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Abstract

Mathematical understanding and reasoning are
crucial tasks for assessing the capabilities of
artificial intelligence (AI). However, existing
benchmarks either require just a few steps of
reasoning, or only contain a small amount of
data in one specific topic, making it hard to
analyse AI’s behaviour with reference to differ-
ent problems within a specific topic in detail.
In this work, we propose CONIC10K, a chal-
lenging math problem dataset on conic sections
in Chinese senior high school education. Our
dataset contains various problems with differ-
ent reasoning depths, while only the knowl-
edge from conic sections is required. Since
the dataset only involves a narrow range of
knowledge, it is easy to separately analyse the
knowledge a model possesses and the reasoning
ability it has. For each problem, we provide a
high-quality formal representation, the reason-
ing steps, and the final solution. Experiments
show that existing large language models, in-
cluding GPT-4, exhibit weak performance on
complex reasoning. We hope that our findings
could inspire more advanced techniques for
precise natural language understanding and rea-
soning. Our dataset and codes are available at
https://github.com/whyNLP/Conic10K.

1 Introduction

Mathematical understanding and reasoning abil-
ity is an important component of human intelli-
gence. Such an ability is the foundation of data
analysis, financial applications and scientific re-
search. Though there have been lots of studies
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(Lample and Charton, 2020; Wei et al., 2022b),
mathematical reasoning are far from being solved
by existing methods (Lu et al., 2022), even with
symbolic reasoners (Hopkins et al., 2019) and large
language models (LLMs) (Lightman et al., 2023).
To evaluate and analyse the mathematical ability,
various datasets and benchmarks have been pro-
posed in recent years (Zhao et al., 2020; Hendrycks
et al., 2021; Mishra et al., 2022b,a). However, these
datasets or benchmarks often suffer from the fol-
lowing problems: (1) The problems can be solved
with only a few reasoning steps, so language mod-
els may rely on shallow heuristics to achieve high
performance (Patel et al., 2021); (2) The dataset
covers a wide range of topics and hence there is
only a small amount of data for each topic, which
makes it hard to distinguish whether the model fails
because of a lack of background information, or
due to weak reasoning ability.

To address the above issues, we propose
CONIC10K, an open-ended math problem dataset
on conic sections in Chinese senior high school
education. This dataset contains 10,861 carefully
annotated problems, each one has a formal repre-
sentation, the corresponding text spans, the answer,
and natural language rationales. Figure 1 shows an
example problem in our dataset. To evaluate the
mathematical understanding and reasoning ability,
we perform two different tasks on existing LLMs:
semantic parsing and mathematical question an-
swering (mathQA). Semantic parsing assesses a
language model’s ability to understand mathemat-
ics. The model is required to translate the math
problem in natural language into its formal mean-
ing representations. MathQA jointly evaluates the
language model’s ability of mathematical under-
standing and reasoning. The model needs to gen-
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erate the answers to questions. Since the topic of
CONIC10K is restricted to conic sections, the
knowledge required to solve different problems is
the same, while the only difference is the difficulty
in reasoning. Therefore, if the model is able to
solve simple problems but not hard ones, we are
assured that the failure lies in the lack of ability in
mathematical reasoning.

Our experiments show that current models ob-
tain good performance in semantic parsing. How-
ever, in mathQA, these models are far from be-
ing satisfactory. When performing zero-shot chain
of thought (CoT) (Wei et al., 2022b) prompting,
the best model GPT-4 (OpenAI, 2023) can only
achieve 15.5% accuracy using human evaluation.
When finetuning is further applied, the best model
ChatGLM-6b (Du et al., 2022) still obtains a poor
accuracy of 22.5% under human evaluation. When
we translate the problems into English and apply
zero-shot CoT to reason in English, the accuracy of
GPT-4 is 26.0%, which is still far below the perfor-
mance of human experts at 57.5% with a 3-minute
time limit for each problem. This shows that the
poor performance is not due to the language being
used but to a deficiency in reasoning ability. There-
fore, we believe the mathematical reasoning ability
of language models is still limited despite their
huge success in natural language understanding.

We conclude our contributions as follows: 1) We
propose CONIC10K, a challenging math problem
dataset on conic sections in Chinese senior high
school education, with high-quality annotations of
formal representations; 2) We perform experiments
to inspect the mathematical understanding and rea-
soning ability of LLMs separately; 3) We give de-
tailed analysis on the model behaviour and conduct
comprehensive case studies. We hope that our work
could help the community to better analyse LLMs
in mathematical understanding and reasoning and
inspire more advanced techniques to enhance the
mathematical reasoning ability of LLMs.

2 Related Work

There has been a wide range of datasets on math
problems in the literature. MATHQA (Amini
et al., 2019) and GSM8K (Cobbe et al., 2021)
are math word problem datasets. They focus on
open-domain understanding, where the objective
is to extract a single equation based on the in-
formation about quantities in the problem, rather
than mathematical reasoning. Similarly, Math23K

(Wang et al., 2017) and Ape210K (Zhao et al.,
2020) are popular datasets about Chinese math
word problems with open-domain scenarios and
simple reasoning steps. Geometry3K (Lu et al.,
2021) is a geometry problem-solving dataset that
provides formal representations, but the dataset size
is small and the problems do not require complex
reasoning. AQuA (Ling et al., 2017), NumGLUE
(Mishra et al., 2022b) and Lila (Mishra et al.,
2022a) are large-scale datasets of various math
problems. They have been used as benchmarks in
solving math word problems and mathematical rea-
soning tasks, but we find that these datasets require
only a few reasoning steps. MATH (Hendrycks
et al., 2021) is the one with the longest reason-
ing steps among these datasets. It has been used
as a standard benchmark in recent work of LLMs
(Lewkowycz et al., 2022; Lightman et al., 2023).
However, while it covers a wide range of prob-
lems, it contains limited data in each specific topic,
making it hard to analyse the model behavior in
detail with reference to one topic. It also does not
provide any formal representations. Our proposed
CONIC10K contains problems of long reasoning
steps using closed-domain knowledge and has high-
quality annotations with formal representations. A
detailed comparison between the aforementioned
datasets and CONIC10K is shown in Table 1.

