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Abstract

Thanks to the strong reasoning capabilities of
Large Language Models (LLMs), recent ap-
proaches to knowledge-based visual question
answering (KVQA) utilize LLMs with a global
caption of an input image to answer a ques-
tion. However, these approaches may miss
key visual information that is not captured by
the caption. Moreover, they cannot fully uti-
lize the visual information required to answer
the question. To address these issues, we in-
troduce a new framework called Multi-Modal
Knowledge-Aware Reasoner (MM-Reasoner)
for KVQA. MM-Reasoner first utilizes a set of
vision APIs, such as dense captioners, object
detectors, and OCR, to extract detailed infor-
mation from the image in textual format. Then,
it prompts an LLM to extract query-specific
knowledge from the extracted textual informa-
tion to provide a rich representation that con-
tains external knowledge, commonsense, ex-
plicit supporting facts, and rationales required
for reasoning. Finally, the knowledge, query,
and visual input are used to fine-tune a Vision-
Language Model (VLM). At test time, MM-
Reasoner uses the potential answers predicted
by the VLM to iteratively update and optimize
the prompt, refining its answer. Empirical stud-
ies show that MM-Reasoner achieves state-of-
the-art performance on several KVQA datasets.

1 Introduction

The knowledge-based visual question answering
(KVQA) task (Marino et al., 2019) requires not
only visual information from the image, such as
object attributes and visual relationship informa-
tion, but also external knowledge, commonsense,
rationales, and supporting facts for reasoning and
predicting the correct answer. Therefore, a typ-
ical KVQA model consists of a knowledge re-
trieval module and an answer module. The tradi-
tional knowledge retrieval module usually retrieves
knowledge from sources such as Wikipedia, knowl-
edge graphs, and web search (Wu et al., 2022).

Figure 1: Multi-Modal Knowledge-Aware Reasoner

More recently, Large Language Models (LLMs)
such as GPT-3 are used to produce related knowl-
edge (Lin et al., 2022; Hu et al., 2022b). The latter
approach is preferred since traditional knowledge
retrieval often introduces irrelevant information to
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the question (Yang et al., 2022a). After obtain-
ing the required knowledge, the answer module
takes the visual input or a global caption of the
image, query, and knowledge to predict an answer.
The answer module is either a transformer encoder-
decoder architecture with trainable parameters (Lin
et al., 2022) or more recently, a frozen LLM such
as GPT-3 (Yang et al., 2022a; Hu et al., 2022a).

However, there are several key challenges to the
above approaches. First, when using an LLM, the
input needs to be text, but the recent approach of
feeding the global caption of the input image into
LLMs (Hu et al., 2022a) may miss key visual infor-
mation. Second, the conceptual diversity of visual
questions often necessitates multimodal reasoning
with the integration of various external information
beyond the image itself. These diverse types of
knowledge include: commonsense, knowledge of
concepts represented visually, external Knowledge,
e.g., Marco van Basten is a former football
player born in the Netherlands., insights
about the world’s physics, e.g., Mountain areas
have a lower temperature than other areas,
etc. Third, recent approaches cannot fully utilize
visual information in their answer module since
they use an LLM to predict an answer. These ap-
proaches often struggle to answer visual questions
that require fine-grained visual information, e.g.,
spatial relationships and object attributes, or knowl-
edge of concepts represented visually, e.g., What
is the pattern of the table cloth called?

To answer a diverse set of questions, a KVQA
model requires (1) vision expertise, e.g., celebrity
recognition, optical character recognition (OCR),
and object detection (2) the reasoning capacity
and world knowledge of the recent LLMs, and (3)
the ability of Vision-Language Models (VLMs)
to generate rich joint representations of vision
and language. However, current knowledge-based
VQA models cannot provide all these capabili-
ties within a unified framework. To address these
challenges, we introduce a new framework, called
Multi-Modal Knowledge-Aware Reasoner (MM-
Reasoner), for knowledge-based VQA (Figure 1).
The MM-Reasoner first leverages a rich set of vi-
sion APIs/expertise such as dense captioner, object
detector, tag detector, OCR, people detector and
celebrity recognizer, to obtain a detailed textual rep-
resentation of the visual input required to produce
more accurate answers (Figure 2).

