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Abstract

Retrieval-augmented methods are successful in
the standard scenario where the retrieval space
is sufficient; whereas in the few-shot scenario
with limited retrieval space, this paper shows
it is non-trivial to put them into practice. First,
it is impossible to retrieve semantically simi-
lar examples by using an off-the-shelf metric
and it is crucial to learn a task-specific retrieval
metric; Second, our preliminary experiments
demonstrate that it is difficult to optimize a
plausible metric by minimizing the standard
cross-entropy loss. The in-depth analyses quan-
titatively show minimizing cross-entropy loss
suffers from the weak supervision signals and
the severe gradient vanishing issue during the
optimization. To address these issues, we intro-
duce two novel training objectives, namely EM-
L and R-L, which provide more task-specific
guidance to the retrieval metric by the EM al-
gorithm and a ranking-based loss, respectively.
Extensive experiments on 10 datasets prove the
superiority of the proposed retrieval augmented
methods on the performance.

1 Introduction

Few-shot text classification, which entails learn-
ing a new task based on limited training data,
has been advanced by pre-trained language mod-
els (PLMs) (Brown et al., 2020; Liu et al., 2023)
and prompt engineering (Gao et al., 2021; Chen
et al., 2022a). However, since training numerous
parameters of PLMs on scarce data is prone to pro-
duce over-fitting (Liu et al., 2021) and unstable
generalization, only using the trained parameters
for inference usually leads to unsatisfactory perfor-
mance on unseen test data.

*Work done while this author was an intern at Tencent.
†Corresponding authors.

On the other hand, retrieval-based methods have
witnessed success on various natural language pro-
cessing tasks, thanks to their capability of incorpo-
rating retrieved memory alongside parameters for
better generalization. These methods retrieve rele-
vant examples as memories from a large-scale cor-
pus through either a static retrieval metric (Lewis
et al., 2020; Wang et al., 2022) or a joint learning-
based metric (Cai et al., 2021; Siriwardhana et al.,
2023) and then the retrieved examples are used
to make a prediction. In this way, their general-
ization ability is achieved by not only the model
parameters but also the retrieved memory.

Despite the theoretical potential of promoting
generalization by using retrieved memory, previous
retrieval-augmented methods empirically struggle
to showcase compelling ability in few-shot learning
scenarios, where the retrieval space (i.e., the few-
shot training data) is limited. Specifically, static re-
trieval may lack neighbors with high metrics in the
case of limited retrieval space. Even though such
neighbors exist, static retrieval cannot be reliable
for retrieving really helpful samples for target pre-
diction, because its metric is not task-specific. In
particular, for joint learning-based retrieval which
minimizes the standard cross-entropy based loss,
although the retrieval metric is updated towards
the downstream task, it suffers from the gradient
vanishing problem during the optimization process
as quantitatively measured in Fig. 2 (see §5.2 later).
As a result, in a few-shot scenario, the retrieval met-
ric might be not optimized well due to insufficient
training data.

To overcome the aforementioned challenges,
we propose two novel training objectives, namely
Expectation Maximization-based Loss (EM-L) and
Ranking-based Loss (R-L), for learning to retrieve
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examples from a limited space more effectively.
Both objectives are committed to obviating the gra-
dient vanishing problem and prioritizing more ben-
eficial examples for specific downstream tasks. In
the EM-L approach, the retrieved examples are
treated as latent variables, and an iterative process
of Expectation-step and Maximization-step is em-
ployed until convergence (Dempster et al., 1977).
The posterior distribution of the latent variable is es-
timated to measure the importance of candidate ex-
amples in the E-step, while the M-step maximizes
the expectation log-likelihood. By approximating
the retrieval metric according to the posterior prob-
ability, more productive examples could be recalled
for downstream tasks with limited training data.

Following a similar idea, R-L optimizes an addi-
tional ranking loss function to provide more direct
supervision to the examples retriever, which draws
inspiration from pair-wise ranking algorithm (Fre-
und and Schapire, 1997; Burges et al., 2005; Rudin
and Schapire, 2009). Such a tailored loss measures
the consistency between the retrieval metric and
the auxiliary function associated with each exam-
ple for classification purposes. Minimizing the loss
could effectively strengthen the supervision signals
for the example retriever.

Our experimental evaluation on ten text classifi-
cation datasets demonstrates the superiority of EM-
L and R-L over existing retrieval methods within a
limited retrieval space. The comparative analyses
further confirm that EM-L and R-L alleviate the
weak supervisory signals and gradient vanishing
issue suffered by joint learning-based retrieval. Our
contributions could be summarized as follows:

• We discuss the weak supervision signals and gra-
dient vanishing problem encountered by existing
retrieval methods minimizing the standard cross-
entropy loss, as quantitatively measured in §5.2.

• We introduce two novel training objectives,
namely EM-L and R-L, which optimize the re-
triever more effectively, thus recalling more pro-
ductive examples from a limited space.

• Extensive experiments and analyses demonstrate
that the proposed methods achieve better perfor-
mance on few-shot text classification and alle-
viate the supervision insufficiency and gradient
vanishing issues.

2 Revisiting Retrieval-augmented
Methods in Few-shot Learning

2.1 Retrieval-augmented Methods

In this paper, we revisit the retrieval-augmented
methods in few-shot text classification and formu-
late the task in a general framework. Our primary
objective is to retrieve examples from limited train-
ing data to improve the few-shot text classification.