3 Dataset

3.1 Formal Representation

We design a formal representation that avoids am-
biguity and is close to natural language. Specifi-
cally, our representation is built upon Assertional
Logic (Zhou, 2017). Assertional Logic (AL) is a
powerful knowledge representation that is more ex-
pressive than first-order logic while easier to read
and write for humans. In this work, we use a vari-
ant of AL with three components: declarations,
facts and queries. Declarations define individu-
als with their types (e.g. G:Ellipse). Facts are
assertions that describe the conditions in the prob-
lem (e.g. Focus(G)={F1, F2}). Queries are the
terms that represent the goal of the problem (e.g.
Range(Eccentricity(G))). See more details in
Appendix A.

3.2 Dataset Format

An example is presented in Figure 1. For each
question, we give 1) the question text in natural
language with math formulas in LATEX, 2) the ra-
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Span:

点𝑃(𝑥, 𝑦)

点𝑃(𝑥, 𝑦)是椭圆⋯上的任意一点

𝑃(𝑥, 𝑦)

𝑃(𝑥, 𝑦)

椭圆
𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 (𝑎 > 𝑏 > 0)

椭圆
𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 (𝑎 > 𝑏 > 0)

𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 𝑎 > 𝑏 > 0

𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 𝑎 > 𝑏 > 0

𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 𝑎 > 𝑏 > 0

𝐹1,𝐹2

𝐹1,𝐹2是椭圆两个焦点

∠𝐹1𝑃𝐹2 ≤ 90∘

该椭圆的离心率的取值范围是?

Formal Representation:

P: Point

PointOnCurve(P, G)=True

Coordinate(P)=(x1, y1)

x1,y1: Number

G: Ellipse

Expression(G)=(y^2/b^2+x^2/a^2=1)

a, b: Number

a > b

b > 0

F1, F2: Point

Focus(G)={F1, F2}

AngleOf(F1,P,F2)<=Unit(90,degree)

Range(Eccentricity(G))=?

Question:

点𝑃(𝑥, 𝑦)是椭圆
𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 (𝑎 > 𝑏 > 0)上的任意一点，𝐹1,𝐹2是椭圆的两

个焦点，且∠𝐹1𝑃𝐹2 ≤ 90∘ ，则该椭圆的离心率的取值范围是?

(Let 𝑃(𝑥, 𝑦) be an arbitrary point on the ellipse 
𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 (𝑎 > 𝑏 > 0). 𝐹1 and 𝐹2

are the two foci of the ellipse, and ∠𝐹1𝑃𝐹2 ≤ 90∘. What is the range of values for the 

eccentricity of the ellipse?)

Rationale:

由题意可知，当点𝑃位于 0, 𝑏 或 0,−𝑏 处时，∠𝐹1𝑃𝐹2 = 90∘最大，此时

cos∠𝐹1𝑃𝐹2 =
𝑎2+𝑎2−4𝑐2

2𝑎2
=

𝑎2−2𝑐2

𝑎2
≥ 0, 𝑎 ≥ 2𝑐。因为𝑒 = 𝑐/𝑎， 所以𝑒 ≤

2

2
。

因为𝑒是椭圆离心率，0 < 𝑒 < 1，所以0 < 𝑒 ≤
2

2
。

(When the point 𝑃 is located at 0, 𝑏 or 0,−𝑏 , the angle ∠𝐹1𝑃𝐹2 ≤ 90∘ is at its 

maximum. In this case, cos ∠𝐹1𝑃𝐹2 =
𝑎2+𝑎2−4𝑐2

2𝑎2
=

𝑎2−2𝑐2

𝑎2
≥ 0, 𝑎 ≥ 2𝑐. Since 𝑒 =

𝑐

𝑎
, 

we have 𝑒 ≤
2

2
. As 𝑒 represents the eccentricity of the ellipse, and it lies within the 

range 0 < 𝑒 < 1, we can conclude that 0 < 𝑒 ≤
2

2
.)

Answer:

(0,
2

2
]

Figure 1: Example problem from the CONIC10K dataset.

Dataset Size Language Formal Rep. Rationale Reasoning Steps

AQuA (Ling et al., 2017) 100,000 English % Natural Language 2.15
Math23K (Wang et al., 2017) 23,162 Chinese % Equation 1.59
MATHQA (Amini et al., 2019) 37,297 English % Program 2.99
Ape210K (Zhao et al., 2020) 210,488 Chinese % Equation 2.02
GSM8K (Cobbe et al., 2021) 8,792 English % Natural Language 2.25
Geometry3K (Lu et al., 2021) 3,002 English ! % 2.57
MATH (Hendrycks et al., 2021) 12,500 English % Natural Language 4.65
NumGLUE (Mishra et al., 2022b) 101,835 English % % 1.67
Lila (Mishra et al., 2022a) 134,000 English % Program 1.70

Conic10K (Ours) 10,861 Chinese ! Natural Language 4.23

Table 1: Comparison of our CONIC10K dataset with existing datasets. CONIC10K is the largest dataset that has
formal representation annotated. It is also the dataset that has the second longest average number of reasoning steps
in all languages and has the longest average number of reasoning steps in Chinese.

tionale in natural language, 3) the answer to the
question, 4) the formal representation and 5) the
text span corresponding to each sentence in the
formal representation.

