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Abstract

Though big progress in table-to-text works,
effectively leveraging table structure signals,
e.g., hierarchical structure, remains challeng-
ing. Besides, deliberating generated descrip-
tions proves to be effective for table-to-text.
However, determining the appropriate out-
come when encountering multi-pass candi-
dates is another challenge. To this end, we
propose a novel table-to-text approach on
top of Self-evaluated multi-pass Generation
and Heterogenous Multidominance Attention,
namely SG-HMA. Specifically, we formulate
the table structure into a multidominance (MD)
structure and devise a heterogenous multidomi-
nance attention (HMA) to comprehensively ex-
plore the complex interactions encoded in the
hierarchical structure, which can further deliver
rich signals for text generation with the help
of pre-trained language models (PLMs). After-
ward, a contrastive loss is introduced to align
the generation objective with evaluation met-
rics, so the more faithful generated descriptions
can be guaranteed. We conduct extensive exper-
iments on three public datasets, demonstrating
that SG-HMA outperforms several SOTA meth-
ods quantitatively and qualitatively.

1 Introduction

Table-to-text, referring to the task of producing
a textual description taking the table as input,
has been widely applied in different domains,
such as weather forecast (Liang et al., 2009; Mei
et al., 2016), logical tabular reasoning (Chen et al.,
2020a), and financial report generation (Lin et al.,
2022). Automatic description generation may shed
light on mitigating the time-consuming procedure
in table-to-text tasks with bare hands.

Recent advances in pre-trained language mod-
els (PLMs) have demonstrated significant progress
in natural language generation (NLG) (Yao et al.,

*This work was done when the first author was an intern
at Baidu Research.

2022, 2023; Fang et al., 2023). To effectively lever-
age the power of PLM, several table-to-text works
(Gong et al., 2020; Suadaa et al., 2021) serialized
the table input via manually defined templates. Be-
sides, to preserve the table’s structural information,
TableGPT (Gong et al., 2020) devises a table struc-
ture reconstruction task, and TASD (Chen et al.,
2022b) proposes to learn the structure representa-
tion explicitly. However, to group the data into
categories, the cells in a table (e.g., a pivot table)
are often organized in a nested/hierarchical man-
ner using headings and subheadings. The attention
map computed by these approaches may fail to
harness the perplexing hierarchical table structures.

On the other hand, one can effectively deliber-
ate the generated texts from a global perspective
with the multi-pass generation paradigm (Niehues
et al., 2016; Chen et al., 2022b). While it is hard to
terminate the multi-pass generation procedure and
determine the appropriate outcome towards faithful
descriptions of tables. Existing works evaluate and
finalize the multi-pass generated texts with the help
of reinforcement learning (RL) (Geng et al., 2018)
or a customized rewrite-evaluator architecture (Li
and Yao, 2021). However, extra workload might
be brought in due to the intractability of RL or a
separate evaluation module.

To this end, in this paper, we propose a PLM-
based table-to-text approach with the help of
Self-evaluated multi-pass Generation and Hetero-
geneous Multidominance Attention (SG-HMA).
Specifically, we first formulate an input table into a
multidominance (MD) structure (GraCanin-Yuksek,
2013). In this way, the hierarchical relation of
the table content can be preserved since one child
node in the MD structure can have more than one
parental node. Then, we devise a heterogenous mul-
tidominance attention (HMA) mechanism to repre-
sent the table content with the awareness of com-
plex hierarchical structure. Afterward, we deliber-
ate the generated texts with a multi-pass paradigm
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and develop a contrastive loss to equip the model
to generate more faithful table descriptions with
self-evaluation. The contributions of this work can
be summarized as follows:

* We propose to transform the tabular input into
a multidominance structure and devise a het-
erogenous multidominance attention to yield
table representation on top of PLMs.

* We innovate a self-evaluated multi-pass gener-
ation framework for the table-to-text task with
the help of contrastive learning.

» Extensive experiments on benchmark datasets
validate the superiority of the proposed SG-
HMA framework in generating descriptive
texts for tabular inputs.

2 Related Work
2.1 Table-to-Text Generation

With the success of deep neural networks, the
seq2seq method has been applied to various nat-
ural language generation (NLG) tasks. Based
on this framework, researchers (Liu et al., 2018;
Puduppully et al., 2019) divide table-to-text gener-
ation into content selection, planning, and surface
smooth under end-to-end training fed a sequence
of table records as input. However, these methods
rely on large-scale datasets, showing poor results
in few-shot learning.

