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Abstract

Pre-trained Language Models are widely used
in many important real-world applications.
However, recent studies show that these models
can encode social biases from large pre-training
corpora and even amplify biases in downstream
applications. To address this challenge, we pro-
pose Co?PT, an efficient and effective debias-
while-prompt tuning method for mitigating bi-
ases via counterfactual contrastive prompt tun-
ing on downstream tasks. Our experiments
conducted on three extrinsic bias benchmarks
demonstrate the effectiveness of Co?PT on bias
mitigation during the prompt tuning process
and its adaptability to existing upstream debi-
ased language models. These findings indicate
the strength of Co?PT and provide promising
avenues for further enhancement in bias miti-
gation on downstream tasks.

1 Introduction

Pre-trained language models (PLMs) are widely
used in many real-world applications, demonstrat-
ing remarkable performance (Devlin et al., 2019;
Brown et al., 2020). However, it has been demon-
strated that PLMs encode unfair social biases in
their parameters based on their pre-training step
over large-scale text corpora (May et al., 2019).
Furthermore, these biases — for example, based on
gender, race, or religion — can easily propagate to
the downstream tasks that use these PLMs (Kaneko
and Bollegala, 2021). For example, “She is a nurse’
can have a higher conditional likelihood than “He
is a nurse” in the language modeling task, and
“nurse” can have higher coreference scores to “she”
than “he” in the coreference resolution task (Lu
et al., 2020). Considering that NLP applications
like machine translation systems, resume filtering
systems, dialogue systems, and speech recogni-
tion (Tatman, 2017) are widely used by millions
of users globally, it is crucial to mitigate the social
biases present in PLMs and strive for models that
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will not propagate discriminatory predictions or
offensive outputs towards specific groups before
being deployed.

Much prior effort has focused primarily on de-
biasing the representations learned during the pre-
training process, €.g., through projection (Dev et al.,
2020; Liang et al., 2020; Ravfogel et al., 2020;
Kaneko and Bollegala, 2021), further pre-training
on unbiased external corpora (Webster et al., 2020;
Lauscher et al., 2021; He et al., 2022), or fine-
tuning to debias (Cheng et al., 2021; Guo et al.,
2022). The effectiveness of such debiasing efforts
is typically measured on intrinsic benchmarks like
SEAT (Sentence Encoding Association Test) which
computes the association between demographic
terms (e.g., woman, man) and stereotype terms
(e.g., science, art). An unbiased model should dis-
play no difference in the similarity between the
representations of these terms (May et al., 2019).

While these existing approaches help reduce so-
cial biases under intrinsic measures, these debias-
then-finetune methods are based on the hypothesis
that if an upstream model is unbiased, it will also
preserve its fairness effects on downstream tasks
during the fine-tuning process. However, recent
research investigating the relationship between in-
trinsic and extrinsic benchmarks (which evaluate
fairness in downstream applications) finds these
two benchmarks correlate weakly (Kaneko et al.,
2022). Furthermore, they observe that models, even
after being debiased, tend to re-acquire or even am-
plify biases (e.g., instance-related biases and label-
related biases) during the fine-tuning process on
downstream tasks (Zhao et al., 2017; Leino et al.,
2019). Thus, this mismatch leads to our motivat-
ing research question — How can we develop an
efficient and effective method to mitigate bias on
downstream tasks?

To answer the aforementioned question, we
propose Co?PT, a debias-while-prompt tuning ap-
proach through Counterfactual Contrastive Prompt
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The man is playing the piano.

Two dogs are running.
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—-I» The woman is playing the piano.
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Figure 1: The overview of Co?PT. First, we construct counterfactual pairs from the training data. Then, we learn
debiased continuous prompts by simultaneously optimizing prompt tuning loss £,; on downstream tasks and

contrastive loss L.; between the counterfactual pairs.

Tuning. In this method, we first freeze all pa-
rameters of the PLM and add tunable continu-
ous prompts for every layer. Unlike the previous
debias-then-finetune methods that require expen-
sive re-training of the original PLM and risk knowl-
edge forgetting, this deep prompt tuning framework
saves computational and memory resources while
preserving the original pre-trained knowledge and
language modeling ability (Li and Liang, 2021; Liu
et al., 2022). To ensure that a fair system gener-
ates unbiased results regardless of the demographic
terms used, we construct counterfactual pairs di-
rectly from the training data, eliminating the need
for external corpora that heavily depend on their
quality for debiasing. Specifically, we replace de-
mographic terms associated with either the domi-
nant or minoritized group in the training data with
terms representing the opposite group. Then, we
integrate the ability to mitigate bias into the prompt
parameters through a contrastive objective between
counterfactual pairs while maintaining the parame-
ters of PLMs frozen. Co?PT can be integrated into
existing debiased models to help them mitigate bi-
ases on downstream tasks and offer flexibility in
addressing different kinds of bias. These advan-
tages establish Co?PT as an efficient and effective
method for mitigating bias in downstream tasks.

In conclusion, the proposed Co?PT mitigates
bias on downstream tasks through prompt tuning,
making the following contributions:

» Co?PT achieves time and memory efficiency
without requiring access to an external corpus
or retraining the entire model.

* Over three extrinsic bias benchmarks, we show
that Co?PT effectively mitigates bias ampli-
fied during the prompt tuning process on down-
stream tasks.