3.3 Dataset Construction

3.3.1 Data Collection
To construct the dataset, we first collect approxi-
mately 20,000 open-ended problems about conic
sections from two websites that focus on Chinese
high school education in image format. Each prob-
lem image contains the problem text, rationale, and
answer. Then, we use mathpix1 to convert these
images into text. Since our dataset is focused on
conic sections, we filter out problems that involve
knowledge from other topics such as sequences and
solid geometry. After that, we remove duplicated

1https://mathpix.com/

problem using fuzzy matching. After the above pro-
cess is finished, the size of the dataset is reduced
from around 20,000 to approximately 14,000.

3.3.2 Annotation

To ensure the correctness of the data and avoid
ambiguities, we apply strict quality control during
the annotation process2. The complete process is
as follows:

Initiation We first build a small dataset with hun-
dreds of samples, write the annotation guidelines
and design a rule-based AI assistant for annotation.
The rule-based AI assistant is able to recognize
LATEX math expressions and complete simple for-
mal representations, which greatly accelerates the
annotation process and reduces annotation errors.

2See Appendix A.3 for more details.
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Figure 2: Distribution of reasoning steps in 50 sampled
problems from CONIC10K. All numbers are rounded
to their nearest integers.

Verification We select the annotators from a
group of candidates by their performance on the
small dataset. These annotators are provided with
annotation guidelines along with hundreds of sam-
ples. Annotators with the best performance will
take part in the rest of the annotation process.

Annotation We ask the annotators to further fil-
ter out problems about other topics, write the for-
mal representation, select the corresponding text
spans and fix the incorrectly recognized problem
texts and answers. Each problem is annotated by
two annotators, and then validated by another val-
idator with an automated tool for comparison. We
also randomly check 3% of the annotations. This
process takes 4 months in total.

Finalization After the annotation is finished,
we train a language model3 through 5-fold cross-
validation, manually check the inconsistency be-
tween model predictions and the annotated formal
representations, and fix the errors in annotations.
This helps us correct another 2% of the data. Then
we randomly split the dataset into train, validation,
and test sets with the ratio 7.5:1:2. The train set size
is 7,758, the validation set size is 1,035, and the
test set size is 2,068. We proceed to the evaluation
of LLMs with this split.

3.4 Dataset Statistics

Table 2 presents the basic statistics about
CONIC10K. The problems in our dataset tend to
be long and complex. Besides these metrics, we
also estimate the number of reasoning steps by the

3We finetune the OPUS-mt-zh-en (Tiedemann and Thot-
tingal, 2020). It is a machine translation model that translates
Chinese into English.

0

500

1000

1500

2000

2500

C
ou

nt

41
       TextSimple Num.Complex Num.  Equation  Coordinate  Interval & Set

Answer Categories

Figure 3: Distribution of the 7,758 training examples on
answer categories.

Num. problems 10,861
Num. operators 94
Num. concepts 20

Avg. LATEX expressions in a problem 5.76
Avg. tokens in a problem 83.43
Avg. sentences in a problem 3.41
Avg. sentences in formal rep. of a problem 10.55
Avg. operators in formal rep. of a problem 15.70
Avg. individuals in a formal rep. of a problem 4.51

Table 2: Statistics about CONIC10K. Problems are
tokenized using bert-base-chinese tokenizer4 in Avg.
tokens in a problem.

minimum number of rules required to get enough
information to obtain an answer. Since the pro-
cess of applying rules is subjective, we ask two
graduate students to individually annotate the rules
used to solve the problems. We uniformly sam-
pled 30 problems from each of the datasets listed
in Table 1 and ask the two students to annotate the
reasoning steps. Results show that CONIC10K is
the dataset with the second largest number of rea-
soning steps. The distribution of reasoning steps
in CONIC10K is depicted in Figure 2. We show
additional dataset statistics in Appendix B.

To facilitate model analysis, we divide the an-
swers into 6 categories as described in Table 3.
Figure 3 shows the distribution on these categories.

4 Experiments

This section describes our experiments to evalu-
ate the mathematical understanding and reasoning
abilities of various models.

4.1 Tasks
Based on data provided by CONIC10K, we intro-
duce two tasks: semantic parsing and mathQA.
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Category Examples Description

Simple Number 2,−1 Numerical values com-
posed of a single number

Complex Number 1/3,
√
5− 1 Numerical values com-

posed of multiple numbers
Equation x2 + y2/4 = 1 Equations

Coordinate (0, 1), (−
√
2, 0) Coordinates of points

Interval & Set [−1, 1], {0, 1} Intervals and sets
Text ‘ellipse’ Texts

Table 3: Answer categories with examples and descrip-
tion.

Semantic parsing requires a model to translate math
problems in natural language into formal repre-
sentations, while mathQA needs a model to give
correct solutions to math problems. The semantic
parsing task aims solely at assessing the model’s
ability to understand mathematics, and the mathQA
task jointly evaluates the model’s ability of mathe-
matical understanding and reasoning.

4.2 Models

We evaluated the performance of several popular
pretrained models on the above two tasks. The
models used for evaluation are as listed in Table 4.

4.3 Evaluation Details

Due to limited computation resources, we con-
ducted full finetuning on models with size of less
than 4B. For models around 7B, we performed pa-
rameter efficient finetuning using LoRA (Hu et al.,
2022) and 8-bit quantization (Dettmers et al., 2022).
We also apply zero-shot CoT inference without fine-
tuning for models with sizes between 7B and 13B.
The models evaluated in zero-shot CoT setting all
have undergone instruction tuning or RLHF in their
respective pretraining process. When finetuning,
we use instruction tuning (Wei et al., 2022a) to
train the models. The instructions are architecture-
specific and task-specific, as depicted in Table 5.

When finetuning language models, we use
the following hyperparameter settings. We use
AdamW as the optimizer. The learning rate is se-
lected from {8e−5, 2e−5}, with a linear learning
rate decay. For models using LoRA, we set tar-
get modules to q, k, v for Falcon-7b and to q, v
for other models. The LoRA rank is set to 16 for
models with size around 7B. To ensure a similar
number of trainable parameters, we set the LoRA
rank to 24 for Bloomz-3b and 32 for Bloomz-1b7.
We use greedy decoding in all generations.

