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Abstract

Various techniques have been developed in re-
cent years to improve dense retrieval (DR),
such as unsupervised contrastive learning and
pseudo-query generation. Existing DRs, how-
ever, often suffer from effectiveness tradeoffs
between supervised and zero-shot retrieval,
which some argue was due to the limited model
capacity. We contradict this hypothesis and
show that a generalizable DR can be trained to
achieve high accuracy in both supervised and
zero-shot retrieval without increasing model
size. In particular, we systematically exam-
ine the contrastive learning of DRs, under the
framework of Data Augmentation (DA). Our
study shows that common DA practices such
as query augmentation with generative mod-
els and pseudo-relevance label creation using
a cross-encoder, are often inefficient and sub-
optimal. We hence propose a new DA approach
with diverse queries and sources of supervision
to progressively train a generalizable DR. As a
result, DRAGON,1 our Dense Retriever trained
with diverse AuGmentatiON, is the first BERT-
base-sized DR to achieve state-of-the-art effec-
tiveness in both supervised and zero-shot eval-
uations and even competes with models using
more complex late interaction.

1 Introduction

Bi-encoder based neural retrievers allow doc-
uments to be pre-computed independently of
queries and stored, enabling end-to-end retrieval
among huge corpus for downstream knowledge-
intensive tasks (Karpukhin et al., 2020; Reimers
and Gurevych, 2019). Recently, Thakur et al.
(2021b) show that bi-encoder retrievers still un-
derperform BM25 in real-world scenarios, where
training data is scarce. One potential solution is

∗This work is done during Sheng-Chieh’s internship at Meta.
†Xilun and Sheng-Chieh contributed equally to this work.
1The code and model checkpoints are available at: https:
//github.com/facebookresearch/dpr-scale
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Figure 1: Supervised versus zero-shot effectiveness
comparison among existing state-of-the-art retrievers.
All models use a BERT-base-sized (110M parameters)
backbone except for GTR-XXL (4.8B parameters).

to design more expressive representations to cap-
ture more fine-grained token-level information;
e.g., SPLADE++ (Formal et al., 2022) and Col-
BERTv2 (Santhanam et al., 2022b) in Figure 1.
However, these designs add complexity and latency
to retrieval systems (Mackenzie et al., 2021).

By contrast, dense retrieval (DR) is a simpler bi-
encoder retriever that maps queries and documents
into low-dimensional vectors and computes text
similarity through a simple dot product. Top-k re-
trieval can be performed directly using ANN search
libraries (Johnson et al., 2021; Guo et al., 2020).
Recently, various methods have been proposed to
improve DR effectiveness while keeping its simple
architecture, such as pre-training (Lee et al., 2019;
Chang et al., 2020), query augmentation (Oguz
et al., 2022), and distillation (Ren et al., 2021;
Zeng et al., 2022). For example, pre-training on
MS MARCO corpus improves accuracy in the fully
supervised setting while leveraging other corpora
can improve transfer in the zero-shot setting. How-
ever, improvement in one setting is only achieved
at the expense of the other. Figure 1 plots exist-
ing state-of-the-art DR models with respect to their
effectiveness on these two axes, which presents a
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clear tradeoff between supervised and zero-shot
effectiveness (the blue line). The only exception,
GTR-XXL (Ni et al., 2022), breaks the effective-
ness tradeoff at the expense of efficiency (i.e., query
encoding), which leverages very large pre-trained
models with 40 times more parameters. This effec-
tiveness tradeoff prompts some to hypothesize that
we have fully exploited the capacity of BERT-base-
sized DR model (Ni et al., 2022) and explore how
to cleverly increase model parameters without sac-
rificing retrieval efficiency. For example, the recent
work (Wang et al., 2022; Dai et al., 2022) proposes
to train one expert dense retriever for each specific
scenario, resulting in slow adaptation to real-world
applications (Asai et al., 2023).

In this work, we contradict this hypothesis and
show that a generalizable DR can indeed be trained
to achieve state-of-the-art effectiveness in both su-
pervised and zero-shot evaluations without increas-
ing model size. To this end, we first investigate
the important factors contributing to the recent
progress of DR. For example, DR seems to gain
zero-shot transfer capability from pre-training on
large-scale and diverse training queries (Izacard
et al., 2021; Yu et al., 2022) while knowledge dis-
tillation can improve the supervision quality by au-
tomatically identifying relevant passages which are
not labeled by humans (Ren et al., 2021; Zeng et al.,
2022). To better understand these approaches, we
devise a unified framework of data augmentation
(DA) for contrastive learning. Under the frame-
work, the previous work can be viewed as DA with
different recipes of query augmentation and rele-
vance label augmentation shown in Table 1. The
DA framework also helps us design comprehensive
studies for better DR training.

Guided by a detailed empirical exploration along
the space of our DA framework, we find the fol-
lowing: (1) for relevance label augmentation, we
identify that the key to training a generalizable
dense retriever is to create diverse relevance labels
for each query, for which we use multiple retriev-
ers instead of a strong cross encoder; (2) with such
diverse relevance labels, dense retrievers can be
trained effectively using cheap and large-scale aug-
mented queries (e.g., cropped sentences from a
corpus) instead of the more expensive neural gen-
erative queries. This finding opens the door to
further building cheap but useful training data in
scale for DR in the future. Finally, we find that
it is suboptimal for a dense retriever to learn the

Table 1: Categorization of existing DR models by their
approaches to data augmentation.

Model Qry Aug. Label Aug. Corpus
RocketQAv2 (Ren et al., 2021)

✗ CE MARCO
CL-DRD (Zeng et al., 2022)
coCondenser (Gao and Callan, 2022) MARCO
Contriever (Izacard et al., 2021) cropping ✗ Wiki+ CCnet
COCO-DR (Yu et al., 2022) BEIR
GPL (Wang et al., 2022)

GenQ ✗ BEIR
PTR (Dai et al., 2022)
DRAGON cropping+GenQ retrievers MARCO

diverse relevance labels from multiple retrievers
directly. Thus, we propose a simple strategy to pro-
gressively augment relevance labels which guides
dense retrievers to learn diverse relevance signals
more effectively.

Our final model is trained on 28 million aug-
mented queries consisting of two types (cropped
sentences and synthetic queries), as well as pro-
gressive relevance label augmentation using di-
verse (sparse, dense, and multi-vector) retriev-
ers. As shown in Figure 1, DRAGON, a Dense
Retriever trained with diverse AuGmentatiON, is
the first dense retriever to break the supervised and
zero-shot effectiveness tradeoff without increasing
model size or retrieval complexity; e.g., GTR-XXL,
SPLADE++ and ColBERTv2.

We summarize our contributions as follows: (1)
We conduct a systematic study of DR training un-
der the lens of data augmentation, which provides
some surprising but key insights into training a
generalizable dense retriever; (2) We propose a
progressive label augmentation strategy to guide a
dense retriever to learn the diverse but complex rel-
evance labels; (3) DRAGON, our BERT-base-sized
DR, reaches state-of-the-art retrieval effectiveness
in both supervised and zero-shot evaluations.

2 Background

In this section, we first introduce the retrieval task
and contrastive learning for dense retrieval. We
then provide a unified framework for understand-
ing recent approaches to improve dense retrieval
training as instances of data augmentation.

2.1 Training Dense Retrieval Models

Given a query q, our task is to retrieve a list of
documents to maximize some ranking metrics such
as nDCG or MRR. Dense retrieval (DR) based on
pre-trained transformers (Devlin et al., 2018; Raf-
fel et al., 2020) encodes queries and documents as
low dimensional vectors with a bi-encoder architec-
ture and uses the dot product between the encoded

6386



vectors as the similarity score:

s(q, d) ≜ eq[CLS] · ed[CLS] , (1)

where eq[CLS] and ed[CLS] are the [CLS] vectors at
the last layer of BERT (Devlin et al., 2018).