» Furthermore, Co?PT can be extended to existing
debiased language models, effectively bridging
the gap between debiased upstream models and
downstream tasks.

2 Related Work

Several approaches have been proposed for debias-
ing pre-trained language models such as projection-
based methods (Dev et al., 2020; Liang et al., 2020;
Ravfogel et al., 2020; Kaneko and Bollegala, 2021),
post-hoc text generation techniques (Schick et al.,
2021), adversarial methods (Han et al., 2021), fine-
tuning on biased prompts (Guo et al., 2022), with
contrastive objective (Cheng et al., 2021) or with
augmented data (Zhao et al., 2018), additional pre-
training methods on re-balanced corpus through
counterfactual data augmentation (Webster et al.,
2020; Lauscher et al., 2021; Meade et al., 2022) or
with a contrastive objective on gender-balanced en-
tailment pairs (He et al., 2022), using dropout regu-
larization (Webster et al., 2020), through parameter-
efficient methods (Lauscher et al., 2021; Yang et al.,
2022; Xie and Lukasiewicz, 2023) or with a con-
trastive objective (Li et al., 2023). While some
works do not require access to an external corpus
or do not require retraining the entire model, most
prior methods primarily focus on mitigating bias
within the model’s intrinsic characteristics and eval-
uate the effectiveness of bias mitigation through
intrinsic bias benchmarks, e.g., SEAT (May et al.,
2019), StereoSet (Nadeem et al., 2021), and CrowS-
Pairs (Nangia et al., 2020). Subsequently, they
fine-tune the debiased models on downstream tasks
and demonstrate that their debiased models retain
the language modeling ability and the performance
on downstream tasks or extrinsic bias benchmarks,
which evaluate fairness in downstream tasks by
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testing whether the models exhibit different perfor-
mances among different populations.

Nevertheless, recent research shows that these
debias-then-finetune methods will re-acquire or
even amplify biases during the fine-tuning pro-
cess on downstream tasks and that intrinsic and
extrinsic evaluation bias benchmarks correlate
poorly (Goldfarb-Tarrant et al., 2021; Cao et al.,
2022; Kaneko et al., 2022). They encourage re-
searchers to focus directly on extrinsic measures of
bias of specific applications when addressing bias
mitigation (Goldfarb-Tarrant et al., 2021).

Thus, we focus in this paper on mitigating bias
on downstream tasks and evaluate using extrin-
sic evaluation benchmarks directly. In addition,
different from the previous methods requiring fur-
ther pre-training on the counterfactually augmented
sentences from an external corpus, e.g., English
Wikipedia (Zmigrod et al., 2019; Webster et al.,
2020; Meade et al., 2022), BookCorpus (Lauscher
et al., 2021), News-Commentary v15 (Yang et al.,
2022) or NLI (He et al., 2022), our methods achieve
time and memory efficiency by eliminating the
need for external corpus access or model retraining.

3 Co?PT: Debiasing via Counterfactual
Contrastive Prompt Tuning

We propose Co?PT, a debias-while-prompt tuning
parameter-efficient method for mitigating biases
on downstream tasks via counterfactual contrastive
prompt tuning, presented in Figure 1. Concretely,
Co?PT mitigates bias in PLMs by leveraging coun-
terfactual pairs from training data to produce debi-
ased representations during prompt tuning.

Deep Prompt Tuning. First, we introduce the
backbone framework of Co?PT — deep prompt tun-
ing. We incorporate continuous prompts as prefix
tokens in every layer of the PLM. By doing this,
we have more tunable task-specific parameters to
enhance per-task capacity while maintaining pa-
rameter efficiency (Li and Liang, 2021; Liu et al.,
2022; Wang et al., 2022; Dong et al., 2023a). Be-
sides, it can achieve comparable performance to
fine-tuning, outperforming methods that only add
trainable continuous prompts into the input embed-
ding layer (Lester et al., 2021; Liu et al., 2021),
which underperform the fine-tuning methods, espe-
cially when the model size is not large (Liu et al.,
2022). The prompt tuning loss of proposed Co?PT
on the downstream task is represented as L, e.g.,
cross-entropy loss for a classification task.

Counterfactual Pairs Construction. Then, the
first key question is: how to interject the de-
biasing capability into the continuous prompts?
An unbiased model should make the same pre-
dictions independent of the bias-attribute term,
thus we apply counterfactual data augmentation to
generate counterparts of training examples from
the training data during prompt tuning. Con-
cretely, let S represent the training corpus and let
W = {(w1, w2, ..., wy) }Y, be aset of N bias-
attribute term pairs. For each sentence s; in .S and
each pair (wy, wy, ..., w,) in W, for any w; in s,
we replace it with the term along the opposite bias
direction. Take the binary-gender debiasing task
shown in Figure 1 for example, the bias-attribute
terms are {(man, woman), (he, she), ...}. The
“man” is in the input sentence “The man is playing
the piano”. We replace it with “woman” while leav-
ing non-attribute words unchanged. Then the coun-
terfactually augmented sentence is “The woman is
playing the piano”, and vice versa. The obtained
counterfactual sentence of the original sentence s;
is denoted as s,