Then, the MM-Reasoner leverages an LLM to

Figure 2: OCR and celebrity recognizer are helpful for
answering questions. GT refers to the ground truth, and
MM-R− is a baseline model similar to MM-Reasoner,
but it uses a global caption instead of vision APIs.

extract query-specific knowledge from the textual
representations in a self-supervised way via prompt
designing, which requires only a few in-context ex-
amples. The LLM can provide a rich representation
that contains external knowledge, commonsense,
explicit supporting facts, and rationales required
for reasoning. Finally, the extracted knowledge,
the question, and the regional visual information
of the input image are used to fine-tune a VLM.
The VLM can fully utilize fine-grained visual in-
formation such as object regions, visual relation-
ships/attributes, and visual spatial information sup-
plementary to the textual representation to answer
the question (see Figure 3). At test time, MM-
Reasoner uses candidate answers predicted by the
VLM to iteratively update and optimize the prompt
to refine its final answer. This allows our frame-
work to effectively exchange knowledge and visual
information between the LLM and the VLM.
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Figure 3: MM-Reasoner can effectively utilize visual
features to find the correct answer by leveraging a VLM
as its answer module. GT is ground truth and LLM+

is a baseline model that prompts GPT-4 with textual
descriptions obtained from vision APIs and the question
to generate an answer. LLM+ fails since the textual de-
scriptions from APIs do not provide useful information.

MM-Reasoner is an integrative and compos-
able framework that works with a variety of ex-
isting LLMs and VLMs. Since these LLMs and
VLMs have already been trained on large-scale
datasets, the fine-tuning cost of MM-Reasoner is
much lower than that of existing models. We
have conducted extensive empirical studies on
MM-Reasoner using several datasets. The results
show MM-Reasoner achieves state-of-the-art ac-
curacy on the KVQA task, achieving 60.8% ac-
curacy on the OK-VQA dataset, 60.2% on the A-
OKVQA dataset, and 40.0% in the few-shot set-
ting on the OK-VQA dataset. The project page
is available at https://github.com/microsoft/
i-Code/tree/main/mm-reasoner. In summary,
the key contributions of this paper are as follows:

(1) We introduce a new framework for KVQA
that offers vision APIs, the reasoning power of
LLMs, and the rich joint representation of VLMs,
all in a unified and composable framework.

(2) A key novelty of MM-Reasoner is that it
effectively utilizes visual features in generating
knowledge and predicting the final answer by lever-
aging a VLM and exchanging visual information
and knowledge between the VLM and the LLM.

(3) The MM-Reasoner achieves state-of-the-art
performance on several knowledge-based VQA
benchmarks.

2 Related Work

Our work is related to several recent studies in the
area of multi-modal learning and LLMs.

Knowledge-Based VQA. In REVIVE (Lin et al.,
2022), the authors proposed to first employ an ob-
ject detector to locate the objects, and then use the
cropped bounding-box proposals to retrieve various
types of external knowledge. Finally, they merged
this knowledge with the regional visual features
into a transformer to predict an answer. In Hu et al.
(2022a), the authors introduced a captioning model
called PromptCap, which is designed to generate
question-aware captions using a GPT-3 prompt and
question-answer pairs from existing VQA datasets.
However, to generate the training examples, the
PromptCap still relies on global captions of the
image. Additionally, the visual features are not
effectively utilized in the final answering model,
as the answer module is a frozen LLM. In con-
trast, our prompt design enables our framework to
extract query-specific knowledge from the visual
input, avoiding the extraction of unrelated infor-
mation. Additionally, MM-Reasoner harnesses the
capabilities of VLMs such as Flamingo (Alayrac
et al., 2022) and i-Code (Yang et al., 2022b) to
incorporate visual features in the answer module.