Model Formulation All retrieval methods could
comprise an example retriever and a text classi-
fier. We provide the formal formulation inspired by
Singh et al. (2021) and Izacard et al. (2022):

Pθ,ϕ(y|x) =
m∑

j=1

Pθ(y|x, zj)Pϕ(zj |x),

Pθ(y|x, zj) = softmax(fclf(x⊕ zj)),

Pϕ(zj |x) = fretr(x, zj),

(1)

where x and zj denote the representations of orig-
inal input and a retrieved example from the train-
ing set, and y corresponds to the class associated
with input x. fclf and fretr serve as the text clas-
sifier and the example retriever, which selects ex-
amples according to a retrieval metric. θ and ϕ
denote the trainable parameters of the text classi-
fier and examples retriever. m is a hyperparameter
that denotes the number of fetched examples. The
operation ⊕ signifies concatenation, and the term
softmax refers to the normalized exponential func-
tion. Specifically, z corresponds to a set of retrieval
examples, which can either be {⟨xs, ys⟩} pairs or
{xs}. The latter form is adopted in this paper for
simple experiments.

The standard cross entropy is employed to opti-
mize the classifier and example retriever as follows:

L = −
n∑

i=1

logPθ,ϕ(yi|xi), (2)

where n is the total number of training instances
and yi is the gold label of the i-th instance. During
inference, for all retrieval methods, we select top m
examples according to Pϕ(zj |x) and get the final
classification results using the first line of Eq. (1).

Static Retrieval Given an input sentence x and
a retrieval corpus, static retrieval aims to search for
a set of relevant examples Z according to a fixed
retrieval metric (Borgeaud et al., 2022; Wang et al.,
2022; Li et al., 2022). Following the Eq. (1), its
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retrieval metric is defined as follows:

Pϕ(zj |x) = fretr(x, zj) = sim(x, zj). (3)

Here, sim(x, zj) represents a fixed metric with-
out any trainable parameters, such as TF-
IDF (Sparck Jones, 1972), BM25 (Robertson et al.,
2009), and semantic similarity encoded by PLMs.
Such fixed metrics cannot adapt to the downstream
task and prioritize the most helpful examples. Par-
ticularly, this limitation will be amplified in few-
shot learning with scarce training data.

Joint Learning based Retrieval Static retrieval
assumes that higher similarity between zj and x im-
plies a greater auxiliary effect of zj on x. However,
the assumption failed to hold in tasks where inputs
with high similarity have distinct labels, such as
sentiment classification. To address this limitation,
joint learning-based retrieval (Cai et al., 2021; Gao
et al., 2022; Siriwardhana et al., 2023) unifies the
retriever and the downstream model to jointly train
them for specific tasks. Following Eq. (1),

Pϕ(zj |x) = fretr(x, zj) =
exp(x · z⊤j )∑m
j=1 exp(x · z⊤j )

.

(4)

fretr(x, zj) is a trainable dot product attention. No-
tably, the absence of ground truth for Pϕ(zj |x)
makes it challenging to determine which zj is the
most beneficial one, and it relies implicitly on dis-
tant supervision from text classification.

Both static retrieval and joint learning-based re-
trieval are proposed to retrieve examples from a
large-scale corpus. In this paper, we mainly focus
on few-shot text classification and retrieve the most
helpful examples from the limited training set.

2.2 Challenges in Few-shot Learning
While the above retrieval-augmented methods have
shown advancements in various natural language
processing tasks, their performance in few-shot
learning remains unconvincing. In other words, re-
trieving examples from a narrow space to improve
few-shot learning is still challenging due to lim-
ited training data. Previous studies (Li et al., 2022;
Siriwardhana et al., 2023) have revealed that static
retrieval may not fetch the most helpful examples in
tasks where similar inputs correspond to different
labels, primarily due to their unreasonable assump-
tion that higher similarity implies better suitability
for the downstream task. Moreover, we also find

static retrieval even underperforms methods with-
out retrieval in some few-shot tasks (see Table 1).
Such failure can also be attributed to data limitation
in few-shot scenarios, where examples with high
static similarities are scarce or non-existent.

In addition, joint learning-based retrieval meth-
ods (Ren et al., 2021; Cai et al., 2021; Siriward-
hana et al., 2023) are good solutions to enhance the
adaptability of the retrieval to downstream tasks.
However, our study demonstrates that learnable
metrics struggle to be trained as anticipated and
are inferior to static metrics in several few-shot
tasks (see Table 1). The main underlying factors
are the scarcity of data and the weak supervision
signals provided to the learnable retrieval metric. In
more detail, the retrieval metrics in joint learning-
based methods are adjusted solely based on distant
supervision from the downstream tasks, which is
significantly further weakened by the limited data.
This fact is further supported by quantifying the
gradient of retrieval parameters: the gradient norm
of the parameters in retrieval metric is more than
1e−6 for only about 40% updates in some datasets
as shown in Figure 2 (see §5.2 later).

In this paper, our objective is to meet the chal-
lenges of weak supervision signals for the retriever
and insufficient data, aiming to retrieve the most
helpful examples to promote model generalization.

