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Abstract

In speech translation, leveraging multimodal
data to improve model performance and ad-
dress limitations of individual modalities has
shown significant effectiveness. In this pa-
per, we harness the complementary strengths
of speech and text to improve speech transla-
tion. However, speech and text are disparate
modalities, we observe three aspects of modal-
ity gap that impede their integration in a speech
translation model. To tackle these gaps, we
propose Fuse-Speech-Text (FuseST), a cross-
modal model which supports three distinct in-
put modalities for translation: speech, text
and fused speech-text. We leverage multiple
techniques for cross-modal alignment and con-
duct a comprehensive analysis to assess its
impact on speech translation, machine trans-
lation and fused speech-text translation. We
evaluate FuseST on MuST-C, GigaST and new-
stest benchmark. Experiments show that the
proposed FuseST achieves an average 34.0
BLEU on MuST-C En→De/Es/Fr (vs SOTA
+1.1 BLEU). Further experiments demonstrate
that FuseST does not degrade on MT task, as
observed in previous works. Instead, it yields
an average improvement of 3.2 BLEU over the
pre-trained MT model. Code is available at
https://github.com/WenbiaoYin/FuseST.

1 Introduction

Speech translation (ST) accepts speech signals as
the input and outputs target translation. Speech
translation can be broadly categorized into cascade
system and end-to-end speech translation (E2E ST).
Cascade system (Sperber et al., 2017; Zhang et al.,
2019; Lam et al., 2021) usually combines automatic
speech recognition (ASR) and machine translation
(MT). The MT subsystem uses ASR transcripts
as input, which provide clear expression but may
contain errors stemming from ASR. While E2E
ST (Tang et al., 2021a; Fang et al., 2022; Ye et al.,

∗Corresponding author

“ I’m [noise] delight [noise] to be here.”
“ I’d like to be here.”ASR

End-to-End ST FuseST Cascade MT Subsystem

Target Translation

Speech: correct but contains noise Transcript: clear but contains error

(a) (b)

Fusion
Transcript

Semantic

Error

Speech
Noise

Correct
Speaker

Paralinguistics

Clear

Fusion: correct and clear

Figure 1: Left: Data distributions of speech and tran-
script. Right: The pipeline of our proposed FuseST.

2022) can directly map speech signals to the tar-
get translation, thus avoiding the problem of error
propagation.

We observe a noticeable modality distribution
difference between speech and ASR transcript
as shown in Figure 1a. Speech signals contain
abundant information, such as paralinguistics and
speaker characteristics, but they are harder to model
and more susceptible to noise. On the other hand,
ASR transcripts are clear but may contain errors.
For example, as shown in Figure 1b, the speech sig-
nal conveys the message "I’m delight to be here",
but the speech signal contains numerous blank seg-
ments and background noise. E2E ST may en-
counter challenges in accurately extracting infor-
mation directly from speech, particularly in the
presence of noise, without compromising transla-
tion quality. Meanwhile, the ASR model mistak-
enly transcribes the speech as "I’d like to be here".
The MT subsystem may proceed with translation
without awareness of errors in "I’d like".

Inspired by these findings, we propose a model
that fuses speech and ASR transcript (fused speech-
text) as input to leverage their complementary
strengths to improve speech translation. As shown
in Figure 1b, our model supports three distinct
modalities of input for translation: speech, text
and fused speech-text.

However, speech and text are disparate modal-
ities, we observe three aspects of modality gap
that impede their integration in a speech transla-
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tion model: 1. The speech representation is in
continuous space, while the text representation
is in discrete space. 2. When using speech and
golden transcript as input, the model relies heavily
on the golden transcript information and neglects
the speech information. This behavior is because
the golden transcript is more straightforward and
contains precise semantic information, adequate
for achieving high translation quality. The model
will learn a shortcut to rely solely on the golden
transcript. In contrast, speech representations ob-
tained through the pre-trained model are harder
to model, they include four types of information
(Chen et al., 2022): content, semantics, paralinguis-
tics and speaker characteristics. However, when us-
ing speech and ASR transcript as input, solely rely-
ing on textual information is insufficient to achieve
good translation quality. We expect the model to
incorporate more speech information. 3. Diverse
modality inputs lead to distinct hidden states in the
encoder and distinct distributions in the decoder.