Counterfactual Contrastive Learning. The coun-
terfactual pairs construction allows us to achieve
a balance in inputs containing bias-attribute terms.
However, how can we ensure that our model gener-
ates consistent predictions for both s; and s, which
possess similar semantic meaning but differ in bias
direction? To make the model generate predictions
independent of biased attributes, it is important
for sentences with similar semantics but along dif-
ferent bias directions to be closer (Cheng et al.,
2021; He et al., 2022). We apply contrastive learn-
ing, of which the objective is to obtain meaningful
representations by bringing semantically similar
neighbors closer and pushing apart the dissimilar
neighbors (Gao et al., 2021; Dong et al., 2023b; Li
et al., 2023). In this work, input sentence s; and
its counterpart s/ are semantically related but in
opposite bias directions. We let h; and h, denote
the representations of s; and s, and then concate-
nate with the continuous prompt representation p
as positive pairs. Then we take the cross-entropy
objective with in-batch negatives (Gao et al., 2021).
The training objective for (h;, h}) with a mini-batch
of N pairs is:

esim(peahi ,ph}) /T
zN
j=1¢

where sim(x;, y;) is the cosine similarity of x; and

Lo = —log ey

sim(p®h; ,p@h;)/r ?
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vi sim(xi,y;) = %7 v/ ] |lyill. @ is the con-
catenation of two representations, and 7 is a tem-
perature hyperparameter.

For counterfactual pairs (s;,s}) in the single-
sentence classification task, s; is the original sen-
tence from the training data and s, is the augmented
sentence that has the same semantic meaning as s;
but in a different bias direction. For sentence-pair
classification, like in the SNLI task, with x; as the
premise and y; as the hypothesis, s; is the origi-
nal premise-hypothesis pair (z;, y;) while s/ is the
counterfactual augmented premise-hypothesis pair
(«},y.). Similarly, the sentence representations are
concatenated with continuous prompts to calculate
the contrastive loss through Equation 1.

Learning Objectives. Finally, the continuous
prompts learn-to-debias by simultaneously opti-
mizing the prompt tuning loss £,; on downstream
tasks and contrastive loss £ between the counter-
factual pairs:

L=Ly+aLly, )

where « is a tunable coefficient hyperparameter. As
stated before, we only tune the parameters of the de-
biasing continuous prompts while maintaining the
parameters of PLMs frozen throughout the train-
ing. After the counterfactual contrastive prompt
tuning, the debiasing knowledge is stored in the
prompt parameters. This approach not only retains
the knowledge within the original parameters of
PLMs but is also flexible and adaptable to different
downstream tasks. For example, we can train dif-
ferent prompts for different bias dimensions such
as gender, race, and religion. These prompts can
then be combined and applied to downstream tasks.
Moreover, considering that prior research primarily
concentrates on binary gender, it is more efficient to
extend its application to non-binary gender without
requiring re-training new debiased models.

4 Experimental Setup

We design experiments to test the effectiveness of
our proposed Co?PT approach toward answering
four questions: RQ1: Will Co?PT mitigate bias on
downstream tasks effectively? RQ2: How will the
existing intrinsic debiased methods perform on the
downstream tasks when they are combined with
Co?PT? RQ3: What impact do different modules
have on the design of Co?PT? RQ4: How do hy-
perparameters affect Co?PT?

4.1 Bias Evaluation

Extrinsic bias benchmarks assess bias via perfor-
mance gap between different groups in downstream
tasks. In this work, we evaluate Co?PT on three
widely used extrinsic bias benchmarks: Bias-STS-
B, Bias-NLI, and Bias-in-Bios.

Bias-STS-B (Webster et al., 2020) is adapted from
the STS-B task to evaluate gendered correlations,
which requires models to predict the semantic simi-
larity between pairs of sentences. Specifically, 276
sentences are collected from the test set as tem-
plates and then gendered terms (man, woman) and
professional terms from Rudinger et al. (2018) are
inserted into each template, forming 16,980 sen-
tence pairs. For instance, if the template is “A man
is walking”, then the sentence pairs are (“A man is
walking”, “A nurse is walking”) and (“A woman is
walking”, “A nurse is walking”). If a model is un-
biased towards gender terms, it should assign equal
similarity scores to both pairs. We calculate the
average absolute difference between the similarity
scores of sentence pairs containing male and fe-
male terms, and how often the difference between
“male” and “female” sentence pairs > 7, where we
report the results for 7 = 0.1 and 7 = 0.3 (Webster
et al., 2020). A lower value indicates less bias.

Bias-NLI (Dev et al., 2020) is a natural language in-
ference dataset consisting of neutral sentence pairs
to evaluate the gender-occupation bias. It is con-
structed by populating the template: “The subject
verb a/an object”, leading to 1,936,512 instances.
Concretely, the verb and object slots are filled
with activities, e.g., ate a bagel. Then they cre-
ate neutral entailment pairs by filling the subject
slot with an occupation term with a strong gender
correlation, e.g., “nurse”, for the hypothesis, and
“woman”, for the premise, resulting in the instance:
The woman ate a bagel; The nurse ate a bagel. neu-
tral. Bias is defined as deviation from neutrality
and measured by three metrics: (1) Net Neutral
(NN): the average probability that the model as-
signs a neutral label for all instances, (2) Fraction
Neutral (FN): the percentage of instances that the
model predicts the neutral label and (3) Threshold:
7 (T: 7): the fraction of examples whose probabil-
ity of neutral are above 7. We report the results for
7 = 0.5 and 7 = 0.7 following (Lauscher et al.,
2021; He et al., 2022). All three metrics will attain
1 for a bias-free model.