3 Methodology

3.1 Overview

Given the limitations posed by limited data and
weak supervision signals, existing retrieval meth-
ods are inadequate for addressing these challenges.
To address these limitations, we propose two novel
training objectives, which are achieved by two
loss functions: Expectation Maximization-based
Loss (EM-L) and Ranking-based Loss (R-L). Both
methods aim to enhance the retrieval quality by giv-
ing the retriever more supervisory signals and pri-
oritizing examples that are more beneficial for the
specific task with limited training data. In essence,
we seek to maximize the consistency between the
metric distribution P (zj |x) and the classification
distribution P (y|x, zj)[yi] as much as possible. In
this way, more suitable examples are retrieved and
the performance of text classification could be im-
proved even in the few-shot scenario. Additionally,
we integrated EM-L, R-L, and two existing retrieval
methods with two popular text classification back-
bones to compare their respective performance.
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3.2 Backbone
Fine-tune Pre-trained Language Models For
each sentence, we use PLMs to tokenize the in-
put sentence into {[CLS], x1, ..., xl, [SEP]} with
(l + 2) tokens and extract the representation x of
[CLS] as the sentence embedding. In the same
way, the j-th retrieved example is represented as
zj . These tensors are subsequently fed into the
example retriever and classifier, producing the final
probability estimated for label y.

Prompt Learning Another backbone is to trans-
form the text classification into a cloze question
problem (Schick and Schütze, 2021). Let M be
a masked language model with vocabulary V , and
Y denote the label set of a specific downstream
task A. Prompt learning employs a function P to
convert an input sentence into a phrase containing
a prompt with a [MASK] token. Then an injective
function v : L → V is utilized to map each label to
a word from M’s vocabulary V . We first obtain the
representation of [MASK] and determine the most
suitable word from V for filling the [MASK]. For
instance, the application of prompt learning to sen-
timent classification can be outlined as follows:

P(x) = {[CLS], x1, ..., xl, it was [MASK], [SEP]}
P (y|x) = g(P ([MASK] = v(y)|x)),
v(y) ∈ {great, terrible},

(5)
where x is the representation of [MASK], g con-
verts the probability of label words to classes, and
l is sentence length. The representation zj of a
retrieved example is yielded from a [MASK] token
in the same way.

3.3 Expectation Maximization-based
Loss (EM-L)

Considering the absence of the ground truth for
Pϕ(zj |x) in Eq. (1), we regard z as a latent variable
and propose an EM-based retrieval objective to
estimate Pϕ(zj |x). This method alternates between
an Expectation-step and a Maximization-step until
convergence. In the E-step, the current parameters
are used to estimate the posterior distribution of the
latent variable given the observed data. Specifically,
we retrieve m examples from the training set and
compute the conditional probabilities of the latent
variable using:

Pθ,ϕ(zj |x, y) =
Pθ(y|x, zj)Pϕ(zj |x)∑m
j=1 Pθ(y|x, zj)Pϕ(zj |x)

,

(6)

where Pθ(y|x, zj) and Pϕ(zj |x) are obtained from
classifier fclf and examples retriever fretr in Eq. (1)
respectively. m denotes the number of retrieved
examples.

In the M-step, the parameters are updated by
maximizing the expected log-likelihood, which
is taken with respect to the estimated posterior
Pθ,ϕ(zj |x, y) in the E-step:

Pθ,ϕ(y|x) =
m∑

j=1

Pθ,ϕ(zj |x, y) · logPθ(y|x, zj).

(7)
Since we sample m examples from the training set
by Pϕ(zj |x) and estimate Pθ,ϕ(zj |x, y) based on
m examples in the E-step, more supervision will be
provided to the retriever during the optimization in
the M-step. Please refer to Appendix A for proof of
rationality of Eq.(6) and why EM-L can minimize
the likelihood-based loss defined in Eq. (2).

3.4 Ranking-based Loss (R-L)

Following the main idea claimed in § 3.1, Ranking-
based Loss (R-L) considers the process of retriev-
ing zj as a ranking task. Unlike EM-L, R-L em-
ploys a ranking loss to enhance the consistency
between Pθ(y|x, zj)[yi] and Pϕ(zj |x) and provide
more direct signals to the retriever. The optimiza-
tion objective of R-L aims to ensure that zj with
higher Pθ(y|x, zj)[yi] has higher Pϕ(zj |x) by min-
imizing the following LR:

LR =
n∑

i

m∑

j

max(Pθ(y|xi, zj)[yi]

− Pϕ(zj |xi) + δ, 0).

(8)

Here, Pθ(y|x, zj) and Pϕ(zj |x) are obtained from
fclf and fretr in Eq. (1), m and n denote the number
of retrieved examples and training instances. δ is a
margin parameter imposing the distance between
two distributions to be larger than δ.

The ranking loss LR is added to the overall loss
L in Eq. (2) with a weight λ every t step:

Lsum = L+ λ · LR,

λ =

{
1, step mod t = 0;

0, otherwise;

(9)

where λ > 0 is a hyperparameter to trade off both
loss terms, and step denotes the training steps.
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Model
Single Sentence Sentence Pair ABSA Avg.