We propose several methods to bridge the modal-
ity gap to better integrate speech and text. 1. We
explore mapping continuous speech representation
to a discrete space using a codebook to align with
the text representation. 2. We adopt the prompt tags
implicitly guide the model to utilize more speech
information when the transcript is inaccurate. We
further explore how to explicitly guide the model to
fuse speech and text. Meanwhile, we apply Cross-
modal Contrastive Learning (CCL, Sohn, 2016)
to reduce the gap between the model semantic of
speech and its corresponding transcript. 3. We
adopt Cross-Attentive Regularization (CAR, Tang
et al., 2021a) to align the states of the encoder and
Cross-Modal Regularization (CMR) to align the
distribution of the decoder.

Our contributions are summarized as follows:

• We propose a model that fuses speech and text
to improve speech translation, which supports
three distinct input modalities for translation:
speech, text and fused speech-text.

• To fuse speech and text as input and leverage
their complementary strengths, we conduct a
comprehensive analysis of the modality gap
between speech and text. We propose targeted
improvements to bridge the modality gap be-
tween speech and text.

• Our experiments show that our model
achieves an average 34.0 BLEU on MuST-

C En→De/Es/Fr (vs SOTA +1.1 BLEU) and
achieves an average improvement of 3.2
BLEU over the pre-trained MT model on
MuST-C.

2 Related Work

Cascade ST Cascade ST, achieved by concatenat-
ing ASR and MT components, has been extensively
employed in commercial speech translation sys-
tems. However, cascade ST is vulnerable to chal-
lenges such as error propagation and high latency.
To overcome the error propagation, ( Bertoldi and
Federico, 2005; Beck et al., 2019; Sperber et al.,
2019) proposed to feed the MT system with ASR
data structures; ( Peitz et al., 2012; Cheng et al.,
2019; Di Gangi et al., 2019a) proposed to make
MT robust to ASR errors, for instance by training
it on parallel data incorporating factual or emulated
ASR errors.
End-to-End ST To overcome the error propaga-
tion and high latency in the cascade ST systems,
(Bérard et al., 2016; Duong et al., 2016) proposed
an end-to-end architecture for speech translation,
which has attracted extensive attention ( Vila et al.,
2018; Salesky et al., 2019; Gangi et al., 2019; In-
aguma et al., 2021; Zhao et al., 2021). However, it
is difficult to train an end-to-end speech translation
model directly, primarily due to the inherent vari-
ability and complexity of speech signals and the
scarcity of high-quality speech-translation datasets.
Some training methods like pretraining ( Weiss
et al., 2017; Bérard et al., 2018; Bansal et al., 2019;
Wang et al., 2020a; Tang et al., 2021b), multi-task
learning( Le et al., 2020; Vydana et al., 2021; Ye
et al., 2021; Tang et al., 2022), data augmentation
( Park et al., 2019; Jia et al., 2019; Bahar et al.,
2019; Pino et al., 2020), meta-learning ( Indurthi
et al., 2020), contrastive learning ( Li et al., 2021;
Ye et al., 2022), knowledge distillation ( Liu et al.,
2019; Tang et al., 2021a) and curriculum learning
( Kano et al., 2017; Wang et al., 2020b), are proved
to be effective.

3 Methods

3.1 Problem Formulation
The speech translation corpus is usually comprised
of triples that include speech, transcript and target
translation, which can be denoted as D = (s, x, y).
Here, s is an audio sequence, x is the corresponding
transcript and y is the corresponding target transla-
tion. Our model supports three distinct input modal-
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ities for translation: speech (ST: s → y), text (MT:
x → y) and fused speech-text (FT: s+ x → y).

3.2 Model Framework

As shown in Figure 2, our model consists of four
sub-modules: Speech Encoder, Speech-Text Fusion
Module, Transformer Encoder and Transformer
Decoder.
Speech Encoder The speech encoder(S-Enc) con-
sists of Wav2vec2.0 (Baevski et al., 2020b) and
two additional convolutional layers. The input is
a raw waveform signal sampled at 16kHz, and
Wav2vec2.0 is used to extract low-level speech
representations from it. The two additional convo-
lutional layers with stride 2 to shrink the speech
length by a factor of 4. A greater degree of down-
sampling would have led to information loss, while
a lesser degree of downsampling could have re-
sulted in modal misalignment and compromised
performance. Denote a = S-Enc(s) as the speech
representation.