Contrastive Learning is a commonly used
method for training DR models by contrasting pos-
itive pairs against negatives. Specifically, given a
query q and its relevant document d+, we minimize
the InfoNCE loss:

− log
exp(s(q, d+))

exp(s(q, d+)) +
k∑

j=1
exp(s(q, d−j ))

. (2)

2.2 A Unified Framework of Improved Dense
Retrieval Training: Data Augmentation

Data augmentation (DA) for contrastive learning
has been widely used in many machine learning
tasks (Chen et al., 2020; Thakur et al., 2021a). In
fact, many recent approaches to train better DR,
such as knowledge distillation, contrastive pre-
training and pseudo query generation (GenQ), can
be considered DA with different recipes respec-
tively listed in the first three main rows of Table 1.
We compare the DA recipes from the perspectives
of query and relevance label augmentation. We re-
fer readers to Appendix A.9 for more related work
of advanced DR training strategies.
Query Augmentation. There are two common au-
tomatic approaches to increase the size of training
queries from a given corpus, sentence cropping and
pseudo query generation. The former can easily
scale up query size without any expensive compu-
tation, which is used by the models for contrastive
pre-training (the second section of Table 1; Gao
and Callan, 2022; Izacard et al., 2021; Wu et al.,
2022). The latter generates quality but more ex-
pensive human-like queries using large language
models for DR pre-training (Oguz et al., 2022) or
domain adaptation (the third section of Table 1;
Wang et al., 2022; Dai et al., 2022). Concurrently
to our work, Meng et al. (2023) explore various
approaches to query augmentation, such as span
selection and document summarization.
Relevance Label Augmentation. The aforemen-
tioned approaches to query augmentation often as-
sume that the (or part of the) original document is
relevant to the augmented queries, which may not
be true and only provides a single view of relevance
labeling. The recent work (the first section of Ta-
ble 1; Ren et al., 2021; Zeng et al., 2022) improve

DR training with the positive passages predicted
by cross encoders. These knowledge distillation
approaches further improve training data quality
through label augmentation, inspiring us to conduct
relevance label augmentation on the augmented
queries (i.e., cropped sentences and GenQ).

2.3 Settings for Empirical Studies

We introduce some basic experimental settings to
facilitate the presentation of our empirical studies
on data augmentation in Section 3. More detailed
settings can be found in Section 4. Following pre-
vious work (Izacard et al., 2021; Xiao et al., 2022;
Yu et al., 2022; Formal et al., 2022; Santhanam
et al., 2022b), we consider MS MARCO (Bajaj
et al., 2016) as supervised data and BEIR datasets
for zero-shot evaluations. Thus, we use the 8.8
million MS MARCO passage corpus to conduct
data augmentation and evaluate our trained models
on MS MARCO Dev, consisting of 6980 queries
from the development set with one relevant passage
per query on average. We report MRR@10 (abbre-
viated as RR@10) and Recall@1000 (R@1K) as
the evaluation metrics. For zero-shot evaluations,
we use BEIR (Thakur et al., 2021b), consisting of
18 IR datasets spanning diverse domains and tasks
including retrieval, question answering, fact check-
ing, question paraphrasing, and citation prediction.
We report the averaged nDCG@10 over 13 public
BEIR datasets, named BEIR-13, making the num-
bers comparable to most existing approaches (For-
mal et al., 2021; Santhanam et al., 2022b).2

3 Pilot Studies on Data Augmentation

In this section, we first discuss the exploration
space of data augmentation (DA) based on the
framework in Section 2.2 and then conduct empiri-
cal studies on how to better train a dense retriever.
Based on the empirical studies, we propose our DA
recipe to train DRAGON, a Dense Retriever with
diverse AuGmentatiON.

3.1 An Exploration of Data Augmentation

Query Augmentation. Following the discus-
sion in Section 2.2, we consider the two com-
mon approaches to automatic query augmenta-
tion. Specifically, for sentence cropping, following
Chen et al. (2022), we use the collection of 28
million sentences from the MS MARCO corpus
2CQADupStack, Robust04, Signal-1M, TREC-NEWS,
BioASQ are excluded
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consisting of 8.8 million passages. As for pseudo
query generation, we use the 28 million synthetic
queries sampled from the query pool generated by
doct5query (Nogueira and Lin, 2019). In addition,
we also consider augmenting the type of queries by
mixing cropped sentences and synthetic queries.

Label Augmentation with Diverse Supervisions.
Although cross encoder (CE) is known to create rel-
evance labels with strong supervision, we hypothe-
size that CE still cannot capture diverse matching
signals between text pairs. A query is often relevant
to many documents from different perspectives
(e.g., semantic or lexical matching), which can-
not capture by a single labeling scheme (a strong
model or even human). In this work, we seek mul-
tiple sources of supervisions from existing sparse,
dense and multi-vector retrievers, which are more
efficient than CE and suitable for labeling a large
number of queries (see discussion in Section 5).

3.2 Training with Diverse Supervisions

We have introduced our searching space for query
and label augmentation (with diverse supervisions);
however, training a dense retriever on such aug-
mented data is not trivial. First, how can we create
training data using a teacher from any augmented
queries (i.e., cropped sentences or pseudo genera-
tive queries)? Second, with the training data sets
created from multiple teachers, how can we train a
dense retriever to digest the multiple supervisions?

Formally speaking, given N teachers, for each
augmented query q, we retrieve N ranked lists (i.e.,
P1
q ,P2

q , · · · ,PN
q with each list has K passages)

from the corpus with the respective teachers. We
consider the ranked list Pn

q from the n-th teacher
a source of supervision since the top-k and last-k′

passages in Pn
q contain the teacher’s view on what

is relevant and less relevant for the given query.
We then discuss possible strategies to train a dense
retriever with diverse supervisions.

Fused Supervision. An intuitive strategy is to
fuse the multiple sources into a single high-quality
supervision, which dense retrievers can learn from.
For the augmented query q, we conduct linear score
fusion (Ma et al., 2021) on the N ranked lists to
form a new ranked list Fq as a fused supervision.

Uniform Supervision. Another simple strategy
is to provide a dense retriever with equal expo-
sures to multiple sources of supervisions. Specifi-
cally, given a query, we uniformly sample a source
of supervision; i.e., a ranked list Pn

q , where n ∼

Labels by retriever1 

Iteration1 Iteration2 Iteration3

Labels by retriever2 Labels by retriever3

Sampled triplets 
(Batch size 3)

+
-

+
-

+
-

Sampled triplets 
(Batch size 3)

+
-

+
-

+
-

Sampled triplets 
(Batch size 3)

+
-

+
-

+
-

Query

Hard 
negatives

Positives

-

+

- - - -

+
+ +

+
+

+ ++
+

+
+

+
+
+

+
+

+

+

+
-
-
-

-
-

++
+

+
+

+
+

++
+

-
-
-

-
-

-
-

Query

Hard 
negatives

Positives

-

+

- - - -

+
+ +

+
+

+ ++
+

+
+

+
+
+

+
+

+

+

+

-
-

-

- - -

Query

Hard 
negatives

Positives

-

+

-

+
+ +

+
+

+ ++
+

Figure 2: Illustration of progressive label augmentation.
For each iteration of training, additional relevance labels
from a teacher are augmented in the training data. By
contrast, uniform supervision directly exposes models to
all the supervisions (as in iteration 3) in the beginning.

U(1, N). This approach naturally encourages the
positive samples appearing in more ranked lists to
be sampled and vice versa. The advantage is that
fusion weight tuning is not required. Furthermore,
models can see diverse supervisions from different
teachers in contrast to fused supervision, which
may be dominated by a single strong teacher.

Progressive Supervision. The previous two ap-
proaches directly give models supervisions from
multiple teachers at once; however, learning di-
rectly from the mixture of supervision is challeng-
ing, especially for DR models which compute text
matching with simple dot product. Inspired by
the success of curriculum learning (Zeng et al.,
2022), we propose an approach to progressive la-
bel augmentation to guide DR training with pro-
gressively more challenging supervision. Specif-
ically, we train our models with uniform super-
vision for N iterations and at each iteration, we
augment relevance label using additional teacher,
as illustrated in Figure 2; i.e., at iteration T ≤ N ,
we uniformly sample a source of supervision, Pn

q ,
where n ∼ U(1, T ) (see Appendix A.6 for more
study and explanation). A key factor of this ap-
proach is how to arrange the order for easy-to-hard
supervisions; namely, the trajectory of progressive
supervision.