SST-2 MR CR TREC QQP QNLI MNLI SNLI RES LAP

Prompt Learning with RoBerta-Large

Vanilla 84.84(6.80) 77.88(7.90) 88.36(2.89) 87.20(7.70) 67.09(6.70) 64.25(7.45) 60.69(4.08) 64.56(4.08) 72.05(4.08) 71.81(2.88) 73.87

Static 88.60(4.10) 83.67(6.80) 87.06(3.84) 90.95(1.36) 68.31(7.70) 66.27(4.98) 60.38(6.70) 68.17(5.62) 70.95(5.46) 73.01(3.03) 75.74

Joint 90.71(1.20) 85.83(2.40) 86.76(6.50) 90.57(4.17) 67.26(4.40) 63.15(7.16) 61.95(4.65) 67.64(5.80) 71.07(2.97) 73.32(2.26) 75.83

EM-L 91.31(1.30) 87.58(1.40) 90.00(0.90) 92.13(1.41) 74.41(0.74) 67.66(3.77) 64.85(3.21) 69.52(3.69) 73.74(3.46) 76.02(1.90) 78.72
R-L 91.58(1.30) 87.47(0.09) 89.93(1.70) 92.86(1.21) 73.79(2.28) 67.62(5.79) 66.04(3.18) 73.08(4.59) 76.79(2.60) 75.59(1.51) 79.46

Fine-tune RoBerta-Large

Vanilla 81.59(4.50) 73.59(9.90) 81.63(4.08) 85.95(5.57) 61.42(8.19) 57.20(2.09) 59.90(5.72) 59.19(5.58) 69.21(4.14) 71.06(5.11) 70.07

Static 81.99(10.8) 72.69(5.05) 82.75(5.50) 87.02(3.25) 60.23(9.60) 57.11(3.90) 54.69(4.78) 62.65(5.10) 70.48(8.74) 71.37(3.03) 70.10

Joint 83.49(3.20) 74.89(2.90) 80.63(5.42) 86.33(3.17) 63.50(8.08) 57.66(2.69) 60.99(4.98) 61.01(5.80) 70.23(3.57) 70.62(4.47) 70.94

EM-L 85.38(1.30) 75.80(2.20) 83.81(5.36) 89.36(2.64) 65.70(8.17) 60.93(1.56) 62.24(3.12) 65.25(3.20) 71.64(3.36) 72.69(3.18) 73.27
R-L 84.69(2.29) 75.35(2.20) 83.17(3.22) 88.92(3.81) 70.53(2.68) 61.37(0.12) 62.18(1.72) 66.31(3.30) 73.28(3.13) 72.69(3.01) 73.85

Table 1: Comparison results on 16-shot text classification. “Vanilla” denotes methods without retrieval, which only
consists of a sentence encoder and a classifier. “Static” and “Joint” are static retrieval and joint learning-based
retrieval, which are introduced in §2. “EM-L” and “R-L” are methods implemented with our proposed new
objectives. All the reported results are average Accuracy and the standard deviation in the subscript.

4 Experimental Results

4.1 Experimental Settings

Datasets We compared the proposed EM-L and
R-L approaches with existing retrieval methods by
conducting experiments on 10 widely used text
classification datasets, including single-sentence
classification, sentence pair classification, and
aspect-based sentiment classification. We created
few-shot datasets following Gao et al. (2021). For
more details, please refer to Appendix B.

Baselines To prove the effectiveness of retrieving
examples from the training set, we develop a base-
line method without retrieval for comparison. It
comprises an input encoder described in § 3.2 and a
feed-forward neural network for classification. For
comparing different retrieval methods, we evalu-
ated our EM-L and R-L against static retrieval and
joint learning-based retrieval. We combine them
with two widely used backbones for text classifica-
tion: pre-trained language models fine-tuning and
prompt learning. Please refer to Appendix C for
more implementations, such as hyper-parameters
and templates in prompt learning.

Evaluation. We evaluate all the retrieval meth-
ods using two metrics: Accuracy and Kendall’s
τ . Accuracy represents the proportion of correctly
classified instances out of the total number of in-
stances. Kendall’s τ is employed to measure the
consistency and correlations between the retrieval
metric Pϕ(z|xi) and its auxiliary Pϕ(y|xi, z)[yi]

for classification. Kendall’s τ is defined as follows:

τi =

2

m(m− 1)

m∑

j<k

sign(uj − uk) · sign(vj − vk),

u ∼ Pϕ(z|xi), v ∼ Pϕ(y|xi, z)[yi], τi ∈ [−1, 1],

(10)

where sign(·) ∈ {−1, 0, 1} is a sign function. A
ranking pair ⟨j, k⟩ is concordant if their ranks have
the same order in Pϕ(z|xi) and Pϕ(y|xi, z)[yi].
Consequently, a positive τi indicates a positive cor-
relation between two distributions, and vice versa.
For n instances xi in the training set, we calculate
the proportion of xi with τi > 0 as follows:

τ ′ =

∑n
i step(τi)

n
,

step(τi) =

{
0, τi ≤ 0
1, τi > 0

.

(11)

The reported Kendall’s τ ′ in the following experi-
ment is actually τ ′, which represents the proportion
of instances with τi > 0.

4.2 Main Results

The experimental results for 16-shot setting on 10
datasets are reported in Table 1, where different
retrieval-based methods are combined with two
backbones. Several insightful observations could
be drawn from the results.

Retrieving examples from the training set is effec-
tive in few-shot scenarios. Firstly, in most datasets,
retrieval-augmented models outperform the vanilla
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Kendall’s τ ′ SST-2 CR QQP QNLI RES

Static 0.5344 0.5837 0.4307 0.5312 0.47857
Joint 0.5413 0.6129 0.4776 0.5937 0.4732
EM-L 0.6853 0.6451 0.6265 0.7500 0.6598
R-L 0.7442 0.6562 0.6057 0.7185 0.6125

Table 2: Kendall’s τ ′ of Pϕ(zj |xi) and Pθ(y|xi, zj)[yi].

model with two backbones, indicating that retriev-
ing examples from the training set could enhance
the generalization, even with a narrow search scope.
Secondly, the joint learning-based retrieval, EM-
L, and R-L perform better than the static retrieval,
which is even less effective than the vanilla model.
We hold that this is because static retrieval fetches
some examples with high semantic similarities but
is detrimental to the downstream tasks. In contrast,
the learnable retrieval methods, i.e. joint learning-
based retrieval, EM-L, and R-L, are more likely to
align with the goals of specific tasks.