In Hu et al. (2022b), the authors proposed an
end-to-end model, called Retrieval-Augmented Vi-
sual Language Model (REVEAL), that learns to
encode multimodal world knowledge into a mem-
ory and utilize it for addressing visual questions
that demand extensive knowledge. REVEAL is
composed of four modules: the memory, the en-
coder, the retriever, and the generator. The memory
encodes different types of multimodal knowledge
via a shared encoder. The retriever finds the most
relevant information, and the generator uses that
information with the input question to predict the
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final answer. The model is pre-trained on a large
amount of data and then fine-tuned for specific
tasks. However, REVEAL does not leverage the
reasoning capabilities of recent LLMs.

Multimodal Composable Frameworks. Re-
cently, the composition of large pre-trained models
has been extensively studied. The prevalent ap-
proach for composing these models is through joint
fine-tuning on new tasks. Yang et al. (2022b) intro-
duced i-Code, a self-supervised pretraining frame-
work that allows users to merge vision, speech, and
language modalities into comprehensive and ver-
satile vector representations. In the i-Code frame-
work, data from each modality is initially fed into
pretrained single-modality encoders. The outputs
from these encoders are subsequently combined
using a multimodal fusion network that employs
attention mechanisms and other novel architectural
designs to efficiently integrate information across
modalities. The i-Code is pretrained end-to-end us-
ing objectives such as masked modality unit mod-
eling and cross-modality contrastive learning.

Wang et al. (2021) introduced a VLM frame-
work, called SimVLM that is trained end-to-end
using a single language modeling objective, simpli-
fying the training process with large-scale weak su-
pervision. Alayrac et al. (2022) proposed Flamingo,
a set of VLMs capable of connecting pre-trained
vision-only and language-only models, processing
sequences of interleaved visual and textual data,
and accepting images or videos as inputs. How-
ever, these methods can be computationally de-
manding. In contrast, models can be composed
through a shared modality such as language. Zeng
et al. (2022) proposed Socratic Models, a modular
framework that allows multiple pre-trained models
to exchange information, acquire new multimodal
capabilities without fine-tuning.

LLMs with Plugins and Tools. Our frame-
work is related to the use of tools and plugins for
LLMs. In Toolformer (Schick et al., 2023), the au-
thors demonstrated that language models can self-
learn the utilization of external tools through sim-
ple APIs, such as calculators, search engines, and
translators. Toolformer is designed to determine
the appropriate APIs to invoke and the specific ar-
guments to provide via a few in-context examples.
In MM-REACT (Yang et al., 2023a), the authors in-
tegrated specialized vision APIs with ChatGPT to
solve various visual understanding tasks. Through
several demonstration examples, they showed that

MM-REACT can effectively solve the given rea-
soning tasks, especially when tailored to the vision
APIs. For instance, by employing an OCR API,
it can gather information from multiple receipts
and calculate the total cost. However, since MM-
REACT relies solely on a textual representation of
the input image and uses a frozen LLM to generate
an answer, it often struggles to answer questions
that require fine-grained visual information.

3 Multi-Modal Knowledge-Aware
Reasoner

In this section, we present the Multi-Modal
Knowledge-Aware Reasoner framework. As Fig-
ure 1 shows, MM-Reasoner is composed of three
components: a set of vision APIs, an LLM, and a
VLM. It is worth mentioning that MM-Reasoner
is an integrative, modular, and composable frame-
work that works with a variety of existing vision
APIs, LLMs and VLMs. These components work
together to extract intrinsic information from the
image and query, extrinsic information from exter-
nal knowledge, and conduct visual-textual reason-
ing to produce the answer. In the following, we
explain these components in more details.

3.1 Vision APIs

The goal of vision APIs is to extract detailed visual
information from the image in textual format, to
be later used in LLM prompts. In our experiments,
MM-Reasoner adopts Azure Cognitive Services for
Vision (ACS Vision)1. The ACS Vision is a unified
service that offers innovative computer vision capa-
bilities. Our framework utilizes the following APIs
from the Image Analysis SDK:

• Dense captions - Generates region-grounded
captions for all important objects detected in
an image.

• Tags - Extracts common tags from an image
based on thousands of recognizable objects,
living beings, scenery, and actions.

• Objects - Object detection is similar to tag-
ging, but the API returns the bounding box
coordinates for each tag applied.

• OCR - Extracts printed and handwritten text
from an image.