To reduce the number of parameters and facili-
tate knowledge transfer, we share the Transformer
encoder and Transformer decoder for ST, MT and
FT.
Transformer Encoder and Transformer Decoder
The Transformer encoder and Transformer decoder
are composed of Ne transformer encoder layers and
Nd transformer decoder layers, respectively, with
the same configuration as the original implemen-
tation (Vaswani et al., 2017). We fisrt pre-train
the model on external MT data and then optimize
the whole model by minimizing the final loss. For
the MT task, the input of the Transformer encoder
is the embedding of transcript e = Emb(x). For
the ST task, the input is the audio output repre-
sentation of the speech encoder a = S-Enc(s).
For the FT task, the input is the fused speech-
text representation f (see details in Section 3.3).
The Transformer encoder further extracts the high-
level semantic hidden representations and facili-
tates knowledge sharing across the three modalities.
The Transformer decoder generates corresponding
target translation for ST, MT and FT. Besides, we
train our model with auxiliary ASR task to improve
translation performance. The training losses of ST,
MT, FT and ASR are as follows:

LST = −
∑

n

logP (yn|sn) (1)

LMT = −
∑

n

logP (yn|xn) (2)

LFT = −
∑

n

logP (yn|sn, xn) (3)

LASR = −
∑

n

logP (xn|sn) (4)

LST , LMT , LFT and LASR are cross-entropy
losses on <speech, target>, <transcript, target>,
<speech, transcript, target> and <speech, tran-
script>, respectively.

3.3 Fusing Speech and Text

To leverage the complementary strengths between
speech and text, we propose the Fuse-Speech-
Text(FuseST) method. We first introduce FuseST
in this section and later show how to bridge the
modality gap between speech and text.

Here, we utilize an open-source ASR model
to construct a dataset of <speech, ASR transcript,
target> pair from the original dataset of <speech,
golden transcript, target> pair. Given a speech-
transcript-target pair (s, x, y), the transcript x
could be an ASR transcript or golden transcript,
and the fused speech-text representation f is de-
fined as:

f = Concat(P s, S-Enc(s), P t, P f , Emb(x))
(5)

where P s and P t are prompt tags to identify
whether the input modal is speech or text, and
P f is a prompt tag (<golden>/<asr>) to indicate
whether the transcript is manually annotated or gen-
erated through ASR system. The prompt tags serve
as implicit guidelines for the model, prompting it
to harness a higher degree of speech information
when the transcript is inaccurate, while inducing a
decreased reliance on speech information when the
transcript is deemed accurate.

3.4 Align Speech and Text with FuseST

As we analyzed in Section 1, we observe three as-
pects of the modality gap between speech and text.
We propose several methods to bridge the modality
gap between speech and text. In addition to the
implicit guidance mentioned above, we introduce
three additional methods in this section: Cross-
modal Contrastive Learning, Cross-Attentive Reg-
ularization and Cross-Modal Regularization.
Cross-modal Contrastive Learning Given a pos-
itive example of speech-transcript (s, x) pair, we
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Figure 2: Overview of our proposed FuseST. FT denotes fused speech-text input for translation; CCL denotes
Cross-modal Contrastive Learning; CAR denotes Cross-Attentive Regularization; CMR denotes Cross-Modal
Regularization.

can get speech representation a = S-Enc(s), tran-
script representation e = Emb(x). We randomly
pick a set of B − 1 transcripts

{
e−i

}B−1

i=1
from the

same batch as negative examples. For speech repre-
sentation a and transcript representation e, we first
average them in terms of the time dimension and
apply the multi-class N-pair contrastive loss (Sohn,
2016):

u = MeanPool(a) (6)

v = MeanPool(e) (7)

LCCL = −
∑

s,x

log
exp(sim(u, v)/τ)∑

ej∈A exp(sim(u, v(ej))/τ)