EM-L and R-L approaches train the retriever
more effectively than static retrieval and joint
learning-based retrieval. At first, our proposed
EM-L and R-L achieve significantly higher accu-
racy across different backbones, proving their effec-
tiveness in fetching helpful examples and adapting
to specific downstream tasks. Furthermore, on av-
erage, R-L outperforms EM-L, potentially due to
its utilization of a more direct ranking loss that
provides more significant signals and flexible guid-
ance to the example retriever. Finally, it is worth
noting that EM-L and R-L show smaller standard
deviations on most datasets than other methods,
we conjecture that the proposed training objectives
enhance the stability of generalization by incorpo-
rating retrieval memory alongside parameters.

The advantages of EM-L and R-L are more pro-
nounced on challenging tasks, such as sentence
pair classification, and aspect-based sentiment anal-
ysis. In this regard, EM-L and R-L achieve im-
provements of more than 0.3 on most datasets for
sentence pair classification and ABSA, whereas
the improvement on the single-sentence classifi-
cation ranges from 0.1 to 0.2, which gain further
highlights the effectiveness of EM-L and R-L.

4.3 Consistency Experiments

The Kendall’s τ ′ defined in Eq. (11) on selected
datasets are reported in Table 2, which measures
the consistency between retrieval metrics of fetched
examples and their auxiliaries to downstream tasks.
Combing the results in Table 1, higher τ ′ of EM-L

Accuracy SST-2 MR TREC QQP

Vanilla 80.22 60.71 86.05 64.27
Static 76.58 67.51 86.94 60.30
Joint 85.41 71.01 86.57 61.92
EM-L 87.30 78.75 87.52 67.90
R-L 89.79 77.38 88.78 66.77

Table 3: Comparison results on 8-shot text classification.
Standard deviations are omitted to save space.

MR TREC RES LAP

Accuracy

Vanilla 90.80 96.80 86.53 80.87
Static 91.40 97.60 87.50 81.19
Joint 90.90 97.80 87.58 82.13
EM-L 91.70 98.00 88.04 82.76
R-L 91.45 98.00 88.48 83.22

Kendall’s τ ′

Static 0.4340 0.5280 0.5705 0.4310
Joint 0.5075 0.6580 0.7187 0.7492
EM-L 0.9195 0.7880 0.8700 0.8564
R-L 0.9090 0.7160 0.8889 0.8903

Table 4: Comparison results with full supervision of
the original datasets. Standard deviations are omitted to
save space.

and R-L indicates that they could prioritize more
helpful examples according to their correspond-
ing metrics and improve the performance by train-
ing more effective retrievers. However, retriev-
ing examples according to static metrics and joint
learning-based metrics may result in the inclusion
of harmful examples in the final performance.

4.4 Auxiliary Experiment
We further conduct additional experiments in both
8-shot and full supervision settings to investigate
the advantages of EM-L and R-L on different data
scales. The results are presented in Table 3 and
Table 4, respectively. It is obvious that EM-L and
R-L consistently exhibit excellence in both settings.
Particularly, we note a more significant improve-
ment of our methods in the 8-shot setting, which
manifests that the proposed training methods train
the retriever more effectively, especially when the
training data is scarce.

Moreover, another interesting phenomenon
emerged: although EM-L and R-L achieve higher
Kendall’s τ ′ in the full supervision setting, their im-
provements in text classification are comparatively
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smaller compared to that in few-shot scenarios. We
believe this can be attributed to the fact that the
classifier in the full supervision setting is already
well-trained so the potential improvement from a
better retrieval memory is relatively limited.

5 Analysis

5.1 Effects of the Number of Retrieved
Examples

To examine the effects of the number m on var-
ious retriever training methods, we present line
charts in Fig. 1 that depict the relationship between
Accuracy and m. First, all the charts demonstrate
retrieving examples could enhance the performance
of few-shot text classification, except for a slightly
lower accuracy of static retrieval and joint learning-
based retrieval when m takes specific values. This
could be attributed to the instability of their train-
ing process. Second, most methods achieve their
peak performance at m = 5 or m = 10. As m
continues to increase, the performance may start to
deteriorate. We guess the reason is that retrieving
too many examples increases the training difficulty.
Third, we observe EM-L and R-L maintain sus-
taining advantages and stability as m varies, which
verifies their stronger supervision signals. Another
observation is that the joint learning-based method
falls behind the static method on LAP. This find-
ing suggests that in certain tasks, a poorly trained
learnable metric even exhibits inferior performance
compared to a static metric.

5.2 Gradient Updates

In order to assess the supervision signals exerted on
the retrievers by different methods, we quantify the
average gradients of all retrievers’ parameters. This
measurement allows us to evaluate the guidance
provided by each method to the retriever during the
training process. Fig. 2 illustrates the percentage of
training steps where the average gradients of all re-
trievers’ parameters exceed the threshold of 1e− 6.
For clarity, we exclude static retrieval from this fig-
ure since its retriever has no trainable parameters1.
Our analysis revealed that on certain datasets, the
gradient norm of the joint learning-based retriever
exceeds the threshold of 1e− 6 for only about 40%
of the steps, whereas EM-L and R-L surpass this
threshold in over 60% of the steps. This obser-
vation suggests that both static and joint learning-

1This corresponds to a constant proportion of zero for steps
with a gradient norm exceeding 1e-6.

based retrieval provide weaker supervision signals
to the retrievers and suffer from severe vanishing
issues in few-shot text classification while EM-L
and R-L alleviate such limitations.