Since PLMs have shown great potential in trans-
fer learning, fine-tuning PLMs on different down-
stream tasks becomes a general and effective
method in NLG tasks (Kale and Rastogi, 2020;
Chen et al., 2020b). Parikh et al. (2020) proposed a
novel table-to-text dataset with a controlled genera-
tion task applying BERT as a baseline. Gong et al.
(2020) transformed the table into natural language
text and designed two auxiliary tasks to address
the incompatibility between text-to-text PLMs and
table-to-text generation. To infer facts from ta-
bles, Chen et al. (2020a) introduced reinforcement
learning in the training algorithm, and Suadaa et al.
(2021) designed a reasoning-based template. In-
spired by prompting, Li and Liang (2021) applied
prefix-tuning to GPT2 for table-to-text generation
and outperformed fine-tuning in low-data settings.
Li et al. (2021) introduced table representation
learning into fine-tuning of PLMs, showing the
potential of table representation in guiding text gen-
eration. TASD (Chen et al., 2022b) designed three

multi-head attention layers within and among cells,
ignoring the inherent hierarchical structure within
a table. For the table-to-text task, no work takes
the data structure of tables into account. We re-
solve the table hierarchical structure into an MD
structure and devise an HMA to learn the table
representation.

2.2 Contrastive Learning for Natural
Language Generation

Contrastive learning has been widely applied in
NLG tasks such as machine translation (Yang et al.,
2019) and summarization (Cao and Wang, 2021).
SimCTG (Su et al., 2022), as a contrastive training
objective, can calibrate the model’s representation
space. Xu et al. (2022) propose SeqCo with a con-
trastive objective trying to map representations of
document and summary to the same space.

Most generation models are trained without be-
ing exposed to incorrectly generated tokens. To
solve the exposure bias problem, Sun and Li (2021)
applies margin-based losses in the generated text.
Liu and Liu (2021) trains an evaluation model with
contrastive learning. Several works (Lee et al.,
2021; An et al., 2022; Su et al., 2022) use an N-
pairs contrastive loss and Brio (Liu et al., 2022)
uses a ranking loss based on their sequence-level
scores to learn a better sequence-level distance
function between the document and the target.
Therefore, contrastive learning can well bridge the
gap between training objectives and evaluation met-
rics (Chen et al., 2022a). We are the first to apply
it into text deliberation, implementing a multi-pass
generation process that can be self-evaluated.

3 Preliminaries

3.1 Problem Formulation

In a typical table, the caption provides critical in-
formation about the entire table and the associated
topics, the rows and columns describe the proper-
ties of their affiliated cells, while the cells provide
additional details within the table framework. A
table organizes these by a hierarchical structure,
hiding deep semantic information which can be
expressed by natural language. The table-to-text
task aims at generating an appropriate summary s
for each table .

Specifically, given a structured table ¢, the model
0 is expected to generate a descriptive sentence y
in an auto-regressive way:

Yi =argn§/axP(yi|t7y<i;9),i= 1,0yl )
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Figure 1: The architecture of the heterogeneous multidominance attention enhanced generation model.

where |y| is the word number of sentence y.

3.2 PLM as Generator

Fine-tuning PLM on different downstream tasks
becomes a general and effective method in NLG
tasks. We first serialize the table into natural lan-
guage text IV; that conforms to the standard input
format of PLM. Given the serialized table N; and
the reference s, in the training process, the last
hidden state H with the input of the decoder s is
obtained as follows:

Hys = PLM([N;; s]). @)

where H will be used to predict the probability of
the next token. Formally, the training objective of
text generation that maximizes the likelihood of the
reference text is given by:

IS
1
Lmle = —E E IOgP(SZ‘HNt;S<~;]). (3)
1=1

4 Methodology

In this section, we introduce the proposed frame-
work in detail. Firstly, as shown in Fig.1, follow-
ing the table hierarchical structure, we resolve the
table into a MD structure and apply a HMA mecha-
nism to propagate and aggregate the information in
the nodes as the table representation, guiding the
generation of PLM. During the multi-pass gener-
ation process, we apply the constrastive learning
and table representation to achieve self-evaluation.
Finally, we can get a well trained SE-HAN to gen-
erate ideal table description with tables as input.

4.1 Tabular Input Representation

Table Structure Formulation. Tables exhibit a
natural hierarchical structure, which is comprised
of the table components and their complex depen-
dencies. In order to take full advantage of the table
structural information, we resolve the hierarchi-
cal table structure into the multidominance struc-
ture (Gracanin-Yuksek, 2013) where at least one
node has more than one parent node. Formally,
for each table ¢, the table hierarchical structure is
denoted as the multidominance D = {V, £} where
V is the set of table component nodes extracted
from ¢, and £ is the set of directed edges that sug-
gest connectivity among the nodes'. Based on the
heterogeneity of the component nodes, } can be
further divided into several disjoint subsets follow-

ing:

V=V, UV, UV UV, 4

where V, = {ai 2, v, = {ri}lZ), ve = {2
and V, = {ei}?fll are the set of caption, row, col-
umn, and content nodes, respectively. Furthermore,
we use h(r;) and h(c;) to signify the located level
of row r; € V, and column ¢; € V,, respectively.
We also denote the located row and column in the
max level of the content ¢; € V. as pr(e;) and
pc(e;), respectively. Based on the heterogeneous
node sets, the set of edges £ is defined according

'We omit ¢ in the notations in Section 4.1 for brevity.
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to the hierarchical structure as:

& ={(ai,zj)|a; € Va,zj € Ve UV, h(z;) =0} U
{(@s,z)[(wi; € Ve Vi € Ve), h(z;) — h(w:) =1} U
{(ri,e;)|r: € Vr,e; € Ve, pr(e;) =1i}U

(
{(ci ej)lci € Ve, €5 € Ve, pc(e;) = ci} U
{($1,$1)|$1 cV,. U Vc} .
(5)
Heterogeneous Multidominance Attention.