In zero-shot CoT inference for mathQA, we use
the same prompt as GAOKAO-Benchmark (Zhang
et al., 2023) to instruct the models to give an an-
swer together with a rationale. In MathQA, we also
experiment with in-context learning (Min et al.,
2022), which adds in-context demonstrations of
the task in the prompt, and self-consistency (Wang
et al., 2023), which conducts majority voting on
the sampled results on GPT-3.5-turbo. In seman-
tic parsing, however, the formal representation is
unknown to the above models. Since it requires
more than 3,000 tokens to explain the syntax and
semantics of each component in the formal lan-
guage, which is out of the context length limit of
most models listed above, we do not evaluate the
performance of zero-shot CoT in semantic parsing.

In addition to the methods mentioned above, we
also evaluate the following two methods in mathQA
as a reference: (1) Guessing ‘2’: Predicting the
most frequent answer in the train set, which is ‘2’.
(2) Human Experts: We randomly select 20 prob-
lems from the test set and ask two graduate students
to answer. Each problem has a 3-minute time limit.
We report the average accuracy of these two stu-
dents.

4.4 Metrics
4.4.1 Semantic Parsing
For semantic parsing, we evaluate the model pre-
dictions by micro-F1, macro-F1 and accuracy. The
accuracy is the proportion of the problems that have
a one-to-one match between all sentences in the
prediction and the ground truth. Micro-F1 (mi-F1)
and macro-F1 (ma-F1) are defined as follows:

mi-F1 = 2 · pr

p+ r
, (1)

ma-F1 =

∑n
i=1 F1i
n

(2)

where n is the total number of problems, p =
# of all matched sentences
# of all predicted sentences is the overall precision, r =
# of all matched sentences

# of all gold sentences is the overall recall, F1i is the
F1 score of problem i.

To compute the metric, we need to find the num-
ber of matched sentences between the prediction
and ground truth. Since the formal representation
is insensitive to individual naming, we enumerate
all possible individual name mappings between pre-
diction and ground truth and select the mapping

5https://chat.openai.com/, we use GPT-3.5-turbo-0314
version.

6we use GPT-4-0314 version.
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Model Sizes Architecture Base Model Chinese-Oriented IT & RLHF

mT5 (Xue et al., 2021) 300M-13B Encoder-decoder - % %

mT0 (Muennighoff et al., 2022) 300M-13B Encoder-decoder mT5 % !

LLaMA (Touvron et al., 2023) 7B-65B Decoder-only - % %

Vicuna (Chiang et al., 2023) 7B, 13B Decoder-only LLaMA % !

Ziya (Yang et al., 2022) 13B Decoder-only LLaMA ! !

Bloom (Scao et al., 2022) 560M-176B Decoder-only - % %

Bloomz (Muennighoff et al., 2022) 560M-176B Decoder-only Bloom % !

ChatGLM (Du et al., 2022) 6B Prefix Decoder - ! !

Falcon (Penedo et al., 2023) 7B, 40B Decoder-only - % %

Falcon-inst (Penedo et al., 2023) 7B, 40B Decoder-only Falcon % !

GPT-3.5-turbo5 ? Decoder-only - % !

GPT-46 (OpenAI, 2023) ? Decoder-only - % !

Table 4: Models used in our experiments. Chinese oriented refers to whether methods, such as increasing the portion
of Chinese data and designing a tokenizer for Chinese, are used to improve performance in Chinese tasks. IT stands
for instruction tuning and RLHF stands for reinforcement learning with human feedback.

Architecture Task Instruction

Encoder-decoder SP Please translate the following
problem into expressions: “prob-
lem”

Encoder-decoder MQA Please give an answer to the fol-
lowing problem: “problem”

Decoder-only SP The translation into expressions
of “problem” is

Decoder-only MQA The answer to “problem” is

Table 5: Instructions used in finetuning. problem is
replaced by the problem text when training.

that achieves the maximum number of matched
sentences. We optimize the evaluation script by
only considering individuals with the same type so
that the evaluation time on the validation set and
test set is acceptable.

4.4.2 MathQA
In mathQA, since it is nontrivial to automatically
determine whether two answers are the same (e.g.,
1/
√
2 vs.

√
2/2, x − y = 0 vs. x = y, and

3x + 4y = 5 vs. 3
5x + 4

5y − 1 = 0), we rely on
human evaluation to determine the correctness of
model answers.

5 Results and Discussions

In this section, we introduce and explain the results
of the experiments. The main results of semantic
parsing and mathQA are shown in Table 6 and
Table 7 respectively.

5.1 Semantic Parsing

Language models show good ability of under-
standing on math problems after proper training.

Model Trainable mi-F1 ma-F1 Acc. # Syntax
Param. Err.

Finetuning PLM
mT5-base 580M 93.1 93.7 66.3 19
mT0-base 580M 95.8 96.2 77.2 10
mT5-large 1.2B 95.8 96.2 77.6 12
mT0-large 1.2B 96.7 96.9 80.7 6
mT5-xl 3.7B 96.9 97.2 82.6 9
mT0-xl 3.7B 97.4 97.5 84.6 8

Finetuning LLM using LoRA
Bloomz-1b7 7M 90.0 90.7 62.7 13
Bloomz-3b 7M 91.5 92.2 67.6 6
Bloomz-7b1 8M 94.3 94.7 71.3 4
Falcon-7b 12M 89.5 89.6 58.0 10
LLaMA-7b 8M 94.0 94.8 71.1 5
ChatGLM-6b 8M 95.1 95.8 74.7 7
Vicuna-7b 8M 96.2 96.6 76.9 3

Table 6: Results on semantic parsing in CONIC10K.
The fully finetuned mT0-xl achieve the highest accu-
racy, while the LoRA finetuned Vicuna-7b achieves the
lowest syntax error rate.