(8)
where A = {e} ∪

{
e−i

}B−1

i=1
, τ is the temperature

hyper-parameter and sim is the cosine similarity
function.
Cross-Attentive Regularization The cross-
attentive regularization (Tang et al., 2021a)
(CAR) can increase the similarity among distinct
modalities. The essence of CAR is to use a
similarity matrix to project a tensor sequence onto
a space of equivalent length as another tensor
sequence, then compute L2 loss between the two
sequences. Here, we utilize the CAR to compute
losses separately between speech representation
a and fused speech-text representation f and

between text representation e and fused speech-text
representation f . The CAR loss is defined as:

LCAR = LCAR(a, f) + LCAR(e, f) (9)

Cross-Modal Regularization To bridge the modal-
ity gap in inference, we endeavor to optimize the
congruity of the ultimate distributions of ST, MT
and FT:

P (y|s) = P (y|s, x) = P (y|x) (10)

The ST task is more difficult than the MT task
since the speech signals are harder to model and
more susceptible to noise. Previous works (Liu
et al., 2019; Gaido et al., 2020; Tang et al., 2021a)
utilize knowledge distillation to facilitate knowl-
edge acquisition by an ST model from a well-
trained MT model. However, in our work, the tran-
script may contain errors; the accuracy of the FT
task is usually much higher than the corresponding
ST and MT task. We designate the FT task as the
teacher while ST and MT tasks as the student, min-
imizing the loss between the student and teacher
outputs. The KD loss is defined as:

LKD = LKD(a, f) + LKD(e, f) (11)

Furthermore, we minimize the Jensen-Shannon
Divergence (Lin, 1991) (JSD) loss between the
three output distributions, which is:
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LJSD =
∑

n

(JSD {p(yn|an)||p(yn|, fn)}

+JSD {p(yn|en)||p(yn|fn)})
(12)

The final training objective is as follows:

L =αLST + αLMT + (1− α)LKD + LFT

+LASR + LCCL + βLCAR + LJSD

(13)
where α and β are predefined hyper-parameters.

3.5 Inference

Our model supports three distinct modalities for
translation: speech, text and fused speech-text. For
FT task, given an audio sequence s, we use an
open-source ASR model to get its corresponding
transcript x, then fuse the audio sequence s and
its corresponding transcript x as input and output
target translation.

4 Experiments

4.1 Experimental Setups

ST Datasets We conduct experiments on MuST-
C1 (Di Gangi et al., 2019b) and GigaST2 (Ye
et al.). MuST-C is a multilingual speech trans-
lation dataset that contains translations from En-
glish to 8 languages. MuST-C contains several
hundred hours of audio recordings from English
TED Talks; we conduct experiments on MuST-C
En→De/Es/Fr. We use the dev set for develop-
ment and the tst-COMMON set for test. GigaST
is a large-scale pseudo speech translation dataset
created by translating the text in GigaSpeech. We
conduct experiments on GigaST En→Zh, and test
on in-house cgtn, zhiyuan and aiconf datasets. We
utilize an open-source ASR model (whisper base.en
3) to construct a dataset of <speech, ASR transcript,
target> pair from original ST dataset. The Word
Error Rate (WER) of our constructed datasets are
shown in the last column of Table 1.
MT Datasets Our model allows us to use the ex-
ternal MT dataset for further training. We intro-
duce external WMT datasets for En→De/Es/Fr and
in-house MT dataset for En→Zh. The detailed
statistics of all datasets are shown in Table 1.

1We use v1.0 https://ict.fbk.eu/must-c/
2https://st-benchmark.github.io/resources/

GigaST
3https://huggingface.co/openai/whisper-base.

en

ST MT Train MT Test
WER

#hours #sents name #sents name
MuST-C (Medium Resources)
En→De 408 234K WMT17 4.5M newstest2014 22.65
En→Es 504 270K WMT17 4.1M newstest2013 22.60
En→Fr 492 280K WMT17 5.5M newstest2014 22.08
GigaST (High resources)
En→Zh 9,780 7,650K in-house 105M newstest2019/2020 21.98

Table 1: Statistics of all datasets.

