooking the po-
tential benefits and insights that could arise from
considering different LLMs as the teachers.
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A Models

A.1 Model Configurations
We employ four distinct models, namely FlanT5-
XL, FlanT5-XXL, LLaMA-7B, and LLaMA-13B,
as our student backbone models. The FlanT5
models utilize an encoder-decoder Transformer ar-
chitecture, whereas the LLaMA models adopt a
decoder-only Transformer architecture. Note that
the FlanT5 models have undergone instruction tun-
ing, whereas the LLaMA models have not. Based
on our empirical observations, the FlanT5 models
exhibit stronger performance in commonsense rea-
soning tasks, while the LLaMA models excel in
mathematical reasoning tasks. The configurations
of these models are provided in Table 7.

Models
Hidden

Size
Attention

Heads
Intermediate

Size
Encoder
Layers

Decoder
Layers

FlanT5-XL 2048 32 5120 24 24
FlanT5-XXL 4096 64 10240 24 24
LLaMA-7B 4096 32 11008 - 32
LLaMA-13B 5120 40 13824 - 40

Table 7: Model configurations.

A.2 Experiment Settings
We train all the student models on GeForce RTX
4090 GPUs using the model parallelism tech-
nique. For further accelerating the training and
saving memory, we utilize quantization techniques
and LoRA (Hu et al., 2021). We apply LoRA
to four weight matrices in the attention module
(Wq,Wk,Wv,Wo) and three weight matrices in
the MLP module. Similar to the objective func-
tion proposed by Hinton et al. (2015), we search
for the temperature parameter in the KL function.
Through all experiments, we use Adam (Kingma
and Ba, 2014) as our optimizer, and we set the
learning rate to be 1e-5 in most datasets. With
LLaMA-7B as the backbone model, we employ
gradient accumulation, with mini-batch size of 2
and accumulation steps of 2. For different datasets,
the value of α ranges from 0.01 to 0.1. See Table 8
for more details.

A.3 Smaller Student Model
Prior endeavors (Sanh et al., 2019; Sun et al., 2019)
in the field of knowledge distillation have primar-
ily focused on using smaller models as the recip-
ients of knowledge transfer. The primary focus
of our research resides in the transference of rea-
soning capabilities from LLMs to more compact
counterparts, employing a chain-of-thought (COT)

Hyperparameter GSM8K ASDiv SVAMP
Common
SenseQA

Learning Rate 1e-5 1e-5 1e-5 1e-5
Total Batch Size 4 4 4 4
Epochs 12 18 18 12
α 0.01 0.01 0.01 0.1
# GPUs 4 4 4 4
Training Time 24hr 9hr 4.5hr 36hr

Table 8: Hyperparameter settings and training cost of
our method with LLaMA-7B on different datasets.

prompting approach. Notably, existing research
(Wei et al., 2022; Fu et al., 2023; Kojima et al.,
2022) has demonstrated that the capacity for intri-
cate reasoning within LLMs is typically inherent
to larger models with over 100 billion parameters.

We conduct an experiment utilizing FlanT5-base
(250M) on the SVAMP and ASDiv datasets. The
results presented in Table 9 indicate that when em-
ploying a smaller model as the student, the im-
provements achieved through knowledge distilla-
tion are relatively modest in comparison to those
observed with larger counterparts. This observa-
tion suggests that the limited improvement attained
with a smaller student model stems primarily from
the model’s inherent reasoning capacity rather than
the effectiveness of the distillation method.

Models #Params SVAMP ASDiv

FlanT5-Base (Vanilla KD) 250M 0.0696 0.0687
FlanT5-Base (MCC-KD) 250M 0.0718 0.0723

Table 9: Results of FlanT5-Base on SVAMP and ASDiv.

B Datasets

B.1 Mathematical Reasoning Datasets

For mathematical reasoning, we mainly use
GSM8K (Cobbe et al., 2021), ASDiv (Miao et al.,
2020) and SVAMP (Patel et al., 2021) as our train-
ing datasets. Following Ho et al. (2022) and Fu
et al. (2023), we perform a sample-wise random
split with a train-dev-test ratio of 70:15:15 (Ta-
ble 10). Whereas the GSM8K dataset has the of-
ficial split of training and testing sets but no de-
velopment set, we randomly split the original test
set with a dev-test ratio of 50:50. In order to keep
consistency with the GSM8K dataset and SVAMP
dataset, we only evaluate the models’ mathemat-
ical reasoning abilities on the ASDiv dataset by
filtering out samples with non-numeric answers.
Since the MultiArith (Roy and Roth, 2015), Sin-
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gleEq (Koncel-Kedziorski et al., 2015) and AddSub
(Hosseini et al., 2014) datasets are too small, we
use these datasets for our out-of-distribution ex-
periments only (Table 11). We don’t train on the
AQuA (Ling et al., 2017) dataset, as it has 100,000
examples, which is too costly to infer with an LLM.