The best model mT5-xl can successfully translate
84.6% of the problems into formal representations.
For the problems it fails to accurately translate,
the predictions only differ from the ground truth
in minor details. The F1 score and accuracy from
Bloomz family and Falcon-7b are much lower than
other models. The performance of finetuned in-
struction tuned models is consistently better than
that of finetuned base models.

Models pretrained on code show strong ability
in learning syntax. Models except for the mT5
family have been pretrained on code. The syntax
error rates of these models are on average lower
than that of the mT5 family, even though their F1
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score and accuracy may be lower than the mT5
family. Since the formal representation resembles
programming languages in syntax, pretraining on
code may be able to help model to learn the syntax
of formal representations more easily.

Increasing model size effectively improves
model’s performance in semantic parsing.
From the results of the model families mT5, mT0
and Bloomz, we find that increasing the model size
from the smallest to largest in our experiment can
significantly improve the accuracy by at least 7.4%.

5.2 MathQA

Language models generally show poor perfor-
mance on mathQA in CONIC10K. Under the zero-
shot CoT setting, most models achieve an accuracy
close to 0. Even after finetuning, the accuracy of
the best model is still significantly lower than that
of human experts by 35.0%.

Simple problems under finetuning setting may
not be simple under zero-shot CoT setting.
Most models finetuned on CONIC10K have the
best performance in Simple Numbers among the
answer categories. However, when it comes to zero-
shot CoT setting, GPT-4 and GPT-3.5-turbo ob-
tain best accuracy in Coordinate. One possible rea-
son is that after sufficient training on CONIC10K,
the model can develop a shallow understanding of
the task (Patel et al., 2021), including the frequent
answers of a specific kind of questions. Since Sim-
ple Numbers are simpler in form and have fewer
potential answers compared to Coordinates, being
familiar with the answer distribution can effectively
increase the probability to hit the correct answer.
However, in zero-shot CoT setting, the model is un-
aware of these distributions, so it has no advantage
in difficult problems that have simple answers.

The accuracy is close to 0 in zero-shot CoT. Un-
der the zero-shot CoT setting, Bloomz-7b1 and
Falcon-7b-inst show extremely poor performances
with 0 accuracy in all problems. These models
tend to generate repetitive patterns, and in most
cases fail to give an answer. Other models ex-
cept for GPT-4 generate text that looks like a valid
rationale, but the majority of reasoning steps are
incorrect. They often produce hallucinations in
premises and rules, and derive wrong results. In
Table 9, even with in-context demonstrations or
majority voting, the performances are still low. We
showcase some failing cases in Table 10.

The scaling law is less clear compared to se-
mantic parsing. Though we observe that increas-
ing the model size continuously and effectively
improves model performance in semantic parsing,
such a phenomenon disappears in mathQA tasks.
In mT5 and mT0 series, large models do not nec-
essarily outperform small models. Similar observa-
tions have been made in MATH (Hendrycks et al.,
2021) where the authors find that accuracy on math
problems increases only modestly with model size.

Chinese-oriented language models have better
performance in mathQA in CONIC10K. In the
zero-shot CoT setting, the two Chinese-oriented
models, Ziya-13b and ChatGLM-6b, achieve
the best performance below GPT-3.5-turbo. In
the finetuning using LoRA setting, ChatGLM-6b
achieve an accuracy of 22.5% and outperform other
models by a large margin.

Translating problems into English does not
make the performance of GPT-4 on par with
human experts in mathQA. We translate the
problems into English and evaluate GPT-4 in zero-
shot CoT setting to determine whether the poor
performance is due to language or long reasoning
steps. The results in Table 8 show the performance
is significantly improved from 15.5% to 26.0% by
translating the problems into English. However,
this accuracy is still low compared to 57.5% from
human experts. Therefore, the primary challenge
of mathQA in CONIC10K still lies in how to do
mathematical reasoning correctly.

5.3 Case Study

We inspect and analyse both success and failure
cases in the experiment, which leads us to some
interesting findings.

LLMs have limited ability in understanding
long LATEX expressions. 9.7% of the incor-
rect predictions from mT0-xl are due to er-
rors in translating simple but long LATEX ex-
pressions. Common failures include missing
terms, flipped signs and incorrect copies. For
example, the LATEX expression in the problem
is x^2+y^2+2\sqrt{2}x-4\sqrt{2}y+10-r^2=0,
but the translated sentence becomes -4*sqrt(2)*y
+2*sqrt(2)*x+x^2+y^2+2=-r^2. In this example,
we observe both a flipped sign and an incorrect con-
stant. We do not observe similar errors in relatively
short LATEX expressions.
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Model Trainable Accuracy of Answer Category
Param. Simple Num. Complex Num. Expression Coordinate Interval & Set Text All

Finetuning PLM
mT5-base 580M 5.1 11.5 8.4 5.0 1.6 0.0 7.2
mT0-base 580M 22.8 13.6 7.3 2.5 4.9 0.0 13.0
mT5-large 1.3B 21.0 14.8 8.1 3.7 4.9 0.0 13.0
mT0-large 1.3B 16.7 17.0 12.5 3.7 6.6 0.0 13.8
mT5-xl 3.7B 19.9 17.6 11.0 5.0 6.6 0.0 14.8
mT0-xl 3.7B 18.1 13.6 10.3 2.5 6.6 0.0 12.5