Model Configuration For the speech encoder, we
use Wav2vec2.04 following the base configuration,
which is only pre-trained on Librispeech (Panay-
otov et al., 2015) without any finetuning. Two lay-
ers of CNNs after the Wav2vec2.0 with kernel size
5, stride size 2, padding 2 and hidden dimension
1024. The transformer encoder and decoder follow
the base configuration, with hidden size hd = 512,
8 attention heads and 2048 FFN hidden states. We
use Ne = 6 transformer encoder layers and Nd = 6
transformer decoder layers.
Experiment Details We first pre-train our model
on the external MT dataset; the learning rate is
5e-4. We then optimize our model by minimizing
the final loss; the learning rate is 6e-5. We use the
raw 16kHZ speech as input and jointly tokenize
the bilingual text using SentencePiece (Kudo and
Richardson, 2018). We use an Adam optimizer
with β1 = 0.9, β2 = 0.98 and 20k warm-up up-
dates. The dropout is set to 0.15 and the value
of label smoothing is set to 0.1. For the training
loss, we set weight of LST and LMT α = 0.8, con-
trastive temperature τ = 0.02 and weight of LCAR

β = 0.02. We use sacreBLEU5 (Post, 2018) to
evaluate case-sensitive detokenized BLEU.

4.2 Baseline Systems

We compare our method with cascade models and
end-to-end baseline models including: Espnet (In-
aguma et al., 2021), W2V2-Transformer (Fang
et al., 2022), Ye et al., 2021, Xu et al.,
2021, MTL (Tang et al., 2021b), FAT-ST (Zheng
et al., 2021), JT-S-MT (Tang et al., 2021a),
Chimera (Han et al., 2021), XSTNet (Ye et al.,
2021), SATE (Xu et al., 2021), STEMM (Fang
et al., 2022), TaskAware (Indurthi et al., 2021),
STPT (Tang et al., 2022), ConST (Ye et al., 2022).

Besides, we implement several methods for fus-
ing speech and text modalities. The only difference

4https://dl.fbaipublicfiles.com/fairseq/
wav2vec/wav2vec_small.pt

5https://github.com/mjpost/sacrebleu, sacreBLEU
signature: nrefs:1 | bs:1000 | seed:12345 | case:mixed | eff:no |
tok:13a | smooth:exp | version:2.0.0
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Models
External Data BLEU

Speech Text ASR MT De Es Fr Avg.
Cascade Model
Espnet (Inaguma et al., 2021) - - - - 23.6 - 33.8 -
W2V2-Transformer (Fang et al., 2022) ✓ - - ✓ 26.9 30.0 36.6 31.2
(Ye et al., 2021) - - ✓ ✓ 25.2 - 34.9 -
(Xu et al., 2021) - - ✓ ✓ 28.1 - - -

End-to-End Model
MTL (Tang et al., 2021b) - - - ✓ 23.9 28.6 33.1 28.5
FAT-ST (Zheng et al., 2021) ✓ ✓ ✓ ✓ 25.5 30.8 - -
JT-S-MT (Tang et al., 2021a) - - - ✓ 26.8 31.0 37.4 31.7
Chimera (Han et al., 2021) ✓ - - ✓ 27.1† 30.6 35.6 31.1
XSTNet (Ye et al., 2021) ✓ - - ✓ 27.1 30.8 38.0 32.0
SATE (Xu et al., 2021) - - ✓ ✓ 28.1† - - -
STEMM (Fang et al., 2022) ✓ - - ✓ 28.7 31.0 37.4 32.4
TaskAware (Indurthi et al., 2021) - - ✓ ✓ 28.9 - - -
STPT (Tang et al., 2022) ✓ ✓ ✓ ✓ - 33.1 39.7 -
ConST (Ye et al., 2022) ✓ - - ✓ 28.3 32.0 38.3 32.9
FuseST-ST ✓ - - ✓ 27.7 32.4 37.2 32.4
FuseST-FT ✓ - - ✓ 29.2 33.9 38.9 34.0

Table 2: Case-sensitive detokenized BLEU scores on MuST-C tst-COMMON set. "Speech" denotes unlabeled
audio data, "Text" denotes unlabeled text data, e.g. Europarl V7 (Koehn, 2005), CC25 (Liu et al., 2020), † use 40M
OpenSubtitles (Lison and Tiedemann, 2016) as external MT data.