1https://azure.microsoft.com/en-us/products/
cognitive-services/vision-services
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• People - Extracts bounding box coordinates
of each detected person in an image.

• Celebrity Recognizer - Detects and identifies
known celebrities in an image.

We aggregate the results from the Vision APIs to
summarize the image with a set of captions, a set of
objects/persons present in the image, a set of tags
associated with the image, a set of texts written in
the image, and the location of the detected people.

3.2 Large Language Model

Given the vision API outputs, we design a vision-
informed language prompt to elicit rationales from
LLM helpful to answer the question. The prompt
is composed of instructions, a few in-context ex-
ample instances, and the current input instance.
Each instance includes an example question and
the outputs of the vision APIs for the correspond-
ing example image. Figure 4 shows a prompt that
we use for the OK-VQA dataset. More specifically,
given a question and visual input pair denoted by
(V,Q), the input to the LLM is a prompt denoted
by P obtained as follows:

P = concat
(
I; (Xic;Yic)

k
1;X

)
(1)

where, I denotes the instructions, (Xic;Yic)
k
1 are

a list of k in-context input-output pairs, and

X = concat
(
APIs(V);Q

)
(2)

is obtained by appending the question Q to the
outputs of the vision APIs for visual input V. In-
serting k in-context input-output pairs before the
X substantially improves the performance. With
the prompt, the LLM utilize its strong reasoning ca-
pacity to respond with rationales. These rationales
can be commonsense knowledge, external informa-
tion, basic factual knowledge, supporting facts, or
any information from the image that is required or
helpful to answer the question.

3.3 Vision Language Model

Next, we feed the rationales, the image, and the
question into the VLM. The VLM is fine-tuned on
the training data to adapt to the rich input format.
In this way, both the original visual information
and external knowledge are leveraged to produce
the answer. The framework supports both open-
vocabulary and closed-vocabulary VLMs. The
VLM’s output is a list of potential answers with

their confidence scores. For a closed-vocabulary
VLM, this can be obtained by choosing a small
subset of answers with the highest logits. For an
open-vocabulary VLM, this list can be obtained
using a beam search decoder or by fine-tuning mul-
tiple instances of the VLM and utilizing a greedy
search decoder for each instance of the VLM. We
use the latter method in our experiments. More
specifically, we prompt the LLM m times to get m
possibly different sets of rationales and fine-tune
m different instances of the VLM.

3.4 Further Improvements

Iterative Reasoning. At test time, we first use the
above process to obtain a set of answers along with
their confidence scores. The confidence score for
each answer is acquired using the probability distri-
bution over the predicted answers by the instances
of the VLM. Instead of directly returning the an-
swer with the highest confidence score as the final
answer, we discovered that performance can be sig-
nificantly improved by updating the prompt with
the first pass prediction and repeating this process.

Specifically, we initially add answers with their
confidence scores to the prompt and feed the up-
dated prompt into the LLM. Then, we obtain a new
set of rationales. These are often more informa-
tive than the previous rationales since the updated
prompt provides VLM’s answer suggestions. Next,
we feed the new rationales into the instances of the
VLM to acquire an updated set of potential answers.
After repeating this process for a few iterations, we
use the answer with the highest score as the fi-
nal answer. We use two reasoning iterations after
obtaining the initial answer. In our experiments,
applying more iterations did not help to improve
the performance. During the iterative reasoning,
the instances of the VLM are kept frozen.

k-NN-Based In-context Examples. We apply
a dynamic set of in-context examples during test
time. First, we use a fine-tuned VLM to extract an
embedding for each image and question pair in the
dataset, utilizing the average encoder embedding.
Then, for each test example, we select k training
examples that are closest to the test example based
on the Euclidean distance between the example
embeddings. These training examples are, in turn,
used as in-context examples for this test example.
The intuition is to use better in-context demonstra-
tions by retrieving examples that are semantically
similar to the test input (Liu et al., 2021).