Finetuning LLM using LoRA
Bloomz-1b7 7M 23.2 0.0 0.0 0.0 0.0 0.0 6.3
Bloomz-3b 7M 26.1 7.6 8.1 3.7 1.6 0.0 12.0
Falcon-7b 16M 31.5 4.8 8.4 15.0 8.2 0.0 14.0
Bloomz-7b1 8M 27.9 11.8 12.5 6.2 3.3 0.0 15.4
LLaMA-7b 8M 34.1 9.1 9.9 8.7 4.9 0.0 15.8
Vicuna-7b 8M 37.7 9.4 12.8 10.0 8.2 0.0 17.9
ChatGLM-6b 8M 39.3 23.1 13.1 10.6 6.5 0.0 22.5

Zero-shot CoT
Bloomz-7b1 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Falcon-7b-inst - 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Vicuna-7b - 1.5 0.0 0.0 0.0 0.0 0.0 0.4
Vicuna-13b - 3.1 0.4 0.0 0.0 0.0 0.0 0.9
Ziya-13b - 2.8 0.9 0.7 0.0 0.0 0.0 1.1
ChatGLM-6b - 4.0 0.7 0.2 1.3 0.0 14.3 1.5
GPT-3.5-turbo - 8.5 4.6 4.0 12.3 0.6 14.3 6.2
GPT-4 - 17.8 11.8 20.4 21.4 5.3 0.0 15.5

References
Guessing ‘2’ - 18.1 0.0 0.0 0.0 0.0 0.0 4.5
Human Expert - 62.5 56.3 50.0 50.0 66.7 - 57.5

Table 7: Results on mathQA in CONIC10K. ChatGLM-6B achieves the best overall accuracy after finetuning using
LoRA among all the models. In fully finetuning setting, mT0-xl shows strongest performance. In the zero-shot CoT
setting, GPT-4 has the highest overall accuracy. However, the performances of the above models are significantly
lower than human expert’s performance. GPT-4 is evaluated on 200 randomly sampled problems. Human Expert
is evaluated on 50 randomly sampled problems. The Text accuracy of Human Expert is empty because the sampled
problems do not contain answers of category Text.

Language Overall Accuracy

GPT-3.5-turbo + CoT 6.2
GPT-3.5-turbo + CoT + ICL 5.9
GPT-3.5-turbo + CoT + SC 6.8

Table 8: Results on mathQA in CONIC10K using
GPT-3.5-turbo with in-context-learning (ICL) or self-
consistency (SC)

Models can hardly find shortcuts in reasoning
in mathQA. We observe that models usually em-
ploy naive approaches to solve problems and fail to
find shortcut solutions, which leads to more compli-
cated computation and longer reasoning steps. The
additional reasoning steps and computation make
the models more likely to make mistakes during
reasoning. Some examples of naive solutions from
GPT-4 and the corresponding shortcut solutions
are listed in Table 11 and 12.

Language Overall Accuracy

Chinese 15.5
English 26.0

Table 9: Results on Chinese problems and problems
translated to English in mathQA in CONIC10K using
GPT-4 with zero-shot CoT. Both are evaluated on the
same 200 sampled problems.

GPT-4 and GPT-3.5-turbo probably lack knowl-
edge about certain concepts. When asked prob-
lems about focal distance, GPT-4 and GPT-3.5-
turbo keep giving incorrect answers and often give
a value that is half of the ground truth. Based on
these observations, we suspect that these two mod-
els lack knowledge about focal distance. We ask
GPT-4 and GPT-3.5-turbo to explain what focal
distance is in both Chinese and English, and they
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keep defining it as the distance between the center
of an ellipse or hyperbola and one of its foci instead
of the correct definition, the distance between the
two foci. A probable reason is that ‘focal distance’
is not a commonly used term within the English cor-
pus, making the models unlikely to obtain correct
knowledge about it.

6 Conclusion

We present CONIC10K, a math problem under-
standing and reasoning benchmark. It provides
problems that require complex reasoning, while
only involving knowledge about conic sections
in Chinese senior high school education. We
test popular LLMs on both semantic parsing and
math question answering, inspecting model perfor-
mance and behaviours. Results show that existing
LLMs, including GPT-4, have poor performance in
mathematical reasoning, while most models could
achieve good performance in mathematical under-
standing (but not perfect yet). We analyse the
model predictions in detail and find LLMs tend
to hallucinate in reasoning, often fail to find the
shortcuts solution, and may lack the knowledge to
solve problems. We hope our dataset, CONIC10K,
can help to discover the weaknesses of LLMs in
mathematical understanding and reasoning and in-
spire more advanced techniques to enhance the
mathematical reasoning ability of LLMs.

Limitations

CONIC10K is a dataset with high-quality formal
representation annotations, but there are still some
limitations:

• We design the formal representation to be
accurate, unambiguous and close to natural
language, but such representation is not com-
monly used and does not fit any existing sym-
bolic reasoners. The conclusion may not ap-
ply to other formal representations such as
propositional logic and first-order logic, or
rationales like executable programs.

• In conic sections, the commonly used mathe-
matical reasoning strategies could be limited.
For example, our problems may require solv-
ing simultaneous equations systems, but not
likely mathematical inductions. Therefore,
our dataset cannot evaluate some reasoning
strategies such as mathematical induction.

Ethics Statement

CONIC10K is a dataset that requires massive data
sources and heavy annotation. We claim that our
work is free of ethical risks from the following
perspectives:

Data Source The problems in CONIC10K are
collected from two websites that do not limit the us-
age of data for education and research purpose. We
strictly follow the term of use and manually check
all the data to avoid inappropriate information in
the annotation stage.