Models
De Es Fr

Avg.
newstest asr golden newstest asr golden newstest asr golden

Pre-trained 6E6D MT♯ 23.7 24.3 30.4 31.8 29.5 34.2 34.7 32.2 39.9 31.2
Pre-trained 24E6D MT♯ 27.5 25.7 31.9 34.8 32.0 37.0 38.1 34.2 41.5 33.6

STEMM (Fang et al., 2022) - - 31.5 - - - - - - -
FuseST-MT 25.0 28.6 34.2 32.9 33.5 37.7 35.9 37.7 44.1 34.4

Table 3: Case-sensitive detokenized BLEU scores on MuST-C tst-COMMON set and newstest. "asr" denotes use
the ASR transcript as input, "golden" denotes use the golden transcript as input. ♯ are trained on the same external
MT data and MuST-C <transcript, target> pair data (including our constructed data).

between our approach and others is the specific
method for fusing speech and text. SA-CTR: our
implementation involved drawing inspiration from
the image and text fusion techniques employed
in Li et al.’s (2022) to propose a method for fus-
ing speech and text. We utilize the method from
Baevski et al. (2020a) to map the speech represen-
tation e onto a discrete space using a codebook;
then we concatenate discrete speech representa-
tion and text representation as ours. Codebook-
Gumbel-Softmax: the Gumbel-Softmax quantiza-
tion computes logits representing the codebook vec-
tors; Codebook-K-means: K-means vector quanti-
zation computes the distance to all codeword vector
and chooses the closest.

4.3 Main Results

Comparison with End-to-End Baselines As
shown in Table 2, we compare our model with
several strong end-to-end baselines. Many existing

works rely on additional auxiliary data for better
performance, e.g. large-scale MT data and unla-
beled audio data. In the table, we provide a sum-
mary of the auxiliary data employed by these base-
lines, with a ✓ denoting its usage in the corre-
sponding column. Our E2E FuseST-ST achieves
comparable results with the previous best models.
When fusing speech and ASR transcript as input,
our FuseST-FT outperforms SOTA by an average
1.1 BLEU on MuST-C, demonstrating the superior-
ity of our approach.
Comparison with Cascade Baselines We com-
pare our model with several strong cascade sys-
tems. W2V2-Transformer, Ye et al. (2021) and
Xu et al. (2021) provided three strong cascade sys-
tems trained using MuST-C and external ASR and
MT data. As shown in Table 2, our E2E FuseST-
ST achieves comparable results with these strong
cascade models, while our FuseST-FT significantly
outperforms these strong cascade models.

6267



Models newstest2019 newstest2020
in-house cgtn in-house zhiyuan in-house aiconf

asr speech fused asr speech fused asr speech fused
Pre-trained 6E6D MT♯ 36.7 43.0 29.7 - - 28.2 - - 30.5 - -
Pre-trained 24E6D MT♯ 40.1 46.6 32.6 - - 29.5 - - 33.6 - -
SA-CTR (Li et al., 2022) 36.8 43.1 31.0 31.8 31.0 28.3 29.4 29.1 31.6 32.4 32.1
Codebook-Gumbel-Softmax♭ 36.8 43.0 30.9 30.0 31.7 28.1 28.4 28.9 31.7 31.6 32.5
Codebook-K-means♭ 36.9 43.2 31.0 31.3 31.8 28.2 29.3 29.0 31.5 31.7 32.3
Align-Mask♮ 38.3 43.9 30.8 32.1 31.7 28.4 29.8 29.4 32.1 33.1 33.0
FuseST 38.3 44.2 31.6 33.3 33.9 28.4 30.2 30.5 32.4 34.0 34.5

Table 4: Case-sensitive detokenized BLEU scores on En→Zh test sets. ♯ are training on the same MT data and
GigaST <transcript, target> pair data (including our constructed data); ♭ are using the method from (Baevski et al.,
2020a) to map the speech representation onto a discrete space using a codebook; ♮ is explicit guidance fusion(see
detail in Section 5.6(6)). "asr" denotes use the ASR transcript as input, "fused" denotes use ASR transcript and
speech as input. Hubert large is used to extract speech features on the GigaST En→Zh.

Task MT MT ST FT
Config. newstest asr speech fused
FuseST 25.0 28.6 27.7 29.2

−LASR 24.9 28.5 27.4 28.9
−LASR − LKD − LJSD 25.2 28.0 27.1 28.8
−LASR − LKD − LJSD − LCCL − LCAR 24.8 27.6 26.4 28.5

Table 5: BLEU scores on MuST-C En→De tst-
COMMON set and newstest set by removing individual
losses.