Multidominance is a tree-like structure organized
in a top-down manner with non-uniform abstract
meaning among different levels. More importantly,
MD distinguishes itself from commonly known
tree structure by inheritance non-linearity, i.e.,
the node may have more than one parent node.
To deal with MD that experiences both the
directed hierarchical structure and the inheritance
non-linearity, we propose a novel heterogeneous
multidominance attention (HMA) mechanism,
where a flow aggregation layer is employed to
adaptively aggregate the heterogeneous flows
within the MD table structure.

Specifically, we first obtain the initial represen-
tations of the table component nodes by the PLM
embedding layer Emb(-):

E, = Emb(z),z € V, (6)

where E, € Rb*4 [ is the length of the text
in node z and d is the dimensionality. Then, we
respectively concatenate the representations of the
nodes in terms of their types (i.e., caption, row,
column and content) as:

0a= B 0
where U, € R"4*4 is the caption representation,
ng is the length of all caption nodes, and || is
the concatenation operation along the first dimen-
sion. Analogously, the row, column and content
representations Up € R"2*? Uy € R"c*? and
Ug € R™2%4 can be also derived.

Afterward, we devise a flow aggregation layer
FA(- ~~ -,-) to enable the table information flow
from the high-level component (e.g., captions) to
the low-level component (e.g., rows and columns)
while selectively accumulating beneficial knowl-
edge for each node. Specifically, the row (column)
representation can be updated as:

Zrcy = FA(Ua ~ Ug(cy, pATRE)),

Z ®)
Zr(c) = FA(Zr(c) ~ Un(c), PO 7HD),

where P is a incidence prior suggesting the hier-
archical connectivity based on D between specific

Alex Google Mean Max MEN SL

Wiki  Text SL MEN

Alex
0.310 0.310
Google|
0.682 0.682
Mean
Max 0.245 0.245
MEN 0.789 0.789
SL 0.555 0.555
C-C
2P 0.787 0.787
Wiki  Text
Wiki 0.456 0.456
Text 0.743 0.743
b) PRR c) PRE d) PC-F

Figure 2: The prior for the table in Fig 1 where the blue
cell indicates 1 while the white cell indicates 0.

types of nodes, which is illustrated in Fig. 2. For
example, consider the connectivity from caption
nodes to row nodes, P47 ¢ R"4*X"xr is given
by:

A—R 1,
Pin _{0,

The cell content representation can be further ac-
quired following:

ifa; € Va,’f‘j €V, (ahrj) € g’
otherwise.

®

Zp =FA([Zn || Ze| ~ Us, [PP2F || PE2F]). 10)

Particularly, to fulfill adaptive information aggrega-

tion, the flow aggregation layer FA is implemented

with a sparse attention (Wang et al., 2019) as:
QK™

FA(S~T,P)=(P0® softmax(w))v, (11

Q=TWq,K = SWk,V = SWy,

where S, T are the source and target input of the
flow, respectively, ® is the element-wise multipli-
cation, and W, Wi, Wy are parameters. Finally,
the table representation Z is obtained by concate-
nating the learned caption, row, column and content
representations as:

Zr = [ZA | Zr || Zc | ZE] . 12)

4.2 Self-Evaluated Multi-pass Generation

For the generation procedure, we first utilize the
table representation to enhance the generation abil-
ity of PLM by cross attention. So as to achieve
self-evaluation that dominates the termination sig-
nal in the multi-pass deliberation, we develop a
contrastive loss that ranks the similarity between
the table and the generation samples conforming
to the evaluation metric. Moreover, the delibera-
tion is performed by rewriting not only the output
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Algorithm 1: Training Procedure.

Algorithm 2: Inference Procedure.

Data: Given a training dataset with a table
set T, the corresponding reference
set S and a language model LMg
with initial parameters ©

Result: A language model for table-to-text

generation LMg« with optimal
parameters ©*
1p<+1, {Ntz}‘;‘l <+ table serialization
MO 0,

2 do

3 p+—p+1;

4 fort € T do

s || fuldmly « LMe(t, M)
6 end

7 compute L,,,; by Eq.16;
s | 0P 0P _A\VeLu;

o | M®P 0,

10 fort €T do

1 M®) — o(t,y) + M®);
12 Ni + [Nisyl;

13 end

14 while M®) > pP=1;
15 ©F « -1,
16 return LMe-

generation but also the candidates, which are able
to incorporate abundant samples into constrastive
learning.

Table Structure Enhanced Generation. De-
spite the capability of the hidden state H learned by
the PLM to incorporate the collective information
of the table, we propose to fuel the text genera-
tion with hierarchical structure of tables, which
is crucial to generate a high-quality description.
Specifically, we serialize the table based on the
MD structure where the detail can be found in Ap-
pendix B.5 and leverage the table representation
learned in Section 4.1 to make further selection
on the table content by multi-head cross attention
given by:

H, . = MultiHeadAttn(Hy o, Zr, Z7) + Hio,  (13)
where fIt,S is a structure-enhanced hidden state
that determines the probability of text generation.