Annotation We hire a group of 14 annotators
for formal representation annotation and sign a
contract to prescribe the rights from both sides.
We clearly state the purpose of our study and the
future data use. These annotators are well-paid
for their work. The authors take responsibility to
maintain the annotation website, provide necessary
documents, answer questions from the annotators
and clean up the data.
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A Formal Representation

A.1 The Assertional Logic

Assertional Logic (AL) (Zhou, 2017) is a formal
representation where all kinds of knowledge are
formalized by equality assertions. It builds upon
the equality properties and the set theory. AL rep-
resentations are human-friendly and it has been
proved that the expressiveness of AL is stronger
than first-order logic (or kth-order logic for any
k ≥ 1).
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Here, we briefly introduce the syntax of AL.
Given a specific domain, the syntactic structure
of AL is composed of three components: individu-
als, concepts and operators. Individuals represent
objects in the domain, concepts represent groups of
objects and operators represent relationships and
connections among individuals and concepts. Op-
erators are similar to functions and predicates in
first-order logic (FOL), but they could accept high-
order constructs (concept, concept of concepts),
which leads to the strong expressiveness of AL.

An assertion is of the form a = b, where a, b
are two terms (individuals, either atomic or com-
pound). The knowledge base of AL is just a set of
assertions.

A.2 Our Representation

We apply AL as our formal representation because
of its strong readability. Our principle is that the
formal representation should 1) avoid ambiguity.
The formal representation should resolve the ambi-
guity in natural language and with the information
inside the annotations, it should be possible to work
out the solution by hand; 2) close to natural lan-
guage. It should be able to represent the problem
without rephrasing it; 3) simple and clear. Design-
ing a representation with thousands of operators is
definitely expressive and powerful, but it sacrifices
the strength of logic and fails to extract common
knowledge underneath.

Therefore, we apply only 94 operators and 20
concepts (see Table 2) to represent all the problems
in the dataset. To better accommodate the natural
language, we also designed 3 pseudo operators:
OneOf, WhenMin, WhenMax. These operators do not
fit the semantics of AL, but greatly simplify the
representation and are closer to natural language.
Also, it is trivial to convert these operators to terms
in AL.

There also has been evidence showing
that rephrasing significantly impacts learning
(Kwiatkowski et al., 2013). To avoid rephrasing,
we write detailed documents for the annotators, ask
them to raise questions when they are not confident
and frequently check the data during annotation.

We design our representation in three compo-
nents: declarations, facts and queries.

Declarations The declarations define individuals
with their types. It has the format of var: type,
where var is an individual and type is a concept.
These sentences are a special representation of the

assertion Is(var, type) = True. For simplic-
ity, we allow defining multiple individuals in one
sentence, with commas separating different indi-
viduals.

Facts The facts are assertions that describe the
conditions in the problem. For clarity, we allow
the use of syntactic sugar, which includes <,≤, >
,≥,+,−,×,÷, ab. That is, a sentence could be
an inequality such as a > b, which indicates an
assertion (a > b) = True.

Queries The queries are the terms that represent
the target of the problem. They ought to be an
assertion with the left-hand-side(LHS) the query
term and the right-hand-side(RHS) an unknown
individual in AL, but we use the simplest format
during the annotation.

A.3 Annotation Quality Control

Our previous study shows that the annotation of
formal language is extremely hard for humans. It
is difficult for an experienced annotator to reach
an accuracy above 50%. As a result, we employ
multiple measures to control the dataset quality,
including:

1. We provide a rule-based AI assistant to com-
plete most of the annotations with high preci-
sion.

2. We only hire annotators with the highest per-
formance on the small dataset we built in ad-
vance.

3. During the annotation, we ask the annotators
to raise questions whenever they are not con-
fident about how to annotate. We provide de-
tailed documents and dedicated help to ensure
the correctness of the annotation.

4. In addition to formal representations, we ask
the annotators to annotate the text spans. We
find it helps to increase the annotation accu-
racy.

5. Each problem will be annotated by two an-
notators individually, then passed to another
validator. We design a web UI which could
automatically compare two annotations and
extract the difference. The validator will de-
termine which one is correct, or a third anno-
tation is required.
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Figure 4: Word cloud of the keywords in CONIC10K

6. Every time the annotators finish 1000 annota-
tions, we randomly sample 10 problems for
additional checks. After all the annotations
were finished, we randomly sample 200 prob-
lems for additional checks. In the additional
check, we independently annotated the sam-
pled problems, and then compare them with
the existing annotation. We ask the annota-
tors to do a thorough check if the accuracy is
below 80%7.

7. We provide competitive payments (> 150k
CNY in total, ≈ 20k USD) to the annotators.
We allow adequate time for the annotation
process.

8. After the annotation is finished, we finetune a
zh-en translation model for further validation.
We split the whole dataset into five random
splits of the same size. Then, we pick four
of them to finetune the model and collect pre-
dictions for the last split. We manually check
all the problems whose prediction does not
match the annotation. We repeat this process
five times and obtain the final dataset.

B Additional Dataset Statistics

We show the frequency of keywords in Figure 4,
and the distribution of question length in Figure 5.
In question length, we count all latex commands
such as \frac, \leftarrow as one token.

C Additional Results

We showcase some interesting outputs from models.
Models including Bloomz-7b and ChatGLM-6b
often generate redundant text and hallucinate when
reasoning. We provide some samples in Table 10.
GPT-4 shows a strong ability to perform reasoning

7In the final check, about 99% of the 200 sampled formal
representation annotations (without considering text spans)
pass the check.

Figure 5: Distribution of Question Length

in natural language, but its solution often fails to
find the shortcuts designed in the problems. Such
a solution often requires complicated calculations.
Due to its limited ability in arithmetic calculation,
the final answer from GPT-4 is likely to be incor-
rect. We provide some samples in Table 11 and 12.

6456



Problem Rationale & Solution

Given that M is a point on the
parabola x2 = 4y, F is its fo-
cus, and point A(1, 5), what is
the minimum value of |MF | +
|MA|?

Redundant solution by Bloomz-7b: |MF |+ |MA| = |MA|+
|MF | + |MA| + |MF | + |MA| + |MF | + |MA| + |MF | +
|MA| + |MF | + |MA| + |MF | + |MA| + |MF | + |MA| +
|MF | + |MA| + |MF | + |MA| + |MF | + |MA| + |MF | +
|MA|+ |MF |+ |MA|+ |MF |+ |MA|...