5.3 Case Study

Finally, we present an illustrative example from
the LAP dataset along with the retrieved examples
using different methods in Fig. 3. In the input sen-
tence, the aspect term “startup times” is negative.
Although static retrieval fetches a semantic similar
example, it includes information that could poten-
tially mislead the sentiment prediction, such as the
term "spectacular". The joint learning-based re-
trieval retrieves an example that seems unrelated to
the input sentence, possibly indicating that weak
supervision signals for the retriever are prone to
worse retrieval results. In contrast, our EM-L and
R-L methods are capable of retrieving examples
that may not possess high semantic similarity but
are more beneficial for sentiment prediction.

6 Related Work

6.1 Retrieval-augmented Methods

Retrieval-augmented methods enhance the ability
of the Pre-trained Language Models in processing
various natural language tasks by fetching relevant
examples from the training set or external knowl-
edge base and prepending them with the original
input. These methods have improved the perfor-
mance of a lot of tasks, such as neural machine
translation (Zhang et al., 2018; Cai et al., 2021;
Li et al., 2022; Wang et al., 2022), question an-
swering (Li et al., 2020; Karpukhin et al., 2020;
Singh et al., 2021; Wang et al., 2022; Siriward-
hana et al., 2023; Li et al., 2023; Hofstätter et al.,
2023), dialog generation (Fan et al., 2021; Thulke
et al., 2021; King and Flanigan, 2023), text classi-
fication (Izacard et al., 2022; Lewis et al., 2020),
keyphrase generation (Gao et al., 2022), etc. Ac-
cording to retrieval metrics, these methods could
be categorized as static retrieval methods and joint
learning-based methods, which use a fixed retrieval
metric and jointly learnable metric respectively.

Different from the above methods, which fetch
relevant examples from the large-scale corpus, we
propose two novel training objectives to retrieve
examples in a restricted retrieval space and analyze
their advantages. Following Singh et al. (2021);
Izacard et al. (2022), we formulate the retrieval-
augmented methods into a retriever and a classifier
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Figure 1: Effects of the number m of retrieved examples. The results are average Accuracy on the validation set.

Figure 2: The proportion of steps in which the average
gradient of retriever’s all parameters is more than 1e−6.

in Eq. (1) for a fair comparison.

6.2 Prompt Engineering

Fueled by the birth of large-scale language mod-
els (Brown et al., 2020), prompt-based learn-
ing (Liu et al., 2023) for the Pre-trained Lan-
guage Models has been developed to convert dif-
ferent downstream tasks into cloze-style mask lan-
guage model objectives, achieving impressive per-
formance in text classification (Wang et al., 2021;
Gao et al., 2021; Hambardzumyan et al., 2021;
Lester et al., 2021; Schick et al., 2020; Schick
and Schütze, 2021), sentiment classification (Seoh
et al., 2021; Yan et al., 2021; Chen and Qian,
2020; Zhang et al., 2021), named entity recogni-
tion (Cui et al., 2021), relation extraction (Chen
et al., 2022b,b), question answering (Lewis et al.,
2019; Khashabi et al., 2020), commonsense reason-
ing (Shwartz et al., 2020), etc. Orthogonal to these
studies of prompt learning, our paper focuses on the
comparison of different retrieval methods, where
prompt learning is just employed as a backbone.

6.3 Few-shot Text Classification

Few-shot Text Classification trains a classifier with
limited data for each class, which can also predict
unseen classes. Existing studies for few-shot text
classification encompass various approaches such
as prototypical networks (Jake et al., 2017), XLNet-
based methods (Zhilin et al., 2019), (Ro)BERT(a)-
based methods (Chen et al., 2020, 2022a), Pattern-
exploiting training (Schick and Schütze, 2021),
prompt tuning (Lester et al., 2021; Gao et al., 2021),
etc. And common sub-tasks in text classification
consist of intention classification, topic classifica-
tion, sentiment classification, etc. We evaluate our
methods on different text classification tasks, with
a focus on adapting the idea of retrieval-augmented
methods to the few-shot scenarios through the de-
sign of new training objectives.

7 Conclusion

This paper studies the retrieval-augmented methods
for few-shot text classification and demonstrates
the challenges which hinder their success: it is im-
possible to retrieve semantically similar examples
by using an off-the-shelf metric and it is difficult
to optimize a plausible metric by minimizing the
standard cross-entropy loss. Accordingly, it pro-
poses two novel training objectives, EM-L and R-L,
which provide stronger supervision signals to train
the retrieval metric effectively in few-shot scenar-
ios. It is worth mentioning that the idea of search-
ing within limited examples bears similarity to the
concept of demonstration selection in recent large
language models (LLMs). Exploring the applica-
tion of our methods in LLMs holds promise for
future research.
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Input: Startup times are incredibly long : over two minutes. The sentiment polarity of startup times was <mask> .

Methods Predictions Retrieved Examples

The internet speed is spectacular. The sentiment polarity of 
internet speed was <mask> .Static positive

That included the extra Sony Sonic Stage software , the speakers 
and the subwoofer I got -LRB- that WAS worth the money -
RRB- , the bluetooth mouse for my supposedly bluetooth 
enabled computer , the extended life battery and the docking 
port. The sentiment polarity of docking port was <mask> .