Bias-in-Bios (De-Arteaga et al., 2019) is a large-
scale English dataset studying gender bias in oc-
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cupation classification from the Common Crawl
corpus. We report the overall accuracy of the task
as well as the accuracy breakdown based on gender.
To quantify gender bias, we compute the difference
in true positive rates (TPR) between genders across
various occupations, denoted as GAP}PR and de-
fined as follows:

GAP;™® = |TPR, — TPR | , (3)

where TPR, represents the proportion of individu-
als correctly predicted given their gender g, and g
and ~g are binary genders. Following (Romanov
et al., 2019; Ravfogel et al., 2020; He et al., 2022),
we also calculate the root mean square of the per-
occupation TPR gender gap GAP;POR over all occu-
pations o:

1 2
GAPRMS — \/ ol ;O (GAPIPR)™. @)
o

A value closer to 0 indicates a lower degree of bias.

4.2 Datasets and Setup

STS-B and SNLI. We fine-tune the models on
SNLI and STS-B training sets and pick the one
that performs best on the validation set and then
evaluate bias using Bias-STS-B and Bias-NLI, re-
spectively. Bias-in-Bios. We use the same data
as Ravfogel et al. (2020) which contains 393,423
biographies and 28 profession classes. We split
train/validation/test by 65/25/10 following (De-
Arteaga et al., 2019; Ravfogel et al., 2020). The
dataset statistics are shown in Table 1. For SNLI
and Bias-in-Bios, we report accuracy over classifi-
cation while we report the Pearson and Spearman
correlations for STS-B.

4.3 Baseline Models

We compare Co?PT with six upstream debiased
models fine-tuned on the downstream tasks, and
three baselines fine-tune or prompt-tune BERT
models on the downstream tasks: ZariCDA (Web-
ster et al.,, 2020) is pre-trained from scratch
over counterfactual data augmented from English
Wikipedia and ZariDO (Webster et al., 2020) is ad-
ditionally pre-trained with increased dropout rate.

Train Validation  Bias-Test
STS-B 5,749 1,500 16,980
SNLI 550,152 10,000 1,936,512
Bias-in-Bios 255,710 39,369 98,344

Table 1: Dataset statistics.

ADELE and its variant ADELE-TA (Lauscher
et al., 2021) inject and train debiased adapters via
masked language modeling on the counterfactually
augmented corpus. Context-Debias (Kaneko and
Bollegala, 2021) is fine-tuned via an inner-product
loss and squared distance loss. Auto-Debias (Guo
et al., 2022) uses a beam search to search for biased
prompts and then uses these biased prompts to fine-
tune PLMs by minimizing the disagreement be-
tween predicted [MASK] token distributions. MA-
BEL (He et al., 2022) is additionally pre-trained
on all entailment pairs that contain gendered terms
from SNLI and MNLI data with a contrastive loss,
an alignment loss, and an optional masked lan-
guage modeling loss. BERT (Devlin et al., 2019)
is a fine-tuned BERT model on the downstream
tasks while BERT+CDA is a fine-tuned BERT
model on the counterfactually augmented data from
the training sets. PT (Liu et al., 2022) adds con-
tinuous prompts to each layer of the models and
then tunes the prompts on downstream tasks. The
backbone models for ZariCDA and ZariDO are
BERT-1large-uncased whereas other baselines are
BERT-base-uncased (Devlin et al., 2019).!

4.4 TImplementation Details

For fine-tuning debiased baselines and vanilla
BERT, we use the models released by the au-
thors. We set the max length of the sentence
to be 128, the learning rate to be 2e — 5, the
batch size to be 64, and train for 10 epochs. For
AT+CDA, learning rate is 2e-5 and batch size is
128. For PT and Co?PT, the backbone models are
bert-base-uncased with the learning rate set to
le — 2 and the prompt length set to 20 and are
trained for 30 epochs. The batch size is set to
32. For hyperparameters 7 and « in Equation 1
and 2, we set 7 = 0.05 and o = 1.0. All experi-
ments are run on a single NVIDIA RTX A5000
24GB GPU. For each run, we save the model
that performs the best on the development set and
evaluate it on extrinsic benchmarks. We report
the average results across three runs. All code
and data are available at https://github.com/
dongxiangjue/Co2PT; additional experimental de-
tails and standard deviations are in Appendix A and
Appendix C, respectively.

'We keep the results of these two BERT-1large-uncased
checkpoints since Lauscher et al. (2021) also compares these
methods with their BERT-base-uncased method.
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5 Debiasing Effectiveness (RQ1)

We now investigate the effectiveness of Co?PT in
mitigating bias on three extrinsic bias benchmarks.