With any aforementioned strategy to obtain di-
verse supervisions, we train our dense retrievers
using contrastive loss in Eq. (2). Specifically, given
a query q, we first obtain a source of supervision
either from sampling (Pn

q ) or fusion (Fq); then, we
randomly sample a positive and hard negative from
the top 10 passages and top 46–50 passages, re-
spectively to form a triplet. The sampling scheme
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Table 2: Strategies to obtain multiple supervisions using
cropped sentences as queries.

0 1 2 3 4 5∗

Teacher

uniC
O

IL

C
ontriever

C
olB

ERTv2

three teachers

fused unif. prog.
effectiveness of student

MARCO Dev 34.9 33.9 36.4 36.7 36.9 36.6
BEIR-13 46.7 47.0 46.3 46.6 47.7 49.3

effectiveness of teacher
MARCO Dev 35.1 34.1 39.7 40.0 - -
BEIR-13 -△ 47.5 49.9 -△ - -

∗ The condition of column 5 corresponds to row 0 in Table 3.
△ We do not evaluate uniCOIL on BEIR due to its require-

ment of expensive document expansion from corpus.

has been empirically proved to well preserve the su-
pervised signal from a single teacher (Chen et al.,
2022) (also see our study in Appendix A.5). In this
work, we further extend the sampling scheme to
obtain diverse supervisions from multiple teachers.

3.3 Empirical Studies

Strategies to Obtain Diverse Supervisions. We
first conduct empirical studies on how to better
train a dense retriever in a simplified setting by
using the MS MARCO cropped sentences as aug-
mented queries and obtain supervised labels using
three teachers with diverse relevance score compu-
tation: uniCOIL (sparse), Contriever (dense) and
ColBERTv2 (multi-vector). To compare the dif-
ferent strategies discussed in Section 3.2, We re-
port the models trained with single (columns 0–2)
and multiple (columns 3–5) sources of supervi-
sions for 20 epochs and 60 epochs, respectively.
For progressive supervision, we follow the super-
vision trajectory: uniCOIL→ Contriever → Col-
BERTv2 with 20 epochs for each of the three itera-
tions (N = 3). Note that for fused supervision, we
use MS MARCO Dev queries to tune and obtain
the best hyperparameters to create fusion list.

The results are tabulated in Table 2. We ob-
serve that when learning from a single supervision
(columns 0–2), there is a tradeoff between super-
vised and zero-shot retrieval effectiveness. Learn-
ing from the fusion list only sees a slight improve-
ment over supervised evaluation while no improve-
ment observes in zero-shot evaluations (columns
0–2 vs 3). By contrast, the model sees notable im-
provements in zero-shot evaluations when trained
with uniform supervision (columns 0–3 vs 4), indi-

Table 3: Study on trajectory of progressive supervision
using cropped sentences as queries.

Progressive supervision MARCO dev BEIR-13

trajectories RR@10 nDCG@10
(0) uniCOIL→ Contriever → ColBERTv2 36.6 49.3
(1) Contriever → uniCOIL→ ColBERTv2 36.7 48.4
(2) ColBERTv2→ Contriever→ uniCOIL 36.4 47.7
(3) uniCOIL→ Contriever → ColBERTv2∗ 36.8 47.4

∗ ColBERTv2 is the only teacher at the last (3rd) iteration.

cating that learning from the diverse relevance la-
bels from multiple retrievers separately rather than
single strong supervision (ColBERTv2 or fused su-
pervision) is key to gain generalization capability.
Finally, we observe that progressive supervision
can further guide a dense retriever to gain gener-
alization capability over uniform supervision (col-
umn 4 vs 5). Thus, we use progressive supervision
in the following experiments.

Trajectory of Progressive Supervision. We then
study how to better arrange the trajectories of pro-
gressive supervision in Table 3. We observe that
different trajectories have much impact on mod-
els’ zero-shot retrieval effectiveness while a minor
impact on supervised evaluation can be seen. For
example, switching the sampling order between
uniCOIL and Contriever results in a degrade of 1
point on the averaged nDCG@10 over BEIR-13
(row 0 vs 1) while reversing the whole trajectory
leads to a degrade with more than 1.5 points (row 0
vs 3). This observation reflects an intuition that the
retrievers with better generalization capability may
capture more complex matching signal between
text pairs (ColBERTv2 shows better generaliza-
tion capability than the other two teachers); thus,
their relevance labels should be augmented at a
later stage of model training. Finally, in row 3,
we follow the trajectory in row 0 but only use Col-
BERTv2 as the only source of supervision instead
of obtaining uniform supervision from the three
teachers at the last iteration. This change results in
worse zero-shot retrieval effectiveness, indicating
that learning from diverse supervisions is key to
training a generalizable dense retriever.

Query Augmentation. We study the impacts of
query augmentation on models’ effectiveness under
the scenario where supervision is given, which has
not been studied so far in the field of dense retrieval.
With the best trajectory of progressive supervision,
we compare models trained using cropped sen-
tences (rectangles), generative queries (GenQ; cir-
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Figure 3: Impacts of query augmentation.

cles), their mixture (triangles) and human queries
(cross) in Figure 3. We observe that query size is
the key to successful training. Although training
with limited (0.8M) cropped sentences cannot per-
form well in MS MARCO dataset, scaling up the
size (28M) sees significant improvement over the
model trained on 0.8M human queries. Similarly,
in Figure 3 (b), model’s generalization capability
shows a huge jump when scaling up query size.
While surprisingly, cropped sentences can help
dense retrievers to gain more generalization capa-
bility than human-like GenQ, a mixture of cropped
sentences and GenQ yields strong retrieval effec-
tiveness in supervised and zero-shot evaluations,
when the query size is not large enough (0.8–8M).

3.4 Training our DRAGONs
With the empirical studies on DR training, we then
propose the final recipe to train our DRAGON. We
train DRAGON for 20 epochs (around 130K steps)
at each iteration, with the trajectory of progres-
sive supervision: uniCOIL→ Contriever → GTR-
XXL → ColBERTv2 → SPLADE++. We list all
the teacher model checkpoints for label augmen-
tation in Appendix A.2. This trajectory is based
on models’ retrieval effectiveness on BEIR with
the intuition gained from Section 3.3 that a more
generalizable model creates relevance labels with
more complex matching signals. For query aug-
mentation, we mix half of cropped sentences and
synthetic queries as training queries. Note that
we do not further fine-tune our models on the MS
MARCO training queries. In addition, we train
other three DRAGON variants. DRAGON-S and
DRAGON-Q only use cropped sentences and syn-
thetic queries, respectively. As for DRAGON+, we
follow the same training procedure of DRAGON but
switch the initialization from BERT to the masked
auto-encoding pre-trained model, RetroMAE.3 We
3https://huggingface.co/Shitao/RetroMAE

will discuss the impacts of initialization in Sec-
tion 5. The implementation of DRAGONs and the
fully augmented training data are detailed in Ap-
pendix A.3 and A.4, respectively.

4 Comparison with the State of the Art

4.1 Datasets and Baseline Models
In addition to MS MARCO development queries,
we evaluate model supervised effectiveness on the
TREC DL (Craswell et al., 2019, 2020) queries,
created by the organizers of the 2019 (2020) Deep
Learning Tracks at the Text REtrieval Conferences
(TRECs), where 43 (53) queries with on average
95 (68) graded relevance labels per query (in con-
trast to 6980 queries with on average 1 non-graded
relevance label per query in MS MARCO Dev)
are released. We report nDCG@10, used by the
organizers as the main metric. For zero-shot evalua-
tions, we report models’ effectiveness on all the 18
datasets in BEIR (Thakur et al., 2021b). In addition,
we use LoTTE (Santhanam et al., 2022b) consist-
ing of questions and answers posted on StackEx-
change with five topics including writing, recre-
ation, science, technology, and lifestyle. We eval-
uate models’ retrieval effectiveness in the pooled
setting, where the passages and queries from the
five topics are aggregated. Following Santhanam
et al. (2022b), the retrieval effectiveness of Suc-
cess@5 on search and forum queries are reported.
The detailed evaluation on LoTTE is listed in Ap-
pendix A.8.