6575



Figure 4: The prompt used in MM-Reasoner for OK-VQA dataset. The black text provides instructions, while the
blue and red texts demonstrate in-context examples and the current training example, respectively. At test time,
we provide the potential answers predicted by the VML in addition to the image descriptions and question. The
potential answers predicted by the LLM are not fed into the VLM. They only used for evaluating a baseline.
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4 Experiments

This section covers the explanation of datasets and
baseline models, followed by a discussion of exper-
imental results and implementation details.

4.1 Datasets

We evaluate MM-Reasoner’s performance on the
following datasets: OK-VQA (Marino et al., 2019),
A-OKVQA (Schwenk et al., 2022), FVQA (Wang
et al., 2017), and KVQA (Shah et al., 2019). OK-
VQA is a dataset for visual question answering
that needs external knowledge to answer questions.
OK-VQA includes 9,009 training questions and
5,046 test questions. A-OKVQA dataset is the aug-
mented successor of OK-VQA. A-OKVQA ques-
tions are challenging, encompass a wide range
of concepts, and unlike other knowledge-based
visual question answering datasets, they cannot
be addressed by merely consulting a knowledge
base. The A-OKVQA offers rationales for answers
in the training set. The rationales provide facts
and snippets of reasoning required to answer the
question. The train/validation/test split of the A-
OKVQA dataset includes 17,056/1,145/6,702 ques-
tions. There is no overlap between question-image
pairs in A-OKVQA and OK-VQA.

FVQA is a VQA dataset that mostly contains
questions requiring external knowledge to answer,
and provides supporting fact triplets alongside the
image-question-answer triplets. Following (Wang
et al., 2017), we used 1,090 test images, amount-
ing to 2,899 questions. The KVQA (Shah et al.,
2019) dataset contains 183,007 pairs of questions
and answers, which involve 18,880 named entities
and 24,602 images. The questions in this dataset
require complex reasoning over large knowledge
graphs, involving multiple entities, relations, and
hops to arrive at an answer. KVQA is currently one
of the largest datasets available for studying VQA
over knowledge graphs. KVQA has 5 different
train/validation/test splits. We use the last one.

4.2 Baselines

We compared our framework with several models
that have recently been developed, including the
state-of-the-art models PromptCap, Flamingo, and
REVIVE. For further comparison, we also include
two models that were proposed more recently in
Arxiv preprints during the preparation of this work:
Prophet and REVEAL. Additionally, to verify the
significance of each component in our framework,

we performed an ablation study by implementing
five baseline models: LLM+, VLM+, MM-R−,
MM-R◦, and MM-R (see Table 1).

In LLM+, the VLM component is removed.
Hence, LLM+ does not use the image directly to
generate an answer. This baseline is designed to
study the significance of the VLM module in our
framework. A prompt is constructed using the vi-
sion APIs and the given question. Each in-context
example is modified so that GPT-4 provides a sin-
gle answer to the given question in addition to the
rationales. For each example in the test set, the
prompt is fed into the GPT-4. Then, the predicted
answer is mapped to one of the words in the test
set vocabulary based on the cosine similarity be-
tween the embedding of the predicted answer and
the embedding of each word in the vocabulary. We
use this method because the LLM’s answers often
differ from the ground truth, even when an answer
is semantically correct. We use GloVe (Pennington
et al., 2014) to obtain the embedding for the pre-
dicted answer and each word in the vocabulary. No
fine-tuning is applied to LLM+.

Baseline APIs LLM VLM IT-R Acc

LLM+ √ √ × × 38.8
VLM+ √ × √ × 53.8
MM-R− × √ √ × 57.1
MM-R◦ √ √ √ × 58.5
MM-R

√ √ √ √
59.2

Table 1: Ablation study on OK-VQA dataset. IT-R
denotes iterative reasoning.

In VLM+, the LLM module is removed. The
input to the i-Code v2 is the output of the vision
APIs, the image, and the given question. VLM+

does not exploit the reasoning capabilities of the
LLM module, and its external knowledge is limited
to the VLM pre-trained knowledge only. VLM+

is fine-tuned with the ground truth answers. MM-
R is a single MM-Reasoner framework without
leveraging ensemble learning. MM-R◦ is similar to
the MM-R, except that at test time, the output of the
VLM is used as the final answer. That is, the VLM
does not update the initial prompt. This baseline is
designed to study the significance of the iterative
reasoning in our framework. Finally, the MM-R−

is similar to MM-R◦, except that we only use a
global image caption and the question to construct
the prompt. This baseline is designed to study the
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Figure 5: VQA examples on OK-VQA test set. GT
refers to ground truth. For LLM+ and MM-R−, see 4.2.

significance of vision APIs in our framework.