The L, defined in Equation 3 is applied as the
training objective for text generation.

Contrastive Self-Evaluation. As the table itself
and its summary convey different aspects of the

Data: Given a table ¢, a well-trained
table-to-text generation LMg+ with
parameters ©

Result: A textual description of the table

1 p < 1; N, < table serialization; M 0) « 0
2 do

3 p+—p+1;

4 | y®P) «— LMe(t, Vy);

5 M®) — o(t,yP); Ny < [Ng; y®)];

¢ while M/ (®) > N(P=1);

7 return y?—1)

same semantic information, it is beneficial to align
the table’s hidden state for generation with more
closely matched summaries. Hence, we propose
to empower the model to self-evaluate the quality
of candidates based on their compatibility with the
table, using a carefully designed ranking-based con-
trastive loss. Specifically, inspired by sinkborn di-
vergence (SD) (Feydy et al., 2019) that interpolates
between MMD (Gretton et al., 2006) and OT (Chen
et al., 2019) to attain probability distribution com-
parison, we first define the similarity score o be-
tween the table ¢ and its generation sample g as:

o(t,g) = —SD(Hy g, Zr). (14)

Then, we generate the candidates {u}?"*; by beam
search for table ¢t where n,, is the candidate num-
ber. Afterward, we leverage the evaluation met-
rics (e.g., BLEU) to construct the partial order >
of the candidates, where higher metrics suggest
higher rankings. Finally, We introduce a ranking
loss (Zhong et al., 2020) to assign higher score to
better candidates as follows:

Letr =Y Y max(0,0(t,uj) — o(t,uf) +¢), (15)

u; u§i>u§’
where ¢ is the margin value.

Learning Objective and Deliberation. We
jointly train the text generation task and candidate
self-evaluation task with a composite loss:

Lmut = Lmie + aﬁctr, (16)

where « is a hyperparameter that is a scale fac-
tor. Regarding the multi-pass deliberation, for each
pass, we rewrite not only the generation result but
the candidates to incorporate abundant samples into
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Metrics GPT2 BART T5
F-T TableGPT P-T TASD SG-HMA F-T SG-HMA F-T Cont SG-HMA
NumericNLG
BLEU 4.60 5.08 3.28 5.10 5.76 6.41 8.18 4.96 5.13 6.45
ROUGE-L | 17.89 18.39 18.51 20.40 21.69 21.36 22.30 20.36  21.06 23.10
NIST 1.24 2.17 0.65 1.09 1.36 2.45 2.92 1.21 1.67 1.58
METEOR 10.87 11.34 8.89 11.46 11.97 12.97 14.10 11.36  11.38 12.30
CIDEr 0.06 0.04 0.10 0.07 0.13 0.10 0.16 0.15 0.09 0.20
Totto
BLEU 18.09 18.10 17.02  18.50 20.30 17.03 17.52 18.13 18.53 22.64
ROUGE-L | 36.46 36.75 34.83 36.85 38.34 34.93 38.26 37.34 36.90 41.04
NIST 4.09 3.96 3.60 4.03 4.23 3.17 3.96 3.96 4.10 4.43
METEOR | 20.58 18.45 18.61  20.59 21.04 19.83 23.01 20.21  20.67 23.80
CIDEr 1.45 1.39 1.48 1.56 1.64 1.32 1.38 1.52 1.68 1.82
E2E

BLEU 67.75 68.80 69.92 68.96 70.61 68.70 69.45 69.20 69.61 70.03
ROUGE-L | 70.76 70.56 71.46  70.77 72.18 70.77 70.78 70.90 71.16 71.18
NIST 8.63 8.63 8.81 8.76 8.92 8.80 8.83 8.80 8.80 8.82
METEOR | 45.65 45.66 46.27 45.96 46.75 45.70 45.77 46.03 46.20 46.30
CIDEr 2.33 2.34 2.45 2.43 2.49 2.44 2.45 2.47 2.48 2.49

Table 1: Performance comparisons of the automatic evaluation on the fine-tuning, TableGPT, prefix-tuning, TASD
and SG-HMA with different backbones. Except fine-tuning, other baselines are implemented according to their
source codes. We implement fine-tuning and our method with three backbones to achieve a fair comparison.

the contrastive evaluation. Then, according to the
average score, we terminates the deliberation if the
score starts to decline. The details of the training
pipeline are shown in Algorithm 1.

Table Description Inference. In the inference
stage, we generate multiple candidates in an au-
toregressive manner using the multi-pass deliber-
ation paradigm. To attain a satisfactory delibera-
tion, we further leverage the benefits of contrastive
self-evaluation to discern the quality of candidates.
Specifically, we terminate the deliberation if the
quality of the newly generated candidate, as deter-
mined by the similarity score defined in Equation
14, begins to decline. Detailed description of the
inference stage is given in Algorithm 2.