We compare DRAGONs with dense retrievers us-
ing the backbone of bert-base-uncased trained with
advanced techniques, such as knowledge distilla-
tion (Ren et al., 2021; Zeng et al., 2022), contrastive
pre-training (Gao and Callan, 2022; Izacard et al.,
2021; Yu et al., 2022), masked auto-encoding pre-
training (Wu et al., 2022; Xiao et al., 2022) and
domain adaptation (Wang et al., 2022; Dai et al.,
2022). We refer readers to more detailed baseline
model descriptions in Appendix A.1.

4.2 Results

Supervised Evaluations. The first main row in Ta-
ble 4 reports models’ retrieval effectiveness on MS
MARCO passage ranking dataset. We first observe
that some baseline dense retrievers which perform
well in MS MARCO Dev set are either pre-trained
on MS MARCO corpus (coCondenser and COT-
MAE) or well fine-tuned on MS MARCO training
queries with cross-encoder distillation (CL-DRD
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Table 4: Comparison with existing state-of-the-art dense retrievers. Bold (underline) denotes the best (second best)
effectiveness for each row among baseline dense models.

Rep type sparse mul-vec dense baseline dense our dense
0 1 2 3 4 5 6 7 8 9 A B C D E F

SPLA
D

E
++

C
olB

ERT
v2

G
TR

-X
X

L

C
L-D

R
D

R
ocketQ

A
v2

C
O

T-M
A

E

R
etroM

A
E

coC
ondenser

C
ontriever

C
O

C
O

-D
R

G
PL

PTR

D
R

A
G

O
N-S

D
R

A
G

O
N-Q

D
R

A
G

O
N

D
R

A
G

O
N+

Pre-training ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓

Distillation ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Target Corpus† ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗

MS MARCO (Supervised)
Dev (RR@10) 38.9 39.7 38.8 38.1 38.8∗ 39.9∗ 35.4 38.6∗ 34.1 35.8 - - 38.1 39.1 39.3 39.0
Dev (R@1K) 98.2 98.4 99.0 97.9 98.1∗ 98.5∗ 97.5 98.4∗ 97.9 97.9 - - 98.3 98.8 98.5 98.6
DL2019 (nDCG@10) 74.3 74.6 - 72.5 - 70.0∗ 68.8 71.5∗ 67.8 74.1 - - 73.6 74.0 74.1 74.4
DL2020 (nDCG@10) 71.8 75.2 - 68.3 - 67.8∗ 71.4 68.1∗ 66.1 69.7 - - 70.0 72.6 72.9 72.3
nDCG@10 BEIR (Zero-shot)
TREC-COVID 71.1 73.8 50.1 58.4 67.5 56.1 77.2 71.2 59.6 78.9 70.0 72.7 73.9 73.2 74.0 75.9
NFCorpus 34.5 33.8 34.2 31.5 29.3 32.1 30.8 32.5 32.8 35.5 34.5 33.4 32.2 33.0 32.9 33.9
FiQA-2018 35.1 35.6 46.7 30.8 30.2 28.3 31.6 27.6 32.9 31.7 34.4 40.4 35.6 35.3 35.0 35.6
ArguAna 52.1 46.3 54.0 41.3 45.1 27.8 43.3 29.9 44.6 49.3 55.7 53.8 51.5 45.5 48.9 46.9
Tóuche-2020 24.4 26.3 25.6 20.3 24.7 21.9 23.7 19.1 23.0 23.8 25.5 26.6 26.5 26.0 24.9 26.3
Quora 81.4 85.2 89.2 82.6 74.9 75.6 84.7 85.6 86.5 86.7 83.6 - 86.4 87.1 86.9 87.5
SCIDOCS 15.9 15.4 16.1 14.6 13.1 13.2 15.0 13.7 16.5 16.0 16.9 16.3 15.9 15.0 15.4 15.9
SciFact 69.9 69.3 66.2 62.1 56.8 60.1 65.3 61.5 67.7 70.9 67.4 62.3 67.8 67.2 67.5 67.9
NQ 54.4 56.2 56.8 50.0 50.5 48.3 51.8 48.7 49.5 50.5 48.3 - 53.3 52.3 53.1 53.7
HotpotQA 68.6 66.7 59.9 58.9 53.3 53.6 63.5 56.3 63.8 61.6 58.2 60.4 65.6 62.7 64.8 66.2
DBPedia 44.2 44.6 40.8 38.1 35.6 35.7 39.0 36.3 41.3 39.1 38.4 36.4 40.6 41.4 41.4 41.7
FEVER 79.6 78.5 74.0 73.4 67.6 50.6 77.4 49.5 75.8 75.1 75.9 76.2 76.4 75.1 75.8 78.1
Climate-FEVER 22.8 17.6 26.7 20.4 18.0 14.0 23.2 14.4 23.7 21.1 23.5 21.4 21.8 20.3 22.2 22.7
CQADupStack 34.1 - 39.9 32.5 - 29.7 34.7 32.0 34.5 37.0 35.7 - 35.9 34.4 35.2 35.4
Robust04 45.8 - 50.6 37.7 - 30.8 44.7 35.4 47.6 44.3 43.7 - 46.3 45.3 47.2 47.9
Signal-1M 29.6 - 27.3 28.2 - 21.1 26.5 28.1 19.9 27.1 27.6 - 29.3 28.9 30.1 30.1
TREC-NEWS 39.4 - 34.6 38.0 - 26.1 42.8 33.7 42.8 40.3 42.1 - 42.1 40.0 41.6 44.4
BioASQ 50.4 - 32.4 37.4 - 26.2 42.1 25.7 38.3 42.9 44.2 - 41.3 41.9 41.7 43.3
Averaged nDCG@10
PTR 11 subsets 47.1 46.2 44.9 40.9 40.1 35.7 44.5 37.4 43.8 45.7 45.5 45.5 46.2 45.0 45.7 46.5
BEIR-13 50.3 49.9 49.3 44.8 43.6 39.8 48.2 42.0 47.5 49.2 48.6 - 49.8 48.8 49.4 50.2
Avg. all 18 datasets 47.4 - 45.8 42.0 - 36.2 45.4 38.9 44.5 46.2 45.9 - 46.8 45.8 46.6 47.4
Success@5 LoTTE (Zero-shot)
Search (pooled) 70.9 71.6 - 65.8 69.8 63.4 66.8 62.5 66.1 67.5 - - 71.4 72.4 72.6 73.5
Forum (pooled) 62.3 63.4 - 55.0 57.7 51.9 58.5 52.1 58.9 56.8 - - 61.1 61.2 61.4 62.1
† The approach assumes the target corpus (e.g., BEIR) is available while training.
∗ These numbers are not comparable due to the use of non-standard MS MARCO corpus augmented with title (Lassance and Clinchant, 2023).

and RocketQAv2). However, their retrieval effec-
tiveness on MS MARCO Dev set is not well corre-
lated to TREC DL queries, which have fine-grained
human labels with different degrees of relevance.
We hypothesize that these models are able to re-
trieve the most relevant passage from the corpus
but cannot retrieve diverse passages with different
degrees of relevance. By contrast, all the variants
of DRAGON trained with diverse augmented rele-
vance labels show consistently strong effectiveness
in MS MARCO Dev and TREC DL queries.