Bias-STS-B. First, we focus on the Bias-STS-B
benchmark. As Table 2 indicates, Co2PT shows the
lowest bias scores across all metrics and achieves
similar model performance on downstream tasks
as the other debiased baselines. We observe that
some debiased models exhibit higher bias scores
than the original BERT, indicating that debiased
language models can relearn biases during fine-
tuning on downstream tasks. For example, Auto-
Debias, one of the state-of-the-art debiased models,
demonstrates strong fairness on intrinsic bench-
marks, such as SEAT, scores 0.312 in average abso-
lute difference, showing a higher bias level than the
original BERT and most of the other baselines. On
the other hand, MABEL, which shows strong per-
formance in debiasing downstream tasks, achieves
a competitive score of 0.081. Furthermore, com-
pared to fine-tuning the original BERT model on
the STS-B training set, PT results in a higher bias
score of 0.321 compared to 0.282. This suggests
that while fine-tuning only the number of prompt
tokens may be parameter efficient, it can result in
increased bias due to the presence of an unbalanced
dataset. For Co?PT, we observe a significant reduc-
tion in the bias score with the average absolute
difference decreasing from 0.321 to 0.058, from
0.749 to 0.167 when the difference exceeds 0.1,
and from 0.369 to 0.005 when the difference ex-
ceeds 0.3. These findings indicate a substantial
improvement in the ability to mitigate bias.

Bias-NLI. Next, we focus on the Bias-NLI extrin-

sic benchmark shown in Table 3. BERT+CDA,
Context-Debias, and MABEL achieve lower bias

Model Diff.] 7:0.1] 7:0.3] Pear./Spear.
BERT 0.282 0.867 0.417 0.883/0.879
BERT+CDA  0.131 0.511 0.080 0.885/0.881
ZariCDA* 0.112 0445 0.048 0.892/0.889
ZariDO* 0.347 0922 0.585 0.880/0.878
ADELE'! 0.121 - - 0.889/ -
Context-Debias  0.332 0916 0.539 0.879/0.876
Auto-Debias  0.312 0902 0.502 0.884/0.880
MABEL 0.066 0.204 0.013 0.889/0.885
PT 0.321 0.749 0.369 0.889/0.885
Co?PT (ours)  0.058 0.167 0.005 0.884/0.880

Table 2: Evaluation on Bias-STS-B. {: results are re-
ported from the ADELE model in the original paper; x:
backbone model is BERT-1arge-uncased.

Model NNt FNt  T:0.57 T:0.7t Acc.
BERT 0.824 0.868 0.867 0.811 0.909
BERT+CDA  0.873 0.942 0.941 0.894 0.905
ZariCDA* 0.786 0.828 0.826 0.765 0.912
ZariDO* 0.747 0.782 0.779 0.711 0913
Context-Debias 0.873 0919 0919 0.877 00910
ADELE-TAT  0.504 0.557 - - 0.813
AT+CDAZ 0.659 0.799 0.758 0.510 0.849
Auto-Debias  0.813 0.849 0.848 0.795 0.908
MABEL 0.853 0.892 0.891 0.846 0.911
PT 0.741 0.812 0.808 0.729 0.898
Co?PT (ours) 0.877 0.965 0.962 0.905 0.886

Table 3: Evaluation on Bias-NLI. {: results are fine-
tuned on MNLI and reported from the ADELE-TA
model in the original paper; {: adapter tuning on coun-
terfactually augmented data; x: backbone model is
BERT-1large-uncased. Other baselines are fine-tuned
on SNLI.

scores than the original BERT across all metrics
while the other baseline methods amplify biases
during the fine-tuning. Similarly, Auto-Debias
performs well on the SEAT benchmark but ex-
periences an increase in bias when applied to
downstream tasks, mirroring the trend observed
in the Bias-STS-B extrinsic benchmark. Moreover,
ADELE, another parameter-efficient method, per-
forms poorly in both bias mitigation and model
accuracy. Similar to Bias-STS-B extrinsic bench-
mark, PT amplifies biases during the tuning pro-
cess, resulting in a decline in the NN score from
0.824 to 0.741 and the FN score from 0.868 to
0.812. By employing Co?PT, we observe signif-
icant improvements with the NN score rising to
0.877 (from 0.741) and the FN score reaching 0.965
(from 0.812), indicating the effectiveness of Co?PT
on bias mitigation.

Bias-in-Bios. Next we show the performance on
the Bias-in-Bios benchmark in Table 4. Among
all the baselines, the ZariCDA achieves the low-
est GAPTPR score of 2.667 while the BERT+CDA

Model GAP™R | GAP®™S|  Acc.
BERT 2.822 0.119 0.830
BERT+CDA 2.758 0.113 0.841
ZariCDA* 2.667 0.135 0.848
ZariDO* 2.720 0.135 0.847
Context-Debias 3.031 0.119 0.831
Auto-Debias 2.690 0.125 0.831
MABEL 2.839 0.126 0.826
PT 3.171 0.129 0.820
Co2PT (ours) 2.537 0.123 0.824

Table 4: Evaluation on Bias-in-Bios. x: backbone model
is BERT-1arge-uncased. The results of ADELE on this
benchmark are not reported in the original paper.
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achieves the lowest GAPRMS score of 0.113. Fur-
thermore, PT exacerbates bias and results in an
increase in the GAP™'R score from 2.822 to 3.171
and GAPRMS from 0.119 to 0.129. In contrast,
Co?PT reduces the GAP™R score from 3.171 to
2.537 and GAPRMS from 0.129 to 0.123, demon-
strating its effectiveness in mitigating bias in the
occupation classification task.