Comparison with MT Baselines We fisrt pre-train
our model on external MT data and then jointly
train on multiple tasks. Previous work has encoun-
tered catastrophic forgetting problems on MT task
during joint training (Fang et al., 2022), which sig-
nificantly degrades performance on MT tasks. We
evaluate our model on the MT task and show the
result in Table 3 and Table 4. Our model achieves
significant improvement on the MT task instead of
a decline in performance. Our model even outper-
forms pre-trained 24E6D (24 transformer encoder
layers and 6 transformer decoder layers) MT on
MuST-C. However, with the increase of training
data, our model performs lower than pre-trained
24E6D MT when using ASR transcript as input
(En→Zh). Nevertheless, our model can still outper-
form pre-trained 24E6D MT when fusing speech
and text as input on En→Zh.

4.4 Ablation Study

As shown in Equation 13, our training objective
contains eight terms. In addition to the cross-
entropy objective LST ,LMT ,LFT , we investigate
the effects of the other auxiliary training objectives.
By gradually removing each loss, Table 5 shows the
improvements brought by each auxiliary training
objective.

Task MT MT ST FT
Model newstest asr speech fused
Wav2vec2.0 25.0 28.6 27.7 29.2
HuBERT Large 25.0 28.4 29.3 29.7
HuBERT Extra Large 25.1 28.4 30.0 30.3

Table 6: The impact of speech pre-trained model on
MuST-C En→De tst-COMMON set and newstest set.

5 Analysis

5.1 Is FuseST better than other fusion
methods?

We compare our model with different fusion meth-
ods, such as SA-CTR and STEMM. SA-CTR pro-
posed a selective attention and gated fusion mech-
anism to fuse two different modalities; STEMM
proposed the speech-text manifold mixup to mix
up the representation sequences of different modal-
ities. Our model achieves better results than theirs
by utilizing a prompt-based approach.

5.2 Should speech representation be discrete
or continuous?

As Section 1 mentions, speech input representation
is in continuous space, while text input represen-
tation is in discrete space. We utilize the method
from Baevski et al. (2020a) to map the speech
representation onto a discrete space using a code-
book. However, Codebook-Gumbel-Softmax and
Codebook-K-means led to a decrease in BLEU
score (shown in Table 4). Our conjecture here is
that the existing speech pre-trained models extract
continuous features that undergo a mapping pro-
cess to a discrete space, resulting in the loss of
audio information and a subsequent reduction in
the BLEU score. Nonetheless, if the speech pre-
trained models can extract high-quality discrete
features, it is plausible that such discrete features
could enhance performance.
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Figure 3: Left: The average BLEU improvement for
ASR transcript resulting from using fuse-speech-text
on En→Zh aiconf testset, under various conditions of
WER. Right: The frequency distribution of WER on
En→Zh aiconf testset.

5.3 With the increasing advancements of
speech pre-trained models, does the fusion
of speech and text remain effective?

Here, we report the results of Wav2vec2.0, Hu-
BERT Large6 and HuBERT Extra Large7, which
are widely used in speech translation. As shown
in Tabel 6, as the strength of speech pre-trained
models increases, the performance of the models
on ST and FT improves. Nevertheless, as speech
pre-trained models undergo further advancements,
the marginal gains in speech translation resulting
from text fusion have shown a diminishing trend.
This phenomenon can be ascribed to the progres-
sive refinement of speech representations, in con-
trast to the relatively inferior quality of our textual
representations (WER ≈ 20). By incorporating
stronger textual representations, the enhancement
in speech translation through text would become
more pronounced.

5.4 How does our fusing strategy perform on
different levels of ASR transcript quality?

We conduct an empirical study to examine the ef-
ficacy of our approach in enhancing BLEU score
through the fusion of speech information under
different WER present in the ASR transcript. As
shown in Figure 3, when the word error rate of
ASR transcript is minimal (0 ≤ WER < 5), the
fusion of speech information results in a slight de-
crease in BLEU score. This behavior is because the
transcript is adequate for achieving high translation
quality, and the fusion of speech information may
introduce noise. As the WER increases, the ad-