Zero-Shot Evaluations. The second main row
in Table 4 reports models’ zero-shot retrieval ef-
fectiveness on the BEIR datasets. We observe a
reverse trend that those dense retrievers performing
relatively poorly in MS MARCO Dev queries have

better zero-shot retrieval effectiveness (e.g., Con-
triever, COCO-DR and RetroMAE). These mod-
els are pre-trained (with data augmentation) on
a corpus other than MS MARCO to combat do-
main shift issue in dense retrieval (Xin et al., 2022;
Yu et al., 2022). On the other hand, DRAGONs
trained on augmented data from MS MARCO
corpus only transfer well to BEIR datasets. Fur-
thermore, DRAGON+ reaches state-of-the-art re-
trieval effectiveness on BEIR as the sparse retriever,
SPLADE++.4 In addition, all the DRAGON variants
outperform other dense retrievers by a large mar-
gin and compete SPLADE++ and ColBERTv2 in
the LoTTE dataset. It is worth mentioning that the
models trained with domain adaptation (columns

4See our BEIR leaderboard submission here.
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Table 5: Label augmentation with cross encoder (CE)
using cropped sentences as queries.

0† 1 2 3
DRAGON-S initialization ✓ ✓
Source of supervision all∗+ CE CE only CE only
MARCO Dev (RR@10) 38.1 38.1 37.5 36.8
BEIR-13 (nDCG@10) 49.8 49.7 48.7 47.7

† Column 0 corresponds to DRAGON-S.
∗ “all” denotes the five teachers used for training DRAGON-S.

9–B) perform better than the others (columns 3–8)
but still underperform DRAGON in zero-shot eval-
uations. Using DRAGON as the base model for
domain adaptation is possible to gain DR zero-shot
effectiveness, which we leave to our future work.

A comparison between DRAGON-S and
DRAGON-Q (columns C and D) shows that
augmented query type has an impact on retrieval
effectiveness in different datasets. DRAGON-S
trained on cropped sentences surprisingly sees
the highest retrieval effectiveness on BEIR but
only sacrifices a bit on MS MARCO datasets.
This means that cropped sentences, the cheap
query type (compared to neural generative
queries), are sufficiently helpful for models to
learn domain-invariant retrieval capability. By
contrast, we observe that DRAGON-Q trained with
human-like queries performs poorly compared
to DRAGON-S on the datasets where queries
are far different from human-like queries, such
as ArguAna (45.5 vs 51.5) and CQADupStack
(34.4 vs 35.9), while mixing different types of
queries (DRAGON) can mitigate the issue. Finally,
DRAGON+, combined with masking auto-encoding
(MAE) pre-training and our approach, sees further
improvement on zero-shot evaluations without
sacrificing in-domain ones, indicating that MAE
pre-training may be orthogonal to our approach
based on contrastive learning.

To sum up, DRAGONs advance state-of-the-art
zero-shot effectiveness while keeping strong effec-
tiveness in supervised evaluation. The experimen-
tal results demonstrate that our data augmentation
approaches enable dense retrievers to learn domain-
invariant matching signal between text pairs as
the other models with fine-grained late interaction
(SPLADE++ and ColBERTv2) or 40 times larger
model size (GTR-XXL).

Table 6: Ablation on initialized checkpoint using the
mixture of cropped sentences and GenQ as queries.

Initialized checkpoint
MARCO dev BEIR-13

RR@10 nDCG@10
(0) BERT base (DRAGON) 39.3 49.4
(1) Contriever 38.7 49.3
(2) RoBERTa base 39.4 49.9
(3) RetroMAE (DRAGON+) 39.0 50.2

5 Discussions

Is it necessary to augment relevance labels with
a cross encoder? To answer this question, we
further train DRAGON-S with the augmented rel-
evance labels from a cross encoder (CE). Specif-
ically, we create a ranked list of CE by first re-
trieving top 1000 passages with DRAGON-S and
re-ranking them with the CE for each cropped sen-
tence as a query. With the CE ranked list, we con-
duct another iteration (20 epochs) of training for
DRAGON-S; however, we do not see retrieval ef-
fectiveness improvement in Table 5 (column 0 vs
1). In addition, the retrieval effectiveness becomes
even worse when we further train DRAGON-S by
only sampling CE ranked list instead of uniformly
sampling all the six ranked lists (column 1 vs 2).
Finally, we initialize from bert-base-uncased and
re-train the model for three iterations (60 epochs)
only with the CE ranked list.5 We observe that
its effectiveness (column 3) is even worse than the
models trained with the ranked lists from three
retrievers (see columns 4 and 5 in Table 2). This re-
sult contradicts the general belief that CE provides
the strongest supervision to a dense retriever (Hof-
stätter et al., 2020). Moreover, it demonstrates the
effectiveness of using diverse supervisions to train a
generalizable dense retriever, rather than relying on
a single strong supervision. Furthermore, leverag-
ing all the retrievers to augment labels is still more
efficient than a cross encoder (see Appendix A.7).

Does DRAGON benefit from unsupervised pre-
training? Table 6 compares the models trained
from different checkpoint initialization. Note that
for Contriever and RetroMAE, we initialize from
the checkpoint with only unsupervised pre-training
(without fine-tuning on MS MARCO). We observe
that our approach benefits from further masked
auto-encoding rather than contrastive pre-training
(rows 2,3 vs 1). The result is sensible since our
5We do not notice effective improvement with more iterations
of training both in supervised and zero-shot evaluations.
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Passage: The Manhattan Project and its atomic bomb helped bring an end to World War II. Its legacy of peaceful uses of atomic energy continues to have 
an impact on history and science.

Query Augmentation Augmented rel (#) Example of augmented rel

Cropping

Q1
The Manhattan Project and its 
atomic bomb helped bring an end 
to World War II

30
The Manhattan project was a secret research and development project of the 
U.S to develop the atomic bomb. Its success granted the U.S the bombs that 
ended the war with Japan as well as ushering the country into the atomic era.

Q2
Its legacy of peaceful uses of 
atomic energy continues to have 
an impact on history and science.

30
An early nuclear power plant that used atomic energy to generate electricity. 
The Atomic Age, also known as the Atomic Era, is the period of history 
following the detonation of the first nuclear (atomic) bomb, ...

GenQ

Q1 what were a major contributions to 
the manhattan effort 26 The Manhattan Project was an effort during World War II in the United States 

to develop the first nuclear weapon.

Q2 what impact did the manhattan 
project have on history 26

The Manhattan Project, which included some of history's greatest scientific 
minds, lead to the end of the war against the Japanese. But was it worth the 
environmental and financial costs? This massive site provides loads of ...

Figure 4: Examples of augmented queries and relevance labels from a passage. Augmented rel (#) denotes the
number of unique relevant passages labeled by all our five teachers.

approach can be considered an improved version
of contrastive pre-training, which appears to be
orthogonal to masked auto-encoding pre-training.
We leave the investigation of improving DR with
generative and contrastive pre-training combined
for future research.
Can we use the soft labels from multiple teach-
ers? In the literature, using the relevance scores
from a teacher as soft labels is a standard of knowl-
edge distillation (Lin et al., 2021b; Hofstätter et al.,
2021). However, in our study, even when train-
ing with uniform supervision from a sparse and
dense retriever (i.e., uniCOIL and Contriever), it
is challenging to normalize their relevance scores
and create universal soft labels, yielding significant
supervised and zero-shot effectiveness drops. We
suspect that dense and sparse retrievers have many
different views on relevance score computation;
thus, it is even harder for a dense retriever to learn
the score distributions from the different teachers.
Why sentence cropping yields a generalizable
dense retriever? Figure 4 showcases the aug-
mented queries by sentence cropping and neural
generation and their respectively augmented rele-
vant passages other than the original passages. We
observe two main differences between the cropped
sentences and generative queries. Cropped sen-
tences provide diverse queries from a passage; i.e.,
the two cropped sentences in Figure 4 include
slightly different topics (Manhattan Project and
atomic energy). By contrast, all generative queries
surround the same main topic, Manhattan Project,
about the original passages. Second, the cropped
sentences have more unique augmented relevant
passages than generative queries. This is maybe
because a cropped sentence, containing more in-
formation (keywords), is more challenging than a

generative human-like query. Thus, teachers show
more disagreement between each other on cropped
sentences. We hypothesize that a dense retriever
trained on cropped sentences can capture more di-
verse supervised signals from multiple teachers
than generative queries. This explains the reason
why DRAGON-S shows better generalization capa-
bility than DRAGON-Q.