Joint positive

Its not just slow on the internet, its slow in general. The 
sentiment polarity of internet was <mask> .EM-L negative

Another thing is that after only a month the keyboard broke and 
it costed $175 to send it in to fix it . The sentiment polarity of
keyboard was <mask> .

R-L negative

Labels for Retrieved
Examples

positive

neutral

negative

negative

Figure 3: Case Study. “Input” denotes an input sentence from LAP, “Predictions” represents the predicted sentiment
polarities of different methods, and “Retrieved Examples” is the fetched examples with the highest metric in the
training set. “Labels for Retrieved Example” denotes sentiment labels of the fetched examples.

Limitations

There are three primary limitations of our methods.
Firstly, EM-L and R-L require additional training
time compared to existing retrieval methods. It
is due to the alternation between the E-step and
M-step in EM-L and the optimization of an addi-
tional loss of R-L. Specifically, the training time for
EM-L per epoch is approximately 1.5 times that of
static retrieval and 1.2 times that of joint learning-
based retrieval. Similarly, the training time for R-L
per epoch is about 1.8 times that of static retrieval
and 1.5 times that of joint learning-based retrieval.
Although our proposed methods require more time,
they still fall within the acceptable range. Secondly,
we didn’t focus on designing more sophisticated
templates for prompt engineering, as our main em-
phasis was on exploring different retrieval methods.
Thirdly, we evaluate our methods in few-shot set-
tings constructed from widely used datasets, rather
than real-world scenes. This could limit the gener-
alizability of our findings to practical applications.
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A Proof of the EM-L Method

Proposition. Optimizing the following two like-
lihood functions is equivalent in EM-L:

max
θ,ϕ

n∏

i

Pθ,ϕ(y|xi) ⇐⇒

max
θ,ϕ

n∑

i

m∑

j

Pθ,ϕ(zj |xi, y) logPθ(y|xi, zj),

where Pθ,ϕ(zj |xi, y)

:=
Pθ(y|xi, zj)Pϕ(zj |xi)∑m
j Pθ(y|xi, zj)Pϕ(zj |xi)

,

(12)

where xi is the representation of the i-th sentence.
For each xi, the retriever fetches m examples from
the corpus to assist xi in text classification, where
each example is represented as zj .

Proof. We first use variational inference to derive
the lower bound of the original likelihood:

max
n∏

i

Pθ,ϕ(y|xi)

⇐⇒ max log
n∏

i

Pθ,ϕ(y|xi)

=max
n∑

i

logPθ,ϕ(y|xi)

=max
n∑

i

log
m∑

j

Pθ(y|xi, zj)Pϕ(zj |xi)

=max
n∑

i

log
m∑

j

Pϕ,θ(y, zj |xi)

(13)

Let Q(zj) be a random distribution of zj :

max

n∑

i

log

m∑

j

Pϕ,θ(y, zj |xi)

=max

n∑

i

log

m∑

j

Q(zj)
Pϕ,θ(y, zj |xi)

Q(zj)

≥max
n∑

i

m∑

j

Q(zj) log
Pϕ,θ(y, zj |xi)

Q(zj)

(14)
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The last step is according to Jansen inequality
and equals if and only if Q(zj) is proportional to
Pθ,ϕ(y, zj |xi) and c is a constant. Such a propor-
tional relationship can be expressed as:

Q(zj)

Pθ,ϕ(y, zj |xi)
= c, c is a constant

⇐⇒ cPθ,ϕ(y, zj |xi) = Q(zj), ∀i, j
(15)

Since
∑

j Q(zj) = 1, we can sum z on both sides
of the equation:

⇐⇒ c
m∑

j

Pθ,ϕ(y, zj |xi) = 1

⇐⇒ c =
1∑m

j Pθ,ϕ(y, zj |xi)

(16)

Now we can derive a lower bound of
∏n

i Pθ,ϕ(y|xi)
by substituting c into Eq.(15) and then substituting
Q(zj) to Eq.(14):

Q(zj) =
Pθ,ϕ(y, zj |xi)∑m
j Pθ,ϕ(y, zj |xi)

=
Pθ(y|xi, zj)Pϕ(zj |xi)∑m
j Pθ(y|xi, zj)Pϕ(zj |xi)

= Pθ,ϕ(zj |xi, y)

(17)

max

n∏

i

Pθ,ϕ(y|xi) ⇐⇒

max(

n∑

i

m∑

j

Q(zj) logPθ,ϕ(y, zj |xi)

−
n∑

i

m∑

j

Q(zj) logQ(zj))

(18)

Since Pθ,ϕ(y, zj |xi) = Pθ(y|xi, zj)Pϕ(zj |xi), we
can further simplify Eq.(18) as follows:

max(
n∑

i

m∑

j

Q(zj) logPθ,ϕ(y, zj |xi)

−
n∑

i

m∑

j

Q(zj) logQ(zj))

=max(
n∑

i

m∑

j

Q(zj) logPθ(y|xi, zj)Pϕ(zj |xi)

−
n∑

i

m∑

j

Q(zj) logQ(zj))

=max(
n∑

i

m∑

j

Q(zj) logPθ(y|xi, zj)

+

n∑

i

m∑

j

Q(zj) logPϕ(zj |xi)

−
n∑

i

m∑

j

Q(zj) logQ(zj))∗

=max(
n∑

i

m∑

j

Q(zj) logPθ(y|xi, zj))

=max(
n∑

i

m∑

j

Pϕ(zj |xi, y) logPθ(y|xi, zj))

(19)

Specifically, in the step denoted with
*,

∑n
i

∑m
j Q(zj) logPϕ(zj |xi) and∑n

i

∑m
j Q(zj) logQ(zj)) can be canceled

out, because Q(zj) = Pϕ(zj |xi, y) ≈ Pϕ(zj |xi)
in Eq. (17).