6 Integrating Co’PT with Existing
Debiased Models (RQ2)

One benefit of a prompt-then-finetune model like
Co?PT is that it can be easily integrated with ex-
isting upstream debiasing methods. Here we in-
vestigate the applicability of Co?PT to three exist-
ing debiased models to bridge the gap in utilizing
upstream debiased models for downstream tasks.
Based on the comparison results — before and after
applying Co?PT — shown in Table 5, Co?PT signif-
icantly reduces the bias scores for Context-Debias
and Auto-Debias: 0.088 versus 0.332, and 0.068
versus 0.312, respectively. For MABEL, which
achieves low bias scores, there is no significant
effect on the bias score. Additionally, Co?PT im-
proves the model performance on the downstream
tasks. These results clearly demonstrate the ef-
fectiveness of integrating Co?PT into established
debiased models for downstream tasks. This ability
enables the existing debiased models to achieve
strong performance on downstream tasks while si-
multaneously maintaining a low bias level.

Model Diff.] 7:0.1] 7:0.3] Pear./Spear.
Context-Debias  0.332 0916 0.539 0.879/0.876
+ Co?PT 0.088 0.361 0.010 0.885/0.881
Auto-Debias  0.312 0902 0.502 0.884/0.880
+ Co’PT 0.068 0.231 0.005 0.883/0.878
MABEL 0.066 0.204 0.013 0.889/0.885

+ Co?PT 0.068 0.228 0.005 0.892/0.889

Table 5: Performance of integrating Co?PT with debi-
ased models on Bias-STS-B.

7 Impact of Design (RQ3)

We perform an extensive ablation study to show
how different components affect Co?PT in Table 6.
We use Bias-STS-B as the representative task for
computational efficiency.

Impact of counterfactual module. First, we per-
form counterfactual data augmentation on the train-
ing data containing bias-attribute terms. Then we
conduct prompt tuning only on these augmented
pairs (denoted as PT+CDA). PT+CDA reduces

the bias score from 0.321 in PT to 0.291, showing
the effectiveness of the straightforward counterfac-
tual data augmentation approach. However, the
improvement is less than Co?PT, implying the ne-
cessity of the contrastive learning module.

Impact of contrastive module. To investigate the
impact of the contrastive module, instead of em-
ploying constructed counterfactual sentence pairs
as positive pairs for contrastive loss, we use un-
supervised contrastive loss by encoding the same
input twice and get two embeddings with different
dropout masks z, 2’ (Gao et al., 2021). Then the
contrastive objective becomes:

/
eSim(pOh; poh;") /7
Lo =— log o ) )
N sim(p@h i pgh’)/T
>jm1€ P

which is optimized with the prompt tuning loss
L, together (denoted as PT+SCL). PT+SCL sur-
passes both PT and PT+CDA by achieving a large
reduction in bias score to 0.161, demonstrating the
effectiveness of the contrastive module.

Impact of adding contrastive loss for non-
augmented inputs. In Co’PT, we only consider
counterfactually augmented pairs in the contrastive
module. To explore the necessity of including in-
puts without demographic terms in the contrastive
module, we incorporate unsupervised contrastive
loss for non-augmented input like Equation 5 as
E; .; and tuned with contrastive loss L,; for counter-
factually augmented pairs (Equation 1) and L‘;t (de-
noted as Co?PT+SCL,,). The bias score of 0.117
achieved by Co?PT+SCL, is higher than Co?PT
and this indicates that incorporating a contrastive
loss for non-augmented inputs in the training set is
unnecessary.

Compare Co’PT with task-agnostic counterfac-
tual pairs. To investigate whether integrating task-
agnostic neutral entailment pairs can benefit debi-
asing on the task, we use 142,158 gender-balanced
entailment pairs augmented from SNLI and MNLI

Model Diff.] 7:0.1] 7:0.3] Pear./Spear.

PT 0.321 0.749 0.369 0.889/0.885
PT+CDA 0.291 0.747 0.351 0.890/0.886
PT+SCL 0.161 0.548 0.133  0.883/0.878
Co?PT+SCL, 0.117 0467 0.056 0.884/0.878
PT+NLI+CL 0.080 0.280 0.022 0.881/0.876
PT+NLI+CL,, 0.207 0.687 0.222  0.884/0.881
PT+CDA+CL, 0.271 0.725 0.338 0.886/0.883
Co?PT (PT+CDA+CL) 0.058 0.167 0.005 0.884/0.880

Table 6: Impact of different components.
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datasets in He et al. (2022) as task-agnostic entail-
ment pairs for STS-B task instead of using the task-
specific counterfactual pairs augmented from the
training set (denoted as PT+NLI+CL). We notice
that although PT+NLI+CL does not outperform
Co?PT, it shows a strong ability to mitigate bias
compared to other baseline methods. Thus, when
working on a moderate amount of training data, it
is better to use counterfactually augmented pairs
from the training data.

Compare Co’PT with other contrastive objec-
tive. For sentence-pair classification tasks, we
also explore the contrastive loss that encourages
the inter-association of entailment pairs (He et al.,
2022). For the original input pair (s;1, s;2) and its
augmented pair (sgl, $io), i1 and s;o are treated
as positive pairs while s;; and s}, and other in-
batch s;o are negatives, and vice versa (denoted
as CLp). When using task-specific counterfactual
pairs, PT+CDA+CL,, decreases the bias score to
0.271. Similarly, using task-agnostic counterfac-
tual pairs, PT+NLI+CL,, also reduces the bias
score to 0.271. However, the bias mitigation ef-
fect is not as significant as that achieved by Co?PT,
which indicates the effectiveness of the contrastive
module in Co?PT.