6 Conclusion

We present DRAGON, a Dense Retriever trained
with diverse AuGmentatiON and a unified frame-
work of data augmentation (DA) to understand the
recent progress of training dense retrievers. Based
on the framework, we extensively study how to
improve dense retrieval training through query and
relevance label augmentation. Our experiments un-
cover some insights into training a dense retriever,
which contradicts common wisdom that cross en-
coder is the most effective teacher and human-like
queries are the most suitable training data for dense
retrieval. Then, we propose a diverse data augmen-
tation recipe, query augmentation with the mixture
of sentence cropping and generative queries, and
progressive relevance label augmentation with mul-
tiple teachers.

With our proposed recipe of DA, DRAGON is
the first to demonstrate that a single BERT-base-
sized dense retriever can achieve state-of-the-art
effectiveness in both supervised and zero-shot re-
trieval tasks. We believe that DRAGON can serve
as a strong foundation retrieval model for domain
adaptation retrieval tasks (Wang et al., 2022; Dai
et al., 2022) or the existing retrieval augmented
language models (Izacard et al., 2022; Shi et al.,
2023; Mallen et al., 2023).
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Limitations

Despite of the easy usage of single-vector dense
retrieval compared to the models with more fine-
grained late interactions (e.g., SPLADE++ and Col-
BERTv2), the limitations of DRAGONs are mainly
from the cost of training. First, to conduct di-
verse relevance label augmentation, well trained
dense, sparse and multi-vector retrievers are re-
quired. Second, to optimize DRAGONs’ effective-
ness, we scale up training queries to the size of 28
millions (compared to 0.8 millions in MS MARCO
training queries) and leverage the progressive train-
ing strategy, which costs five days of training time
with 32 A100 (40 GB) GPUs. The training cost can
be reduced by removing repetitive or meaningless
queries, which we leave for future work.

References
Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen,

Gautier Izacard, Sebastian Riedel, Hannaneh Ha-
jishirzi, and Wen-tau Yih. 2023. Task-aware retrieval
with instructions. In Proc. Findings of ACL, pages
3650–3675.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, et al.
2016. MS MARCO: A human generated machine
reading comprehension dataset. arXiv:1611.09268.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proc. ICML, page 41–48.

Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yim-
ing Yang, and Sanjiv Kumar. 2020. Pre-training tasks
for embedding-based large-scale retrieval. In Proc.
ICLR.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for con-
trastive learning of visual representations. In Proc.
ICML.

Xilun Chen, Kushal Lakhotia, Barlas Oguz, Anchit
Gupta, Patrick Lewis, Stan Peshterliev, Yashar
Mehdad, Sonal Gupta, and Wen-tau Yih. 2022.
Salient phrase aware dense retrieval: Can a dense
retriever imitate a sparse one? In Proc. Findings of
EMNLP, pages 250–262.

Nick Craswell, Bhaskar Mitra, and Daniel Campos.
2019. Overview of the TREC 2019 deep learning
track. In Proc. TREC.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and
Daniel Campos. 2020. Overview of the TREC 2020
deep learning track. In Proc. TREC.

Zhuyun Dai, Vincent Y. Zhao, Ji Ma, Yi Luan, Jianmo
Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith B.
Hall, and Ming-Wei Chang. 2022. Promptaga-
tor: Few-shot dense retrieval from 8 examples.
arXiv:2209.11755.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv:1810.04805.

Thibault Formal, Carlos Lassance, Benjamin Pi-
wowarski, and Stéphane Clinchant. 2022. From dis-
tillation to hard negative sampling: Making sparse
neural IR models more effective. In Proc. SIGIR,
page 2353–2359.

Thibault Formal, Carlos Lassance, Benjamin Pi-
wowarski, and Stéphane Clinchant. 2021. SPLADE
v2: Sparse lexical and expansion model for informa-
tion retrieval. arXiv:2109.10086.

Luyu Gao and Jamie Callan. 2021. Condenser: a pre-
training architecture for dense retrieval. In Proc.
EMNLP, pages 981–993.

Luyu Gao and Jamie Callan. 2022. Unsupervised cor-
pus aware language model pre-training for dense pas-
sage retrieval. In Proc. ACL, pages 2843–2853.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng,
David Simcha, Felix Chern, and Sanjiv Kumar. 2020.
Accelerating large-scale inference with anisotropic
vector quantization. In Proc. ICML.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015.
Distilling the knowledge in a neural network. In Proc.
NIPS.

Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong
Yang, Jimmy Lin, and Allan Hanbury. 2021. Ef-
ficiently teaching an effective dense retriever with
balanced topic aware sampling. In Proc. SIGIR, page
113–122.

Sebastian Hofstätter, Sophia Althammer, Michael
Schröder, Mete Sertkan, and Allan Hanbury.
2020. Improving efficient neural ranking mod-
els with cross-architecture knowledge distillation.
arXiv:2010.02666.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense
information retrieval with contrastive learning.
arXiv:2112.09118.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-
Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2022. Few-shot Learning with Retrieval Aug-
mented Language Models. arXiv:2208.03299.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, pages 535–547.

6394



Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proc. EMNLP, pages
6769–6781.

Carlos Lassance and Stephane Clinchant. 2023. The tale
of two MSMARCO - and their unfair comparisons.
In Proc. SIGIR, page 2431–2435.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proc. ACL, pages
6086–6096.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021a. Pyserini: A python toolkit for reproducible
information retrieval research with sparse and dense
representations. In Proc. SIGIR, page 2356–2362.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin.
2021b. In-batch negatives for knowledge distillation
with tightly-coupled teachers for dense retrieval. In
Proc. RepL4NLP, pages 163–173.

Zhenghao Lin, Yeyun Gong, Xiao Liu, Hang Zhang,
Chen Lin, Anlei Dong, Jian Jiao, Jingwen Lu, Daxin
Jiang, Rangan Majumder, and Nan Duan. 2022.
Prod: Progressive distillation for dense retrieval.
arXiv:2209.13335.

Shuqi Lu, Di He, Chenyan Xiong, Guolin Ke, Waleed
Malik, Zhicheng Dou, Paul Bennett, Tie-Yan Liu,
and Arnold Overwijk. 2021. Less is more: Pretrain a
strong Siamese encoder for dense text retrieval using
a weak decoder. In Proc. EMNLP, pages 2780–2791.

Xueguang Ma, Kai Sun, Ronak Pradeep, and Jimmy Lin.
2021. A replication study of dense passage retriever.
arXiv:2104.05740.

Joel Mackenzie, Andrew Trotman, and Jimmy Lin.
2021. Wacky weights in learned sparse represen-
tations and the revenge of score-at-a-time query eval-
uation. arXiv:2110.11540.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proc. ACL, pages 9802–9822.

Rui Meng, Ye Liu, Semih Yavuz, Divyansh Agarwal,
Lifu Tu, Ning Yu, Jianguo Zhang, Meghana Bhat,
and Yingbo Zhou. 2023. AugTriever: Unsuper-
vised dense retrieval by scalable data augmentation.
arXiv:2212.08841.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo
Hernandez Abrego, Ji Ma, Vincent Zhao, Yi Luan,
Keith Hall, Ming-Wei Chang, and Yinfei Yang. 2022.
Large dual encoders are generalizable retrievers. In
Proc. EMNLP, pages 9844–9855.

Rodrigo Nogueira and Jimmy Lin. 2019. From
doc2query to docTTTTTquery.

Barlas Oguz, Kushal Lakhotia, Anchit Gupta, Patrick
Lewis, Vladimir Karpukhin, Aleksandra Piktus,
Xilun Chen, Sebastian Riedel, Scott Yih, Sonal
Gupta, and Yashar Mehdad. 2022. Domain-matched
pre-training tasks for dense retrieval. In Proc.
NAACL, pages 1524–1534.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. RocketQA: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In Proc. NAACL, pages
5835–5847.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proc. EMNLP, pages 3982–3992.