Datasets Train Size Dev Size Test Size

GSM8K 7473 660 659
ASDiv 1462 313 314
SVAMP 700 150 150
CommonsenseQA 8520 1221 1221

Table 10: Statistics of training, development and test
sets.

Mathematical
Datasets

Dataset Size
Commonsense
Datasets

Dataset Size

MultiArith 600 StrategyQA 2290
AddSub 395 Date Understanding 369
SingleEq 508 Shuffled Objects 750

Coin Filp 500

Table 11: Datasets used to evaluate model’s out-of-
distribution generalization ability and the dataset sizes.

B.2 Commonsense Reasoning Datasets
For commonsense reasoning, we select Common-
senseQA (Talmor et al., 2019) as our training
dataset. We perform a random split of 1221 in-
stances from the original training set to create the
test set. This number corresponds to the size of
the CommonsenseQA’s original development set
(Table 10). We do not use the Date Understand-
ing, Tracking Shuffled Objects and Coin Flip as
our training datasets due to the small size of those
datasets (Table 11), but we use them to evaluate
model’s out-of-distribution performance. The strat-
egyQA (Geva et al., 2021) dataset may contain pri-
vate or personal information which GPT-3.5-Turbo
refuses to answer (Table 12). For the Common-
senseQA datasets, the GPT-3.5-Turbo may also
refuse to answer certain questions (Table 13). How-
ever, the proportion of such cases is much smaller
compared with StrategyQA, and it still provides
useful information in the rationales even when the
teacher model refuses to give a choice.

For all commonsense reasoning datasets, we uti-
lize choices-answer format for each question. The
CommonsenseQA dataset has five choices per ques-
tion, and the Tracking Shuffled Objects has three
choices per question. See Table 14 for more de-

tails. There are no choices for the answers in the
CoinFlip and the StrategyQA datasets. Since the
answers in CoinFlip and StrategyQA are in the
form of “Yes” or “No”, we transform them into bi-
nary choices-answer format, for example: (A) Yes
and (B) No. Examples of the transformed datasets
can be seen in Table 12 and Table 15.

B.3 Diversity of Generated Rationales
When the sampling temperature is too low (e.g.,
τ = 1), the teacher model tends to generate the
same rationales for the same question repeatedly.
On the other hand, when the temperature is too
high (e.g., τ = 1.5), it can lead to a significant de-
crease in the quality of the generated rationales by
the teacher model. Hence, we choose an appropri-
ate temperature τ = 1.3 to balance the generation
of diverse rationales while maintaining their qual-
ity. However, we observe that even with sampling
temperature τ = 1.3, the teacher model may still
exhibit a tendency to generate somewhat similar
rationales occasionally, as shown in Table 16. We
argue that the diversity among teacher-generated
rationales is a crucial factor, as higher diversity im-
plies more diverse of solutions. We believe that
there should be minimal diversity between ratio-
nales in order for effective distillation.
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Question Is Tange Sazen hypothetically an ideal choice for a secretary job? Answer Choices: A.
Yes B. No

Response Sorry, as an AI language model, I cannot provide a definite answer as to whether Tange
Sazen would be an ideal choice for a secretary job as I do not have sufficient knowledge
on that individual. However, if provided with their relevant details, I could list out their
qualities that may make them suitable for a secretary position.

Question Do Bing (search engine) searches earn the searcher more than competitors do? Answer
Choices: A. Yes B. No

Response As an AI language model, I do not have access to current market data or the ability to
keep information about such kind of advertisement policies which exactly pay if someone
searches.

Table 12: Examples of questions that GPT-3.5-Turbo refuses to answer from the StrategyQA dataset.

Question Where do you put your grapes just before checking out? Answer Choices: A. mouth B.
grocery cart C. super market D. fruit basket E. fruit market

Response When grocery shopping and you find yourself with grapes you want to purchase, it is
customary to put them in your grocery cart. The cart is usually provided by the store
as a means to transport your selected items. Some stores may also offer fruit baskets or
bags specifically made for holding grapes to prevent them from rolling around or getting
squished. In the case of a fruit market, you may place your grapes in a basket provided by
the vendors. As an AI language model, I do not have a personal choice, but I can provide
information based on facts.