8 Impact of Hyperparameters (RQ4)

Finally, we investigate the impact of three hyperpa-
rameters: (i) the continuous prompt length; (ii) the
temperature 7 of contrastive loss L.;; and (iii) the
coefficient « of total learning objective L.

Impact of prompt length. First, we experiment
with the prompt length varying in {10, 20,50},
as illustrated in Figure 2. Generally speaking,
with more tunable prompt parameters, the model
performs better on downstream tasks. In addi-
tion, when the prompt length is 10, Co?PT shows
a higher increase in bias score compared to the
prompt length of 20 and 50. This indicates that a
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Figure 4: o in {0.1,0.5, 1.0} while 7 = 0.05.

larger prompt length enables the model to achieve
better model performance on downstream tasks
more rapidly while still maintaining a lower bias
score. However, it is important to consider that
using larger prompt lengths means tuning more
parameters, thus posing a trade-off.

Impact of 7. Then, we vary temperature 7 in
{0.005,0.05,0.5}. Figure 3 shows close signifi-
cant bias mitigation effects when 7 is set to 0.005
and 0.05 while exhibiting less effectiveness when
7 is 0.5. This observation implies that a higher
temperature value corresponds to less weight of the
cosine similarity calculation, resulting in decreased
effectiveness in bias mitigation.

Impact of . Last, we study the impact of coeffi-
cient o and vary the value in {0.1,0.5,1.0}. Fig-
ure 4 emphasizes that reducing the value of « at a
constant 7, thus assigning less weight to the con-
trastive module, leads to decreased bias mitigation
effects. This analysis underscores the importance
of carefully selecting appropriate hyperparameters.

9 Conclusion and Future Work

We propose Co?PT, an efficient and effective de-
biasing method for mitigating bias in downstream
tasks. We evaluate its effectiveness on bias mit-
igation and applicability to existing debiased up-
stream models, and investigate how the design of
each component and the selection of hyperparame-
ters impact both its bias reduction capabilities and
downstream task performance.
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Mitigating non-gender and intersectional bias.
Mitigating non-gender biases is challenging as
some debiasing methods work well on reducing
gender biases but show poor generalization capa-
bilities in addressing biases beyond gender (Meade
et al., 2022). Without re-training the model, Co?PT
is flexible to apply in order to mitigate different bias
types in downstream applications. One can train
different debiasing prompts to tackle different bias
dimensions such as gender, race, and religion. Fur-
thermore, these debiasing prompts can be applied
to mitigate intersectional bias by simply combining
the corresponding prompts in downstream tasks.

Limitations

While this work primarily addresses bias in English,
we acknowledge the presence of more complicated
bias cases in other languages. Therefore, future ex-
ploration of existing methods or the development
of new techniques to mitigate bias in other lan-
guages would be valuable. Furthermore, despite
the efficiency and comparable performance of deep
prompt tuning compared to fine-tuning, it still un-
derperforms fine-tuning on certain datasets when
the model size is small. This will also limit the
model performance of our method.

Ethics Statement

In this work, when investigating gender bias in
pre-trained language models, we focus on the bi-
nary definition of gender as the targeted attribute
of discrimination. However, it is important to ac-
knowledge that future research should also consider
non-binary genders and other multi-class scenarios
to comprehensively address bias.
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Appendix
A More Implementation Details

A.1 Dataset and Extrinsic Bias Benchmarks

STS-B and SNLI datasets are from the Hugging
Face Datasets library (Lhoest et al., 2021).> We
use the same Bias-in-Bios dataset used in Ravfogel
et al. (2020).%, the Bias-STS-B used in Lauscher
et al. (2021) and the Bias-NLI used in He et al.
(2022). The code used to assess Bias-STS-B is
modified from Lauscher et al. (2021), while the
code for evaluating Bias-NLI and Bias-in-Bios is
adapted from He et al. (2022). Different from the
code employed in He et al. (2022), we conduct our
evaluation on the entire Bias-NLI dataset rather
than just the top 10% of it.

A.2 Debiased Baselines

Please refer to the footnotes here for the
source of released debiased models — ZariCDA,
ZariDO* (Webster et al., 2020), Context-
Debias® (Kaneko and Bollegala, 2021), Auto-
Debias® (Guo et al., 2022), MABEL’ (He et al.,
2022) — used on downstream tasks.

A.3 Implementation Details

We use BERT-base-uncased in our experiments.
For the single-sentence classification task, we
prepend the [CLS] token before the input sentences
and feed it into the BERT model to get the embed-
ding of the [CLS] token as the sentence representa-
tion. For the sentence-pair classification task, e.g.,
SNLI task, we prepend [CLS] before the premise x
and [SEP] token to separate premise = and hypoth-
esis y and feed it into the BERT model to get the
embedding of the [CLS] token as the sentence rep-
resentation. Fine-tuning and prompt tuning code
rely on the Huggingface implementation.®

thtps://github.com/huggingface/datasets.
Apache License 2.0.

3The data is downloaded through https://github.
com/shauli-ravfogel/nullspace_projection/blob/
master/download_data.sh MIT License.

*The checkpoints of these two models are from https://
github.com/google-research-datasets/Zari. Apache-
2.0 license.