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao,
QiaoQiao She, Hua Wu, Haifeng Wang, and Ji-Rong
Wen. 2021. RocketQAv2: A joint training method
for dense passage retrieval and passage re-ranking.
In Proc. EMNLP, pages 2825–2835.

Keshav Santhanam, Omar Khattab, Christopher Potts,
and Matei Zaharia. 2022a. Plaid: An efficient engine
for late interaction retrieval. arXiv:2205.09707.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2022b. Col-
BERTv2: Effective and efficient retrieval via
lightweight late interaction. In Proc. NAACL, pages
3715–3734.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen-tau Yih. 2023. Replug: Retrieval-augmented
black-box language models. arXiv:2301.12652.

Nandan Thakur, Nils Reimers, Johannes Daxen-
berger, and Iryna Gurevych. 2021a. Augmented
SBERT: Data augmentation method for improving
bi-encoders for pairwise sentence scoring tasks. In
Proc. NAACL, pages 296–310.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021b. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Proc. NIPS.

Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna
Gurevych. 2022. GPL: Generative pseudo labeling
for unsupervised domain adaptation of dense retrieval.
In Proc. NAACL, pages 2345–2360.

Xing Wu, Guangyuan Ma, Meng Lin, Zijia Lin,
Zhongyuan Wang, and Songlin Hu. 2022. Contex-
tual masked auto-encoder for dense passage retrieval.
arXiv:2208.07670.

6395



Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao.
2022. RetroMAE: Pre-training retrieval-oriented lan-
guage models via masked auto-encoder. In Proc.
EMNLP, pages 538–548.

Ji Xin, Chenyan Xiong, Ashwin Srinivasan, Ankita
Sharma, Damien Jose, and Paul Bennett. 2022. Zero-
shot dense retrieval with momentum adversarial do-
main invariant representations. In Proc. ACL, pages
4008–4020.

Yue Yu, Chenyan Xiong, Si Sun, Chao Zhang, and
Arnold Overwijk. 2022. COCO-DR: Combating dis-
tribution shift in zero-shot dense retrieval with con-
trastive and distributionally robust learning. In Proc.
EMNLP, pages 1462–1479.

Hansi Zeng, Hamed Zamani, and Vishwa Vinay. 2022.
Curriculum learning for dense retrieval distillation.
In Proc. SIGIR, page 1979–1983.

6396



A Appendices

A.1 Baseline Models
We compare DRAGON with dense retrievers us-
ing the backbone of bert-base-uncased trained with
advanced techniques. (1) Knowledge Distillation:
RocketQAv2 (Ren et al., 2021) distills knowledge
from a cross encoder while CL-DRD (Ren et al.,
2021) combines curriculum learning and cross-
encoder distillation. They all use cross encoders’
knowledge to augment positive relevance labels as
our approach. (2) Contrastive Pre-training: coCon-
denser (Gao and Callan, 2022), Contriever (Izacard
et al., 2021) and COCO-DR (Yu et al., 2022) are
first pre-trained on different corpus listed in Ta-
ble 1, and then fine-tuned on MS MARCO training
queries. (3) Masked Auto-Encoding Pre-Training:
COT-MAE (Wu et al., 2022) and RetroMAE (Xiao
et al., 2022) are first pre-trained to recover polluted
sentences and then fine-tuned on MS MARCO
training queries. For RetroMAE, we use the vari-
ant with the best BEIR retrieval effectiveness for
comparison. (4) Domain adaptation: We consider
GPL (Wang et al., 2022) and Promptagator (PTR;
Dai et al., 2022), which use generative models to
create pseudo relevance data for each corpus in
BEIR and train one expert dense retriever for each
corpus. This approach requires the target corpus
while training. Note that COCO-DR can also be
considered domain adaptation on BEIR although it
uses one model for all tasks.

Note that coCondenser and COT-MAE are fine-
tuned on the “non-standard” MS MARCO passage
corpus that has been augmented with title. Thus,
we also conduct inference on the corpus with ti-
tle for them; otherwise, we use the official MS
MARCO passage corpus. In addition, we also re-
port the retrieval effectiveness of GTR-XXL (Ni
et al., 2022) and ColBERTv2 (Santhanam et al.,
2022b) from their original papers and conduct re-
trieval for SPLADE++ using Pyserini (Lin et al.,
2021a) for reference. We list all the other model
checkpoints used for evaluations in Appendix A.2.

A.2 Model Checkpoints

Teacher Models: (1) uniCOIL: https://hu
ggingface.co/castorini/unicoil-m
smarco-passage; (2) Contriever: https:
//huggingface.co/facebook/contri
ever-msmarco; (3) GTR-XXL: https://hu
ggingface.co/sentence-transformer
s/gtr-t5-xxl; (4) ColBERTv2: https://

github.com/stanford-futuredata/Co
lBERT; (5) SPLADE++: http://download
-de.europe.naverlabs.com/Splade_
Release_Jan22/splade_distil_CoCo
denser_medium.tar.gz; (6) Cross encoder:
https://huggingface.co/cross-enc
oder/ms-marco-MiniLM-L-12-v2.

Baseline Models: (1) CL-DRD: https://gi
thub.com/HansiZeng/CL-DRD; (2) Rock-
etQAv2: we directly copy the numbers from San-
thanam et al. (2022b); (3) COT-MAE: https:
//huggingface.co/caskcsg/cotma
e_base_msmarco_retriever; (4) Retro-
MAE: https://huggingface.co/Shita
o/RetroMAE_BEIR; (5) coCondenser: https:
//huggingface.co/Luyu/co-conde
nser-marco-retriever; (6) Contriever:
https://huggingface.co/faceboo
k/contriever-msmarco; (7) COCODR:
https://huggingface.co/OpenMatch
/cocodr-base-msmarco; (8) Promptagator
(PTR) and GPL: we directly copy the numbers from
their original papers (Dai et al., 2022; Wang et al.,
2022).

A.3 Implementation Details

We train our dense retrievers initialized from bert-
base-uncased on 32 A100 GPUs (40GB) with a
per-GPU batch size of 64 and a learning rate of
3e − 5. Each batch includes an augmented query
with its positives and hard negatives. Following
Karpukhin et al. (2020), we use asymmetric dual
encoder with two distinctly parameterized encoders
and leverage in-batch negative mining. Note that
symmetric dual encoder shows poor generalization
capability in our initial experiments. We set the
maximum query and passage lengths to 32 and 128
for MS MARCO training and evaluation. For BEIR
evaluation, we set maximum input lengths to 512.

Table 7: MS MARCO and our augmented training
queries statistics.

number Avg. # tokens Avg. # rel
passages in corpus 8,841,823 78.8 na
training queries 532,761 8.2 1.0

augmented training queries
cropped sentences 28,545,938 24.4 23.1
generative queries 28,545,938 8.0 24.7

test queries
Dev 6,980 7.8 1.1
DL2019 43 7.6 95.4
DL2020 54 7.5 68.0
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A.4 MS MARCO Dataset Statistics
Table 7 lists the data statistics of MS MARCO
dataset, including the original training queries and
test queries (i.e., Dev, DL19 and DL20). In addi-
tion, we also list the augmented queries used to
train DRAGONs with full relevance label augmen-
tation by five teachers.

A.5 Impacts of Top-k Positive Sampling

Table 8: Ablation on progressive label augmentation
from top-k passages using cropped sentences as queries.

top-k positives 1 5 10
MARCO Dev (RR@10) 33.1 36.4 36.6
BEIR-13 (nDCG@10) 42.4 48.0 49.3
∗ Trajectory: uniCOIL → Contriever → ColBERTv2.

In Section 3.2, we mention that our sampling
scheme treats top 10 passages from each teacher
ranked list as positives and top 45–50 as negatives.
We further conduct experiment to study the im-
pact of the positive sampling scheme. Following
the experiment setups in Section 3.3, we use the
sentences cropped from MS MARCO corpus as
augmented queries and we conduct progressive la-
bel augmentation using top-k passages as positive.
The results are tabulated in Table 8. We observe
that treating top-10 passages from each teacher as
positives yields the best supervised and zero-shot
effectiveness. On the other hand, using only the top
passage as positive results in significant effective-
ness drop. This result indicates that the top passage
labeled by a teacher cannot transfer its knowledge
well to a student. This result is similar to the obser-
vation from Chen et al. (2022).