6https://dl.fbaipublicfiles.com/hubert/hubert_
large_ll60k.pt

7https://dl.fbaipublicfiles.com/hubert/hubert_
xtralarge_ll60k.pt

Models
CASE 1

Ref.
src: I’m extraordinarily delight to be here.
asr: I’m extraordinary. I’d like to be here.
tgt: 我非常高兴来到这里。

FuseST-MT tgt 我非同寻常,我想在这里。
FuseST-ST tgt 我非常高兴来到这里。
FuseST-FT tgt 我非常高兴来到这里。

CASE 2

Ref.
src: So you could think of the viruses like, they are people.
asr: So you could think of the viruses like their people.
tgt: 所以你可以把病毒想象成人。

FuseST-MT tgt 所以你可以像他们的人民一样看待病毒。
FuseST-ST tgt 所以你可以把病毒想象成他们的人。
FuseST-FT tgt 所以你可以把病毒想象成人。

Table 7: Case study: cases are generated from FuseST-
MT, FuseST-ST and FuseST-FT on En→Zh aiconf test-
set. The red underlined text indicates inaccurate trans-
lations, and the blue strikethrough indicates missing
translation.

vantages of integrating speech information become
more pronounced.

5.5 Is our model robust to different ASR
errors?

In the GigaST En→Zh experiment, we utilize an
ASR model different from the one used to construct
the training set to generate the ASR transcripts
for the test (in-house cgtn, zhiyuan and aiconf).
As shown in Table 4, using fused speech-text for
translation still outperforms using ASR transcript.
Our model demonstrates strong robustness to ASR
errors under various distributions.

5.6 What is the comparative effectiveness
between implicit guidance and explicit
guidance in the fusion process?

In Section 3.3, we utilize prompt tags to implic-
itly guide the model to fuse speech and text. This
section further explores how to explicitly guide
the model to fuse speech and text. We propose
an additional auxiliary task named Align-Mask:
we first use the Montreal Forced Aligner(MFA,
(McAuliffe et al., 2017)) toolkit to get word-level
speech-transcript alignment pairs; then we random
mask a consecutive sequence of 1 to 4 words in the
text with a probability of 15%, we only preserve the
speech segment corresponding to the masked text
segment; then we predict the masked words. We
aspire for the model to learn the correspondence be-
tween speech and text to fuse speech and text better.
However, Align-Mask performs worse as shown in
Table 4. Our hypothesis is that using MFA to align
introduces errors, which affect the effectiveness of
Align-Mask. In the future, we will further explore
explicit guidance fusion without external tools.
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6 Case Study

In this section, we present several cases generated
by FuseST-MT, FuseST-ST and FuseST-FT. In the
first case, the ASR model mistakenly transcribes
"delight" as "I’d like" due to the highly similar pro-
nunciations of these two words. FuseST-MT fails
to generate the correct translation as a result of
errors present in the ASR transcript. Meanwhile,
FuseST-ST produces omissions, as modeling direct
speech to target translation proves to be more chal-
lenging. Notably, only FuseST-FT translates the
sentence correctly, leveraging the complementary
strengths of speech and text. In the second case,
the speech signal contains numerous background
noises; the ASR model mistakenly transcribes the
"they are" as "their", FuseST-MT and FuseST-ST
are mistranslated, and only FuseST-FT translates
correctly.

7 Conclusion

In this paper, we propose FuseST, a cross-modal
model which supports three distinct input modali-
ties for translation: speech, text and fused speech-
text. We comprehensively analyze the modality
gap between speech and text and, utilize multiple
techniques to bridge the modality gap. We then
fuse speech and text to improve speech translation.
Experiments and analysis demonstrate the effec-
tiveness of our proposed method.

Limitations

This work improves speech translation by fusing
speech and text, but the model is far from being
achieved for industrialgrade implementations. Al-
though the ChatGPT and Whisper models exhibit
superior speech-to-text capabilities compared to
our model, we maintain that fusing speech and
text remains a viable approach in the era of large-
scale models. There are two significant limitations
in this study that could be addressed in future re-
search. First, our model still relies on an ASR
system to transcribe speech into text, which does
not address the issue of high latency in the cascade
system. Second, our model needs labeled data for
training, especially the <speech, transcript, target>
pair. Speech data is exceptionally scarce, and ob-
taining speech data for many languages around the
world is particularly challenging.
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