5 Experiments

5.1 Experimental Settings

Datasets We conducted experiments on three
publicly available table-to-text datasets: numer-
icNLG? (Suadaa et al., 2021), Totto> (Parikh et al.,
2020), and E2E* (Novikova et al., 2017). The nu-
mericNLG dataset comprises tables with complex
hierarchical structures and corresponding descrip-
tions, sourced from scientific papers. The Totto
dataset is a diverse English table-to-text dataset.

Zhttps://github.com/titech-nlp/numeric-nlg
3https://github.com/google-research-datasets/ToTTo
“https://github.com/UFAL-DSG/tgen

To ensure a similar dataset size to numericNLG,
we manually filtered out tables with simple hier-
archical structures and constructed a new Totto
dataset. The E2E dataset is a straightforward table
dataset describing restaurant information. Further-
more, we input the table without knowledge of the
highlighted sections to demonstrate the guiding sig-
nificance of the hierarchical table representation to
the table content. The statistics of the datasets are
shown in Table 4 of Appendix B.1.

Evaluation Metrics. We included five most
widely used automatic metrics: BLEU (Papineni
et al., 2002), ROUGE-L (Lin, 2004), NIST (Dod-
dington, 2002), METEOR (Lavie and Agarwal,
2007), and CIDEr (Vedantam et al., 2015) to evalu-
ate the quality of our generation. These metrics can
be evaluated by a public evaluation script’. More
details are in Appendix B.2.

Backbones. To verify the backbone-agnostic na-
ture of our architecture, we employed three primary
PLMs, GPT2 (Radford et al.,2019), BART (Lewis
et al., 2020), and T5 (Raffel et al., 2020), as back-
bones. More details of these backbones can be
found in Appendix B.3.

Baselines. We compare our method with sev-
eral state-of-the-art baselines, such as Fine-tuning,
TableGPT (Gong et al., 2020), Prefix-tuning (Li

Shttps://github.com/tuetschek/e2e-metrics
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and Liang, 2021), Cont (An et al., 2022) and TASD
(Chen et al., 2022b). The details of these baselines
can be found in Appendix B.5.

5.2 Overall Performance

As shown in Table 1, we compared the performance
of SG-HMA with multiple state-of-the-art meth-
ods on three datasets. The results show that SG-
HMA outperforms the best baseline on all metrics.
Specifically, in terms of BLEU, ROUGE-L, NIST,
METEOR, and CIDEr, SG-HMA surpasses the
strongest baseline and achieves an improvement of
1.77 (6.41 — 8.18, 27.6%), 0.94 (21.36 — 22.30,
4.40%), 0.47 (2.45 — 2.92,19.18%), 1.13 (12.97
— 14.1, 8.71%), and 0.06 (0.1 — 0.16, 60%) on
the NumericNLG dataset; 4.11 (18.53 — 22.64,
22.2%), 4.14 (36.9 — 41.04, 11.22%), 0.33 (4.1 —
4.43, 8.05%), 3.13 (20.67 — 23.8, 15.14%), and
0.14 (1.68 — 1.82, 8.33%) on the Totto dataset;
0.69 (69.92 — 70.61, 0.97%), 0.72 (71.46 — 72.18,
1.00%), 0.11 (8.81 — 8.92, 1.03%), 0.48 (46.27
— 46.75, 1.04%), and 0.04 (2.45 — 2.49, 1.63%)
on the E2E dataset, respectively. Furthermore, it’s
worth noting that SG-HMA can maintain a lead-
ing position when changing its backbone, which
demonstrates its backbone-agnostic nature.
Moreover, we observed performance variations
of different backbones across datasets. Notably,
BART demonstrated the best performance on the
numericNLG dataset due to its reputation as a de-
noising model, allowing for more accurate sum-
maries of complex tables with noise. On the Totto
dataset, which features tables of varying types and
formats, TS achieved the best results. This is be-
cause T3 is pre-trained with multiple tasks, giving
it a strong generalization capability to process var-
ious data types with different formats. Lastly, the
E2E dataset, which describes restaurant informa-
tion in a relatively simple format, is more suscepti-
ble to overfitting with complex models. Therefore,
the GPT2 backbone may be slightly more effective.

5.3 In-depth Analysis

We conducted an in-depth analysis from multiple
perspectives on the three public datasets with the
best-performing backbones to gain further insights
into our proposed method and verify the effective-
ness of each component.

Ablation study. To futher explore the effective-
ness of our proposed modules, we conduct an ab-
lation study. Specifically, we compare SG-HMA

Method | B R N M C
BART NumericNLG
w/o HMA | 656 2149 245 1294 0.10
w/o ctr 758 2221 274 1346 0.09
FA 7.05 21.75 260 13.18 0.15
SG-HMA 818 2230 292 14.10 0.16
T5 Totto
w/o HMA | 1824 37.89 4.02 21.07 1.61
w/o ctr 1934 3653 4.13 2130 1.53
FA 19.62 3846 4.11 2174 1.65
SG-HMA | 22.64 41.04 4.43 2380 1.82
GPT2 E2E
w/o HMA | 68.12 70.78 8.69 4627 241
w/o ctr 69.21 71.58 878 4624 247
FA 69.07 71.83 874 4637 248
SG-HMA | 70.61 72.18 892 46.75 2.49

Table 2: Performance comparisons on BLEU(B),
ROUGE-L(R), NIST(N), METEOR(M) and CIDEr(C)
of SG-HMA and its variants with the best backbone.

with several variants: 1) w/o HMA that removes the
heterogeneous multidominance attention, 2) w/o ctr
that removes the contrastive self-evaluation in the
training stage, 3) FA that replaces our designed
HMA with a full attention.