Further proof for convergence and equality of
the original two optimizations is ordinary to derive
as the proof of the EM algorithm, which is omitted
here.

B Dataset Detail

B.1 Original Datasets

All the retrieval methods are evaluated on three
types of datasets: single-sentence classification,
sentence pair classification, and aspect-based senti-
ment analysis (ABSA). The single-sentence classi-
fication consists of SST-2 (Socher et al., 2013),
MR (Pang and Lee, 2004), CR (Hu and Liu,
2004), and TREC (Voorhees and Tice, 2000).
The sentence pair classification includes QQP 2,

2https://quoradata.quora.com
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Dataset Input Output Train Test Type

SST-2 sentence x
1: positive
0: negative

6,920 872 sentiment classification

MR sentence x
1: positive
0: negative

8,662 2,000 sentiment classification

CR sentence x
1: positive
0: negative

1,775 2,000 sentiment classification

TREC sentence x

0: Personality
1: Advisor
2: Conclusion
3: Human
4 :Assignment
5: Minute

5,452 500 question classification

QQP sentence x1, x2
1: entailment
0: not entailment

363,846 40,431 paraphrase

QNLI sentence x1, x2
1: entailment
0: not entailment

104,743 5,463 Natural Language Inference

MNLI sentence x1, x2
2: entailment
1: neutral
0: contradiction

392,702 9,815 Natural Language Inference

SNLI sentence x1, x2
2: entailment
1: neutral
0: contradiction

549,367 9,842 Natural Language Inference

RES sentence x, aspect a
2: positive
1: neutral
0: negative

3,044 800 aspect-based sentiment analysis

LAP sentence x, aspect a
2: positive
1: neutral
0: negative

3,048 800 aspect-based sentiment analysis

Table 5: Dataset details. The column labeled "Train" represents the number of instances in the original training set,
while "Test" denotes the number of instances in the test set. The "Type" column describes the task type associated
with each dataset.

QNLI (Rajpurkar et al., 2016), SNLI (Bowman
et al., 2015), and MNLI (Williams et al., 2017).
The aspect-based sentiment analysis datasets are
RES (Manandhar, 2014) and LAP (Manandhar,
2014). Particularly, for SST-2, MNLI, and QNLI
from GLUE (Wang et al., 2018) and SNLI, we
utilize their original validation sets for testing pur-
poses.

B.2 Few-shot Datasets

Following the few-shot setting of Gao et al. (2021),
we randomly select 16 or 8 examples from the train-
ing set to create 16-shot or 8-shot experiments.
Specifically, we generate five distinct few-shot
datasets using different seeds and train models on
each of them. It is noted that we use consistent five
seeds on different datasets and retrieval methods
to conduct a fair comparison. The best model is
chosen based on the validation results, and the av-

erage evaluation scores on the original test set are
reported.

C Experimental Settings

C.1 Hyper-parameter Selection

We adopt grid search to choose the hyper-
parameters of different methods. Specifically, the
learning rates are taken from {1e−5, 2e−5, 5e−5},
the batch sizes are from {4, 8, 16}, and the numbers
of retrieved examples are taken from {5, 10, 15}.
The parameter t that determines the update fre-
quency of loss LR is searched from {5, 10, 15}.
The loss coefficient λ in ranking-based loss is set
to {0.5, 1, 2}. For each dataset, we set the max
training steps as 800 steps and use early stopping
to avoid over-fitting. In each trial, we validate the
model in each epoch and save the best checkpoint.

We adopt the AdamW optimizer and accumu-
late gradients for each batch. The code is imple-
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Dataset Template Label

SST-2
Input sentence x, it was <mask>.

1: positive → good
0: negative → terrible

MR
CR

TREC Input sentence x, it was <mask>.

0: Personality→Personality
1: Advisor→Advisor
2: Conclusion→Conclusion
3: Human→Hum
4 :Assignment→Assignment
5: Minute→Minute

QQP
Input sentence x1, <mask>, x2.

1: entailment → Yes
0: not entailment → NoQNLI

MNLI
Input sentence x1, <mask>, x2.

2: positive→ positive
1: neutral → neutral
0: negative → nagative

SNLI

RES
Input sentence x, the a was <mask>.

2: positive→ positive
1: neutral → neutral
0: negative → nagative

LAP

Table 6: Templates and label words for different datasets that we used for prompt-based fine-tuning.

mented with PyTorch 1.9.0 and transformers 4.1.1
and launched on an Ubuntu server with a single
NVIDIA Tesla V100 (32G) or NVIDIA 4090. In
addition, we will test our model with Mindspore,
which is a new deep-learning framework3.

C.2 Templates of Prompt-based Fine-tuning
We use RoBERTa-Large (Liu et al., 2019)4 with
1024 dimensions to encode the input sentences
with the related template. The templates for var-
ious datasets are shown in Table 6. Since our
main aim is to investigate the difference among
retrieval methods, we adopt the widely used and
effective templates for these tasks in prompt-based
fine-tuning refer to Gao et al. (2021). The specific
templates are shown in Table 6.

3https://www.mindspore.cn/
4https://github.com/huggingface/transformers
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