4.3 Results and Discussion

Our results on OK-VQA and A-OKVQA datasets
are shown in Table 2 and Table 3, respectively.
MM-Reasoner outperforms all baseline models,
including the state-of-the-art models PromptCap,
Flamingo, and REVIVE on both datasets. More-
over, in the few-shot setting, MM-Reasoner signifi-
cantly surpasses the state-of-the-art Flamingo-9B
by a considerable difference of 4.3 points (Table 4).
This demonstrates that MM-Reasoner can integrate
the strengths of both LLMs and VLMs to answer
complex visual questions. Figure 5 shows two VQA
examples. MM-Reasoner can find the answer to
the first challenging question using OCR API. In
the second example, LLM+, which leverages GPT-
4 and vision APIs, cannot find the answer since

the question requires fine-grained visual informa-
tion not described by the APIs. However, MM-
Reasoner can find the answer by leveraging the
power of its VLM. Figure 6 shows our framework
can refine its answer via the iterative reasoning.

The results of our ablation study are summarized
in Table 1. LLM+ performs poorly because the tex-
tual representation of the image alone does not
provide sufficient fine-grained visual information
for reasoning. MM-R− outperforms both LLM+

and VLM+, as it can leverage the power of both
LLMs and VLMs. Additionally, MM-R◦ outper-
forms MM-R−, demonstrating that vision APIs
can help improve performance. Lastly, MM-R
surpasses MM-R◦, indicating that iterative reason-
ing can contribute to enhanced performance. We
present our findings on the FVQA dataset in Ta-
ble 5. Notably, FVQA (Wang et al., 2017) utilized
the ground truth supporting fact triplets included in
the dataset. In contrast, MM-Reasoner surpasses
this baseline without relying on these triplets. Fur-
thermore, our framework outperforms the Mem-
Net implementation by Shah et al. (2019), which
achieved a 59.2 accuracy on the KVQA test set,
by +2.2 points, resulting in a 61.4 accuracy. It is
important to note that MemNet uses ground truth
entity names to recognize celebrities in KVQA,
whereas we employ an API for this task.

Model Acc

PICa (Yang et al., 2022a) 48.0
KAT (Ensemble) (Gui et al., 2021) 54.4
Unified-io (2.8B) (Lu et al., 2022) 54.0
REVIVE (Lin et al., 2022) 56.6
Flamingo (80B) (Alayrac et al., 2022) 57.8
REVIVE (Ensemble) (Lin et al., 2022) 58.0
REVEAL-Large (Hu et al., 2022b) 58.0
REVEAL (Hu et al., 2022b) 59.1
PromptCap (Hu et al., 2022a) 60.4
MM-Reasoner 59.2
MM-Reasoner (Ensemble) 60.8

Table 2: Performance on OK-VQA test set.

4.4 Implementation Details

GPT-4-32k and Vicuna-13B (Chiang et al., 2023)
from FastChat2 are used as the LLM in our frame-
work. GPT-4-32k extends the context-length to
32,000 tokens compared to GPT-4. The maximum

2https://github.com/lm-sys/FastChat
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Model Acc

ClipCap (Schwenk et al., 2022) 25.9
ViLBERT (Schwenk et al., 2022) 25.9
LXMERT (Schwenk et al., 2022) 25.9
KRISP (Schwenk et al., 2022) 27.1
GPV-2 (Schwenk et al., 2022) 40.7
Unified-IO (Lu et al., 2022) 45.2
REVEAL (Hu et al., 2022b) 52.2
Prophet (Shao et al., 2023) 55.7
PromptCap (Hu et al., 2022a) 59.6
MM-Reasoner (Ensemble) 60.2

Table 3: Performance on A-OKVQA test set.