As can be seen in Table 2, w/o ctr performs worse
than SG-HMA under all metrics. This demon-
strates the importance of the contrastive loss in
guiding the PLM to generate a more reasonable
probability distribution. Besides, SG-HMA outper-
forms w/o HMA and FA under all metrics. Since
our HMA is a form of flow aggregation that propa-
gates information in a top-down manner, it matches
the inherited complex structures of tables, thus per-
forming best on all datasets.

Parameter sensitivity analysis. We study the
impact of constrastive loss weight on the model
performance. The weight varies from 0.1 to 10. As
shown in the first row of Figure 3, on the whole, the
model performance initially improves as the weight
increase. This is because increasing weight forces
the PLM to generate a more reasonable probabil-
ity distribution and evaluate the deliberation result
effectively. However, as the weight continues to
increase, the model’s performance decreases. This
is because when the weight is too large, the model
overly focuses on the contrastive loss and degener-
ates into a discriminative model, losing the ability
to generate text.

Effectiveness of self-evaluation on deliberation.
As shown in Figure 4, we present the predicted
similarity score by our model, along with five met-
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Figure 4: Self evaluation effectivess validation.

rics against the golden table description for the
description candidates in each pass.We have ob-
served that metrics perform best at the second pass
on the numericNLG and Totto datasets, while it
achieves the best performance at the third pass on
the E2E dataset.Such an observation underscores
the significance of identifying an appropriate ter-
mination point for the deliberation, as prolonged
deliberation may result in a deterioration of the
generated description. Furthermore, we observe a
positive correlation between the model’s predicted
similarity score and the BLEU metric owing to
the contrastive self-evaluation performed with the
BLEU metric during the training stage. As a re-
sult, our proposed model can serve as a reliable
indicator of the quality of the generated table de-
scriptions during the inference stage, facilitating
the assessment of deliberation adequacy.

5.4 Case Study

Fig 5 presents an interesting case we observed
when comparing the results on the numericNLG
dataset. Specifically, the green highlights indicate
text that appears in both the table and the gener-
ated result, the red highlights indicate summary
statements and their corresponding content, and
the blue highlights indicate parts showing the hi-
erarchical semantic relationship. Compared to the
fine-tuned BART model, the results generated by

Table 5: Performance on monolingual word similarity computation
with seed lexicon size 6000
Chineses(source) English(target)
Method WS-240 WS-297 WS-353 SL-999
BiLex 60.36 62.17 60.46 2722
CLSP-WR 61.27 65.25 60.46 27.22
CLSP-SE 60.84 05.25 62.47 28.79

Groundtruth: table 5 shows the results of monolingual word similarity computation
on four datasets.from the table, we find that:.(1) our models perform better than bilex
on both chinese word similarity datasets.(2) clsp-wr model does not enhance english
word similarity results but clspse model does

Finetuned BART: table 5 shows the results of this experiment. we can see that clsp-
wr achieves the median accuracy of 60.46% compared to bilex, which indicates that
clone-based methods are more effective than conventional word similarity methods.

SG-HMA BART: table 5 shows the results of monolingual word similarity compu-
tation with seed lexicon size 6000. we observe that clsp-se outperforms other models
on all datasets except for Chinese ws-240 where the accuracy of bilex is slightly worse

Figure 5: An example of the generated table descriptions
on the numericNLG dataset.

SG-HMA better restore the original content of the
table. In terms of summarization ability, SG-HMA
not only correctly identifies "CLSP-SE" as the best
performing model, but also acknowledges poor per-
formance on the "ws-240" dataset and captures the
hierarchical relationship between "Chinese" and
"ws-240". This demonstrates our model’s ability to
summarize tables by effectively mining hierarchi-
cal table structure information.

5.5 Human Evaluation

We randomly selected 40 samples from three
datasets and conducted a human evaluation from
four aspects: fluency, coverage, relevance, and
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Method Flue Cove Rele Ovqa
NumericNLG

GPT2  Finetuning 410 340 372  3.68

GPT2 TASD 422 352 385 3.80

GPT2 SG-HMA 432 3.67 406 398

BART  Finetuning 433 357 375 3.69

BART SG-HMA 444 400 416 411
Totto

T5 Finetuning 431 347 375 3.59

T5 Cont 434 367 3.87 376

T5 SG-HMA 441 4.01 417 4.16
E2E

GPT2  Finetuning 440 387 4.05 3.98

GPT2  Prefixtuning | 444 4.00 4.16 4.11

GPT2 SG-HMA 446 411 421 4.20

Table 3: Human evaluation results. Flue means fluency,
Cove means coverage, Rele means relevance, Ovqga
means overall quality.

overall quality. Each criterion was rated on a scale
from 1 (worst) to 5 (best). The criterion details
are shown in Appendix D. We invited 20 volun-
teers to evaluate the generated text. According to
the results of Table 3, we have the following ob-
servations: 1) All methods perform similarly in
fluency. Since PLMs have developed very mature
in text generation, their powerful imitation ability
allows them to generate text that easily conforms to
human reading habits. 2) Regarding coverage, rel-
evance, and overall quality, our proposed method
performs better for considering table structures and
self-evaluation generation, correctly summarizing
critical information, and generating more reason-
able descriptions.