A.6 An Intuition Behind Uniform and
Progressive Supervisions

As shown in Section 3.2, uniform supervision pro-
vides good supervision without fusion weight tun-
ing as fused supervision. Intuitively, a positive re-
trieved by more teachers has a higher probability to
be sampled and may be more relevant to a query. To
provide a sense of why uniform supervision works,
we estimate the accuracy of supervision by comput-
ing the probability of each positive sampled under
uniform supervision, and rank the positives accord-
ing to the simulated probability. For example, at the
3rd iteration of progressive training, given a query,
a positive passage is labeled positive by all the three
teachers, the probability of the passages being sam-
pled is 1

3 · ( 1k + 1
k + 1

k ) =
1
k . In our experiments,

Table 9: Uniform and progressive supervision effective-
ness comparison at each training iteration. The models
are trained using cropped sentences as queries.

Teacher / iteration
uniform progressive

1 → 2 → 3 1 → 2 → 3
uniCOIL ✓ ✓ ✓ ✓ ✓ ✓
Contriever ✓ ✓ ✓ ✗ ✓ ✓
ColBERTv2 ✓ ✓ ✓ ✗ ✗ ✓
MARCO Dev 36.2 37.0 36.9 34.9 35.8 36.6
BEIR-13 46.6 47.4 47.6 46.7 48.6 49.3

effectiveness of teacher
MARCO Dev 39.1 39.1 39.1 35.1 36.5 39.1

diversity of teacher
Avg. # rel 17.5 17.5 17.5 10.0 14.9 17.5

each teacher labels the top 10 (k = 10) retrieved
passages as positives in our labeling scheme. Note
that, in the case where multiple positives have equal
probability, we further rank them according to their
sum of reciprocal rank. For instance, if the two pas-
sages (e.g., p1 and p2) are retrieved by all the three
teachers; then, we further rank them according to
their scores 1

r11
+ 1

r12
+ 1

r13
and 1

r21
+ 1

r22
+ 1

r23
,

where rmn denotes the rank of the passage pm by
the n-th teacher. In addition, we also estimate the
diversity of supervision by computing the number
of positive passages in union sets from the sources
of supervisions.

Table 9 reports the detailed effectiveness and
supervision quality (accuracy and diversity) com-
parison at each training iteration between uniform
and progressive supervision as discussed in our
pilot study. We observe that uniform supervision
provides accurate and diverse supervision in the
beginning of training; however, the generalization
improvement over iteration is less than progressive
supervision.

A.7 Latency Measurement for Relevance
Label Augmentation

We measure the latency of label augmentation us-
ing batch retrieval on a single NVIDIA A100 40GB
GPU for GPU search and 60 Intel(R) Xeon(R) Plat-
inum 8275CL CPUs @ 3.00GHz for CPU search.
For cross encoder, we conduct label augmentation
by re-ranking text pairs with a batch size of 100.
For dense retrieval (Contriever and GTR-XXL)
and sparse retrieval, we use Faiss-GPU index and
Lucene index from Pyserini (Lin et al., 2021a) with
60 threads, respectively, and search with a batch
size of 100. Note that we use a batch size of 25 to
encode queries using GTR-XXL due to GPU mem-
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Table 10: The latency comparison of relevance label
augmentation with batch inference using different teach-
ers on MS MARCO.

candidates latency (ms/q)

Type Model (#) GPU CPU
cross-encoder miniLML6v2 1K 600 -
dense Contriever 8.8M < 1 -
dense GTR-XXL 8.8M 10 -
sparse uniCOIL 8.8M - 84
sparse SPLADE++ 8.8M - 144
multi-vec ColBERTv2 8.8M 55 -

Table 11: Detailed effectiveness (Success5) on LoTTE.

sparse multi-vec dense
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writing 78.7 80.1 78.8 78.2 79.2 81.5
recreating 71.9 72.3 73.4 74.6 76.0 73.9
science 56.6 56.7 55.3 56.9 56.9 57.9
technology 65.9 66.1 64.9 68.8 65.4 67.6
lifestyle 83.7 84.7 84.9 84.7 85.6 85.9
pooled 70.9 71.6 71.4 72.4 72.6 73.5

Fo
ru

m

writing 75.2 76.3 76.2 75.2 75.6 77.5
recreating 69.2 70.8 69.9 69.3 70.3 69.1
science 44.9 46.1 40.1 40.1 40.7 41.4
technology 53.1 53.6 50.5 51.2 50.5 51.4
lifestyle 76.9 76.9 77.0 77.4 76.9 77.7
pooled 62.3 63.4 61.1 61.2 61.4 62.1

ory constraint, which is also the main bottleneck
for GTR-XXL batch retrieval. For ColBERTv2, we
use the improved version of multi-vector retrieval,
PLAID (Santhanam et al., 2022a), and search with
a batch size of 1, which is the only option.

Table 10 compares the latency cost per query for
relevance label augmentation with different neural
rankers and demonstrates that leveraging all the
retrievers to augment relevance labels are still more
efficient than a cross encoder.

A.8 Detailed evaluation on LoTTE

Table 11 lists DRAGON’s effectiveness on five top-
ics without aggregation. Although all the variants
of DRAGON show strong effectiveness on LoTTE,
we find that DRAGONs perform poorly on the Fo-
rum queries about topics of science and technology
compared to SPLADE++ and ColBERTv2. Com-
bining science corpus pre-training with DRAGON

training strategy is a possible solution.

A.9 More Related Work

Knowledge Distillation. Our work is closely re-
lated to the previous work exploring knowledge
distillation (KD; Hinton et al., 2015) from Col-
BERT, cross encoder or their ensemble (Hofstätter
et al., 2021; Hofstätter et al., 2020) to improve the
effectiveness of DR (Lin et al., 2021b; Qu et al.,
2021). However, they only take the advantage of
soft labels from KD and use the relevant passages
labeled by humans. The recent work (Ren et al.,
2021; Zeng et al., 2022) mines more positive sam-
ples using cross encoder to further augment the
limited relevance labels by humans. Nevertheless,
it is challenging for cross encoders to augment rel-
evance labels for queries in scale due to its low
efficiency. Chen et al. (2022) first explore label
augmentation using singe sparse retrieval model on
large-scale queries and demonstrate that a dense
retriever can mimic a teacher of a sparse retriever
(e.g., BM25). Different from the previous work,
we explore label augmentation using multiple su-
pervisions on large-scale augmented queries.
Curriculum Learning. Easy-to-hard training
strategies (Bengio et al., 2009) have been applied
to improve many machine learning tasks, includ-
ing dense retrieval (Zeng et al., 2022; Lin et al.,
2022). The previous work focuses on distilling
complex knowledge from cross encoders to a dense
retriever with a curriculum training strategy and
demonstrates improved effectiveness in supervised
retrieval tasks. In our work, we explore to pro-
gressively train a dense retriever with the diverse
supervisions from dense, sparse and multi-vector
retrievers to improve both supervised and zero-shot
effectiveness.
Pre-Training. There are two popular approaches
to pre-training a dense retriever. The first one is
contrastive pre-training, aiming to increase the size
of training data by creating artificial text pairs (Lee
et al., 2019; Chang et al., 2020; Izacard et al.,
2021) from a corpus or collecting question–answer
pairs (Oguz et al., 2022; Ni et al., 2022) from web-
sites. The second one is masked auto encoding
pre-training, where models are trained to recover
the corrupted texts (Gao and Callan, 2021; Lu et al.,
2021; Xiao et al., 2022; Wu et al., 2022). Our work
is similar to contrastive pre-training but instead
of creating large-scale training data in an unsuper-
vised or weakly supervised manner, we investigate
how to conduct supervised contrastive learning on
artificially created text pairs. We demonstrate that
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combining masked auto encoding pre-training and
our supervised contrastive learning can further im-
prove models’ generalization capability.
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