Question Before getting a divorce, what did the wife feel who was doing all the work? Answer
Choices: A. harder B. anguish C. bitterness D. tears E. sadness

Response It is difficult to determine the exact emotions felt by the wife who was doing all the work
before getting a divorce as everyone’s experiences and emotions are unique. However,
she may have felt overwhelmed and frustrated by her spouse’s perceived lack of effort
or help in shouldering the household responsibilities. She may have also felt resentment
and bitterness towards her spouse for not sharing the workload and contributing equally.
Ultimately, these feelings could have led to sadness, anguish, or tears as the relationship
deteriorated and ended in a divorce. As an AI language model, I do not have personal
choices or emotions.

Table 13: Examples of questions that GPT-3.5-Turbo refuses to answer from the CommonsenseQA dataset.
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Question Alice, Bob, and Claire are dancers at a square dance. At the start of a song, they each have
a partner: Alice is dancing with Sam, Bob is dancing with Helga, and Claire is dancing
with Karl. Throughout the song, the dancers often trade partners. First, Claire and Alice
switch partners. Then, Bob and Alice switch partners. Finally, Claire and Bob switch
partners. At the end of the dance, Alice is dancing with Which choice is true ? Answer
Choices: A. Sam. B. Helga. C. Karl.

Label B. Helga.

Question Alice, Bob, and Claire are playing a game. At the start of the game, they are each holding
a ball: Alice has a brown ball, Bob has a red ball, and Claire has a purple ball. As the
game progresses, pairs of players trade balls. First, Bob and Claire swap balls. Then, Alice
and Claire swap balls. Finally, Alice and Bob swap balls. At the end of the game, Bob has
the Which choice is true ? Answer Choices: A. brown ball. B. red ball. C. purple ball.

Label B. red ball.

Question Alice, Bob, and Claire are holding a white elephant gift exchange. At the start of the event,
they are each holding a present of a different color: Alice has a blue present, Bob has a
brown present, and Claire has a white present. As the event progresses, pairs of people
swap gifts. First, Claire and Alice swap their gifts. Then, Bob and Claire swap their gifts.
Finally, Alice and Bob swap their gifts. At the end of the event, Claire has the. Which
choice is true ? Answer Choices: A. blue present. B. brown present. C. white present.

Label B. brown present.

Table 14: Examples from the Shuffled Objects dataset.

Question A coin is heads up. Jeff does not flip the coin. Jen flips the coin. Giselle flips the coin.
Noel does not flip the coin. Is the coin still heads up? Note that "flip" here means "reverse".
Answer Choices: A. Yes B. No

Label A. Yes
Question A coin is heads up. Rena does not flip the coin. Devon does not flip the coin. Rosalinda

does not flip the coin. Paulina does not flip the coin. Is the coin still heads up? Note that
"flip" here means "reverse". Answer Choices: A. Yes B. No

Label A. Yes
Question A coin is heads up. Dorian flips the coin. Mayra flips the coin. Freddie does not flip

the coin. Magaly flips the coin. Is the coin still heads up? Note that "flip" here means
"reverse". Answer Choices: A. Yes B. No

Label B. No

Table 15: Examples from the Coin Flip dataset.

6819



Question Seal releases 3 songs every month. He gets $2000 per song. How much money does
he get in his first 3 years?

Rationale #1 He releases 12*3=36 songs a year. That means he is paid 36*2000=$72,000 a year. So
over 3 years, he will make 72,000*3=$216,000. Therefore, the answer is 216000.

Rationale #2 He releases 3*12=36 songs a year. So he makes 36*2000=$72,000 per year. That
means he earns 72000*3=$216,000. Therefore, the answer is 216000.

Rationale #3 He releases 3*12=36 songs in a year. So he makes 36*2000=$72,000 per year. That
means he earned 72,000*3=$216,000. Therefore, the answer is 216000.

Question Ed and Jacob already had 2 shells in their shell collection. Then they went to the beach
to collect even more. Ed found 7 limpet shells, 2 oyster shells, and 4 conch shells.
Jacob found 2 more shells than Ed did. How many shells do the pair have altogether?

Rationale #1 Ed found 7 + 2 + 4 = 13 shells. Jacob found 13 + 2 = 15 shells. In total, they collected
2 + 13 + 15 = 30 shells. Therefore, the answer is 30.

Rationale #2 Ed found a total of 7 + 2 + 4 = 13 shells. Jacob found 13 + 2 = 15 shells. Together
they found 2 + 13 + 15 = 30 shells. Therefore, the answer is 30.

Rationale #3 Ed found a total of 7 + 2 + 4 = 13 shells. Jacob found 13 + 2 = 15 shells. Altogether,
Ed and Jacob have 2 + 13 + 15 = 30 shells. Therefore, the answer is 30.

Table 16: Examples from the GSM8K dataset showing that despite using a high sampling temperature τ = 1.3, the
rationales generated by GPT-3.5-Turbo still exhibit a considerable degree of similarity.
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