6 Conclusion

In this article, we introduced SG-HMA, a novel
approach that can effectively learn table represen-
tation and generate accurate summaries. To be
specific, SG-HMA firstly resolves the table hierar-
chical structure into a MD structure and utilizes the
HMA to acquire the table representation, which can
guide the PLM in generating and evaluating text.
Then, the candidate texts and generation results
in each pass are rewrited by SG-HMA to create
samples for metric ranking with a contrastive ob-
jective and obtain more accurate summaries. Self-
evaluation enables the model have capability to de-
termine when to terminate training process based
on the evaluation results, facilitating the generation
of high-quality text. Finally, extensive experiments
conducted on three datasets demonstrate the effec-
tiveness of SG-HMA.

7 Limitations

Our proposed method exhibits marginal improve-
ments over the prefix-tuning baseline when the
input tabular data, such as the E2E dataset, are
relatively simple. To further enhance the model’s
performance on simple tables, we aim to integrate
prompt learning with our hierarchical table repre-
sentation in future work. Besides, we only take the
BLEU as the metric ranking criterion in contrastive
learning. In the future, we will consider all metrics
to achieve a more balanced model.
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A Multidominance Structure based Table
Serialization

Formally, the serialization of the table according to

both the structure and the content is given by: As
hr—1

(the caption is) a, the rg’“ of 1“8 Ty and ¢°
0 he—1 ;. 70,C0 hy 0 hr—1
of cp ... ¢° s ey, .., ther;m of ry oy
) —1 .  Ticy .
and c* of & ... 7V is €7, ... where z7 is the
T4,Cj

i-th z with a j-level, e, is the cell e;, with row
attribute 7; and column attribute ¢; and h, is the
max level of x.

B Extra Experimental Setings

B.1 Dataset Divison

The dataset divison of numericNLG and E2E adapt
the official method. For Totto dataset, we filter
1189 samples. Table 4 shows the size of each part
of the dataset after division.

Split NumericNLG Totto E2E
Train 1084 960 4862
Val 136 113 547
Test 135 116 630

Table 4: Statistics of the training, validation, and test
sets for the NumericNLG, Totto and E2E datasets.

B.2 Evaluation Metrics

BLEU measures the precision of N grams in a sen-
tence against references. ROUGE-L measures the
recall of the longest common subsequence between
the source and the target. NIST improves the BLEU
method by weighing the penalty for incorrectly
matching n-grams. METEOR evaluates the gen-
eration of word-to-word matching. CIDEr is an
automated consistency metric used for evaluating
image descriptions.

B.3 Backbones

GPT2 is a pre-trained language model with a
decoder-only transformer architecture. It was pre-
trained on a large and diverse webtext dataset with
the goal of maximizing the probability of generat-
ing high-quality text. BART is a denoising autoen-
coder for pretraining sequence-to-sequence models,
with a standard transformer-based architecture. T5
is a pretrained transformer model with an encoder-
decoder architecture. providing a unified frame-
work for converting all NLP tasks into text-to-text
tasks.

B.4 Implementation Details

Regarding automatic evaluation, all results of deep
models were obtained by conducting experiments
on a Linux machine with Nvidia P40 GPU. Further-
more, an Adam optimizer was utilized for LM fine-
tuning, and training was iterated in 30 epochs for
numericNLG, 20 epochs for Totto and 5 epochs for
E2E. A beam search algorithm was adopted when
generating the text and the beamwidth was set to
4. The learning rate of PLM was searched from
le-5, Se-5, le-4 and we selected 1e-4 for numeric-
NLG and Totto and 1e-5 for E2E. We use BLEU
as the evaluation metric to define the target order-
ing of the candidate summaries. We fine-tuned on
a GPT2 model with 124M parameters, a BART
model with 400M parameters and a T5 model with
220M parameters.