token context-length for Vicuna-13B is 2,048, but
it is much faster than GPT-4. We use GPT-4-32k
for experiments on OK-VQA, A-OKVQA, and
FVQA, while Vicuna-13B is used for experiments
on the KVQA dataset since it is significantly larger
than other knowledge-based VQA datasets. The
LLM module remains frozen in all of our experi-
ments. The temperature and top_p are both set
to 0.98. Additionally, frequency_penalty and
presence_penalty are both set to 0. The number
of in-context examples, k, is set to 20 for GPT4-
32k and 2 for Vicuna. We utilize APIs from the
Image Analysis SDK version v4.0, except for the
celebrity recognizer. The celebrity recognizer API
is used for the KVQA dataset only.

We use i-Code v2 (Yang et al., 2023b)3 pre-
finetuned on the VQA v2.0 dataset (Goyal et al.,
2017) and Flamingo-9B (Alayrac et al., 2022) from
OpenFlamingo (Awadalla et al., 2023) 4 as the
VLM in our framework. We utilize Flamingo-9B
only for few-shot experiments, while i-Code v2
is used in all other experiments. The i-Code v2
is fine-tuned during training, while Flamingo-9B
remains frozen. The i-Code v2 prompt is “Answer
the following question based on the given image:
<Question> Hint: <Rationales>”. Note that we
use an open-vocabulary VLM. All fine-tuning jobs
are conducted on two RTX A6000 GPUs in less
than a few hours. The learning rate, batch size, and
number of epochs are set to 2.0× 10−6, 4, and 8,
respectively. The number of VLM instances, m,
is set to 4. For ensemble learning, we fine-tune
32 instances of the entire framework with different

3https://github.com/microsoft/i-Code
4https://github.com/mlfoundations/open_

flamingo

initialization and select the final answer based on
majority voting. For Flamingo-9B, 8 shots is used
and cross attention is applied after every 4 layers.

Figure 6: MM-Reasoner can refine its answer via it-
erative reasoning. In the second iteration, the VLM
answers are added to the prompt and fed into the LLM
to generate updated rationales for the VLM.

Method Acc

Flamingo-9B (Alayrac et al., 2022) 35.7
MM-R◦ 40.0

Table 4: Few-shot performance on OK-VQA.

Method Acc

Human 77.99
FVQA (Wang et al., 2017) 56.91
ZS-VQA (Chen et al., 2021) 58.27
FVQA (Ensemble) (Wang et al., 2017) 58.76
MM-Reasoner (Ensemble) 61.1

Table 5: Performance on FVQA dataset.

5 Conclusion

MM-Reasoner is a new, unified framework for
KVQA that combines vision APIs, the capabilities
of LLMs, and VLMs. Experiments showed MM-
Reasoner is an effective framework for KVQA.
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Limitations

Although the MM-Reasoner framework demon-
strates strong performance in knowledge-based vi-
sual question answering tasks, it has some limita-
tions worth mentioning:

Frozen LLM: The LLM used in MM-Reasoner
remain frozen throughout the experiments, mean-
ing it is not fine-tuned during training. This might
limit the LLM’s potential to adapt to the specific
downstream tasks or evolving datasets.

Leveraging Language APIs and Tools: The
MM-Reasoner framework can be extended to in-
corporate language APIs and tools, such as search,
translator, and calendar, to answer questions that
require up-to-date information or time-related con-
text. By integrating these APIs and tools, the frame-
work can access the latest information and adapt
its reasoning process accordingly. For example,
consider the following QA scenarios that require
the latest information:

Question: Who won the most recent edition
of the tournament in the image? A search
API can be useful here to retrieve the latest winner
of the tournament, as this information might not be
present in the LLM’s pre-existing knowledge.

Question: When is the next public holiday
represented in the image? A calendar API
can provide the necessary information about up-
coming public holidays, allowing the framework to
generate an accurate answer based on the current
date and the holiday calendar of the given coun-
try. By integrating such language APIs and tools,
MM-Reasoner can enhance its ability to handle a
broader range of questions that require up-to-date
information or specific time-related context, result-
ing in improved performance in knowledge-based
visual question answering task.
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