If the eccentricity of an ellipse is
1
2 and one of its foci coincides
with the focus of the parabola
y2 = 8x, then what is the stan-
dard equation of the ellipse?

Hallucination in reasoning by ChatGLM-6b: According to the
problem, we know that the eccentricity of the ellipse is 1

2 , and one
of its foci coincides with the focus of the parabola y2 = 8x.
First, let’s find the coordinates of the focus of the parabola y2 = 8x.
According to the definition of a parabola, the x-coordinate of
the focus is p

2 , where p is the focal length. Since the standard
equation of the parabola is y2 = 4px, we can determine that
p = 2. Therefore, the x-coordinate of the focus is 2

2 = 1...

Table 10: Translated failing cases. The red text is the reasoning step where hallucination takes place.

Problem Rationale & Solution

Given a point P on the parabola
with equation y2 = 4x, let’s de-
note the distance from point P
to the y-axis as d. For a given
point A(4, 5), what is the mini-
mum value of |PA|+ d?

Naive solution by GPT-4: First, we can write the equation of the
parabola as y2 = 4x. Let’s assume the coordinates of point P as
(x0, y0), so we have y20 = 4x0. The distance from point P to the y-
axis is denoted as d, which is equal to d = x0. We need to find the
minimum value of |PA|+d, which is equivalent to finding the min-
imum value of |PA|+x0. Using the distance formula between two
points, we have |PA| =

√
(x0 − 4)2 + (y0 − 5)2. Substituting

y20 = 4x0, we get |PA| =
√
(x0 − 4)2 + (4x0 − 5)2. Now we

need to find the minimum value of
√
(x0 − 4)2 + (4x0 − 5)2+x0.

To simplify the calculation, we can first find the minimum value of
(x0−4)2+(4x0−5)2+x20. Expanding (x0−4)2+(4x0−5)2+x20,
we get 17x20−40x0+41. We can find the extreme points by taking
the derivative. Differentiating 17x20−40x0+41, we get 34x0−40.
Setting the derivative equal to 0, we find x0 = 20

17 . Substituting
x0 = 20

17 into 17x20 − 40x0 + 41, we get the minimum value as

144
17 . Therefore, the minimum value of |PA|+ d is

√
144

17

Reference shortcut solution: Since the distance between a point
on a parabola and its focus is the same as the distance between the
point and directrix of the parabola, |PA|+ d can be rewritten into
|PA| + d1 − d2 = |PA| + |FP | − d2, where d1 is the distance
between P and the directrix, d2 the distance between the directrix
and the y-axis, F is the focues. By the definition of parabola,
d2 = 1, F = (1, 0). Since |PA| + |FP | − d2 ≥ |AP | − d2 =√
(4− 1)2 + (5− 0)2 − 1 =

√
34− 1. Therefore, the minimum

value of |PA|+ d is
√
34− 1 .

Table 11: Translated example of solutions from GPT-4 and shortcut solutions. The red text is the reasoning step
where the solution goes wrong.
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Problem Rationale & Solution

The equation of the line that
passes through the point
M(3,−1) and bisects the chord
of the hyperbola x2

4 − y2 = 1 is?

Naive solution by GPT-4: First, we need to find two symmetric points on the hyperbola.
Let these points be A(x1, y1) and B(x2, y2), which are symmetric with respect to the point
M(3,−1). According to the properties of symmetric points, we have:

x1 + x2 = 2 · 3 = 6

y1 + y2 = 2 · (−1) = −2

Since points A and B lie on the hyperbola, they satisfy the equation of the hyperbola:

x21
4

− y21 = 1

x22
4

− y22 = 1

Substituting y1 = −2− y2 into the first equation, we get:

x21
4

− (−2− y2)
2 = 1

Substituting x1 = 6− x2 into the above equation, we get:

(6− x2)
2

4
− (−2− y2)

2 = 1

This is a system of linear equations in terms of x2 and y2. By solving for x2 and y2, we can
obtain the coordinates of points A and B.
Solving, we find x2 = 6±

√
2

2 and y2 = ∓
√
2 − 1. Therefore, A

(
6+

√
2

2 ,−
√
2− 1

)
and

B
(
6−

√
2

2 ,
√
2− 1

)
.

Next, we need to find the equation of the line passing through points A and B. Let the
equation of the line be y = kx+ b. Substituting the coordinates of points A and B into the
equation, we obtain two equations:

−
√
2− 1 = k · 6 +

√
2

2
+ b

√
2− 1 = k · 6−

√
2

2
+ b

By subtracting the two equations to eliminate b, we get:

−2
√
2 = k ·

√
2

Solving for k, we find k = −2. Substituting this value into the first equation, we get b = 5.
Therefore, the equation of the line passing through point M(3,−1) and bisecting the chord
of the hyperbola is y = −2x+ 5 .

Reference shortcut solution: Let the points intersected with the chord be A(x1, y1) and
B(x2, y2). Then, they satisfy the equation of the hyperbola:

x21
4

− y21 = 1

x22
4

− y22 = 1

Subtract the two equations:

x21 − x22
4

− (y21 − y22) = 0

(x1 − x2)(x1 + x2)

4
− (y1 − y2)(y1 + y2) = 0

Since M(3,−1) is the midpoint of the chord, x1 + x2 = 6, y1 + y2 = −2. Substitute this
into the above equation:

6(x1 − x2)

4
+ 2(y1 − y2) = 0

Then, we have the slope of the chord:

k =
x1 − x2

y1 − y2
=

3

4

Since M(3,−1) is on the chord, 3x+ 4y − 5 = 0 is the line equation.

Table 12: Translated example of solutions from GPT-4 and shortcut solutions. The red text is the reasoning step
where the solution goes wrong.
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