>The checkpoints are from https://github.com/
kanekomasahiro/context-debias. MIT license.

*The checkpoints are from https://github.com/
Irenehere/Auto-Debias.

"The checkpoints are from https://huggingface.co/
princeton-nlp/mabel-bert-base-uncased MIT License.

8https://github.com/huggingface

B More Ablation Studies

Pooling method. Besides using pooled output, we
also conduct experiments that use the average to-
ken representation from the model’s last hidden
state as sentence representation, shown in Table 7.
However, upon analyzing the results, Co?PT,yg. is
considerably more challenging for the prompts to
acquire the debiasing capability when using the
average token representation compared to when uti-
lizing the CLS token as the sentence representation.

Model Diff.| 7:0.1] 7:0.3] Pear./Spear.

PT 0.321  0.749  0.369  0.889/0.885
Co?PTayg. 0.390 0.823 0.497  0.891/0.886
Co’PTgs (ours)  0.058  0.167  0.005  0.884/0.880

Table 7: More ablation results.

C Standard Deviation of Results

The standard deviation of evaluation results on ex-
trinsic bias benchmarks — Bias-STS-B, Bias-NLI,
and Bias-in-Bios — are presented in Tables 8 to 10,
respectively. In addition, the results of integrating
Co?PT with existing debiased models and ablation
study are shown in Table 11 and Table 12. These
results indicate that Co?PT consistently performs
well with relatively low variability, demonstrating
its effectiveness and reliability.

Model Diff.| 7:0.1] 7:0.3] Pear./Spear.
BERT 0.018 0.024 0.056 0.002/0.001
BERT+CDA  0.020 0.058 0.042  0.001/0.000
ZariCDA* 0.030 0.146  0.031  0.004/0.003
ZariDO* 0.020 0.011 0.044 0.003/0.003
Context-Debias  0.042 0.052  0.098  0.005/0.005
Auto-Debias  0.006 0.018  0.020 0.002/0.001
MABEL 0.011 0.046 0.013  0.004/0.004
PT 0.018 0.016 0.024 0.001/0.001
Co?PT (ours)  0.009 0.056 0.001  0.001/0.000

Table 8: Results standard deviation on Bias-STS-B. x:
the backbone models are BERT-1arge-uncased.

D Visualization of Bias Mitigation Effects
along Epochs

We visualize the changes of bias scores along
epochs in Figure 5. The bias score of PT keeps
increasing as the Pearson score increases, while
Co?PT consistently maintains a low bias score,
which indicates the effectiveness of Co?PT on bias
mitigation.
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Model NNt FNT T:0.51 T:0.77 Acc.
BERT 0.027 0.042 0.041 0.036 0.002
BERT+CDA  0.012 0.010 0.010 0.002 0.003
ZariCDA* 0.082 0.081 0.082 0.097 0.001
ZariDO* 0.078 0.083 0.083 0.093 0.001
Context-Debias  0.030 0.046 0.046  0.050 0.001
Auto-Debias  0.010 0.019 0.019 0.012 0.002
MABEL 0.018 0.003 0.002 0.014 0.001
PT 0.023 0.032 0.031 0.028 0.001
Co?PT (ours) 0.016 0.021 0.022 0.027 0.004

Table 9: Results standard deviation on Bias-NLI. x: the
backbone models are BERT-1arge-uncased.

Model GAP™R|  GAP™S|  Acc.
BERT 0.138 0.004 0.001
BERT+CDA 0.034 0.001 0.002
ZariCDA* 0.069 0.006 0.000
ZariDO* 0.074 0.010 0.003
Context-Debias 0.053 0.006 0.003
Auto-Debias 0.146 0.004 0.002
MABEL 0.114 0.006 0.001
PT 0.066 0.003 0.001
Co?PT (ours) 0.025 0.005 0.007

Table 10: Results standard deviation on Bias-in-Bios. *:
the backbone models are BERT-1arge-uncased.

Model Diff.] 7:0.1] 7:0.3] Pear./Spear.
Context-Debias  0.042  0.052  0.098  0.005/0.005
+ Co?PT 0.031 0.194 0.011  0.000/0.001
Auto-Debias  0.006 0.018 0.020 0.002/0.001
+ Co?PT 0.008 0.037 0.005 0.002/0.002
MABEL 0.011 0.046 0.013 0.004/0.004

+ Co?PT 0.021 0.103  0.023  0.000/0.000

Table 11: Performance of integrating Co?PT with debi-
ased models on Bias-STS-B.

Model Diff.] 7:0.1] 7:0.3] Pear./Spear.

PT 0.018 0.016 0.024 0.001/0.001
PT+CDA 0.008 0.008 0.007  0.000/0.000
PT+SCL 0.025 0.056 0.039  0.000/0.000
Co?PT+SCL, 0.023 0.094 0.033 0.001/0.001
PT+NLI+CL 0.013 0.070 0.012  0.001/0.001
PT+NLI+CL, 0.025 0.042 0.053 0.001/0.001
PT+CDA+CL,, 0.030 0.031 0.051 0.001/0.002
Co?PT (avg.) 0.032 0.022 0.040 0.001/0.000
Co?PT (PT+CDA+CL) 0.009 0.056  0.001  0.001/0.000

Table 12: Results standard deviation of ablation study.
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Figure 5: Visualization of bias mitigation effects and
model performance along epochs.
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