B.5 Baselines

We compare SG-HMA with the most relevant base-
lines as following:

e Fine-tuning. To leverage the rich semantic
information in PLMs, fine-tuning as a transfer
learning method has shown great potential in
various downstream tasks, including machine
translation, named entity recognition and sum-
marization.

e TableGPT. TableGPT is the first attempt
to apply table serialization to convert semi-
structured data into natural language text and
a multi-task learning paradigm to enhance the
generation ability, showing the potential in
leveraging the table structure information.

e Prefix-tuning. Prefix is a sequence of con-
tinuous task-specific vectors, the only mod-
ule that needs to be optimized while keep-
ing basic PLM parameters. Prefix-tuning is
a state-of-the-art table-to-text method on the
E2E dataset.

e Cont. Contrastive learning is an effective
solution to solve the exposure bias problem
in NLG tasks. This paper proposes a uni-
fied framework to break the bottlenecks from
tree aspects: contrastive example construction,
contrastive loss choice and decoding strategy.

e TASD. TASD devises a three-layered multi-
head attention network to leverage the table
structure information and adapt a multi-pass
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Year Show Role Notes

2016 In the Heights Choreographer Hangar Theatre

- Sweet Charity Director New Haarlem Arts Theatre

2008 Whistle Down the Wind  Director / Choreographer  North Carolina Theatre

Referencel In 2012, Agustin directed Sweet Charity at The New Haarlem Arts Theatre.

Fine-tuning TS  Agustin directed the 2007 show, Out of Line, at the Pennsylvania Center Stage.

Cont TS In 2008, Julio Agustin played the role of Director Choreographer in Whistle Down
the Wind.

SG-HMA T5 Julio Agustin worked as a [Director /Choreographer for the North Carolina Theatre ,
in 2008, and as Director for the - show Sweet Charity at the
New Haarlem Arts Theatre .
Table 5: An example of the generated table descriptions on Totto dataset

name ‘The Phoenix type pub

food French price _

customer rating low area riverside

fanily frendly  yex Crowne Plaza Hotel

Referencel: Near Crowne Plaza Hotel by riverside is a pub that is yes family friendly with a low
customer rating called The Phoenix and the prices are less than £ 20 .

Fine-tuning GPT2: The Phoenix is a family friendly pub located near the Crowne Plaza Hotel. It is in

the low price range.

Prefix-tuning GPT2: The Phoenix is a family friendly pub located near the Crowne Plaza Hotel.

SG-HMA GPT2: “ French [pub in the riverside area near
ICIoWne PIaZalHotell. 1t has a low customer rating and a price range of [ISSSHNANEI20).

Table 6: An example of the generated table descriptions on E2E dataset

decoder framework to polish the generation.
It is a most recent baseline on numericNLG
and part of Totto dataset.

C Extra Case Study

In addition to the case of numericNLG in the text,
we also conducted a case study on the Totto and
E2E datasets. Table 5 shows a case from the Totto
dataset, which clearly demonstrates the wider cov-
erage of original table content and a more compre-
hensive summary achieved by SG-HMA. Similarly,
on the E2E dataset, SG-HMA outperformed fine-
tuning and prefix-tuning by accurately and compre-
hensively summarizing more table content shown
on the table 6. These cases provide compelling
evidence of the benefits of SG-HMA in compre-
hending table representations. They indicate that
the HMA method has the potential to extract struc-
tural information from tables and generate more
extensive summaries through the SG.

D Human Evaluation Settings

Four criteria were used in our human evaluation:
* Fluency: Is this text readable and smooth?

* Coverage: Does this text describe the table
content comprehensively?

e Relevance: Is this text related to the table
content? Dose it reflect the table content au-
thentically?

* Overall quality: Evaluation of overall quality
of generated text.

Each criterion was scored on a scale of 1(worst)
to S5(best). In greater detail, we present a com-
prehensive list of explicit justifications for scoring
the generated text according to each criterion, as
outlined below.
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Fluency

1.

Poor Fluency: The text is difficult to under-
stand.

Below Average Fluency: The text has some
basic elements of fluency but still contains
noticeable errors or inconsistencies.

. Average Fluency: The text demonstrates a

moderate level of fluency, with relatively few
errors.

Above Average Fluency: The text demon-
strates a high level of fluency, with minimal
errors or disruptions.

Excellent Fluency: The text demonstrates ex-
ceptional fluency, with virtually no errors or
disruptions.

Coverage

1.

The generated text does not mention any key
elements of the table.

The generated text provides limited informa-
tion about some of the key elements of the
table.

. The generated text provides moderately com-

prehensive description of the table.

The generated text provides a comprehensive
description of the table.

The generated text offers an exceptional and
comprehensive description of the table.

Relevance

1.

The generated text does not mention any rel-
evant information about the table, and/or the
information provided is entirely fabricated or
false.

2. The generated text includes some relevant in-

3.

formation about the table, but the description
is limited, and/or contains factual inaccura-
cies.

The generated text provides a moderately rel-
evant description of the table, and/or contain
minor errors.

4. The generated text offers a highly relevant de-

scription of the table, and/or contains mostly
accurate and reliable information that can be
reasonably verified.

5. The generated text provides an exceptionally

relevant and authentic description of the table.

Overall Quality

1.
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The generated text is of poor quality overall
with numerous issues.

. The generated text is below average in qual-

ity, with several issues affecting its overall
effectiveness.

. The generated text is average in quality, with

some strengths but also some weaknesses.

. The generated text is above average in quality,

with clear strengths and good overall effec-
tiveness.

. The generated text is of excellent quality over-

all, with outstanding strengths and high effec-
tiveness.



