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Abstract

Fine-grained entity typing (FET) is an essential
task in natural language processing that aims to
assign semantic types to entities in text. How-
ever, FET poses a major challenge known as the
noise labeling problem, whereby current meth-
ods rely on estimating noise distribution to iden-
tify noisy labels but are confused by diverse
noise distribution deviation. To address this
limitation, we introduce Co-Prediction Prompt
Tuning for noise correction in FET, which lever-
ages multiple prediction results to identify and
correct noisy labels. Specifically, we integrate
prediction results to recall labeled labels and
utilize a differentiated margin to identify in-
accurate labels. Moreover, we design an op-
timization objective concerning divergent co-
predictions during fine-tuning, ensuring that
the model captures sufficient information and
maintains robustness in noise identification. Ex-
perimental results on three widely-used FET
datasets demonstrate that our noise correction
approach significantly enhances the quality of
various types of training samples, including
those annotated using distant supervision, Chat-
GPT, and crowdsourcing.

1 Introduction

Fine-grained entity typing (FET) is a fundamen-
tal task in the field of natural language processing
(NLP). It involves assigning specific types to en-
tity mentions based on the contextual information
surrounding them. The results of FET can be lever-
aged to enhance various downstream NLP tasks, in-
cluding entity linking (Raiman and Raiman, 2018;
Chen et al., 2020a), relation extraction (Shang
et al., 2020, 2022), question answering (Wei et al.,
2016) and other tasks (Jiang et al., 2020; Liu et al.,
2021a).

FET poses a formidable challenge that entails
not only the classification of entities across diverse
domains but also the distinction of entities that

∗Yongxiu Xu is the corresponding author

[Disney] Corporation chose Hong Kong as the venue for the 
Chinese Disney park. 
[Disney] Corporation chose Hong Kong as the venue for the 
Chinese Disney park. 

The Weihai agricultural introduced a new potato variety, and after 
cultivation and breeding, has provided 50,000 kg of [potatoes].

ChatGPTChatGPT

Knowledge 
Base

Knowledge 
Base

organization, company, person, artist, author 

food, living_thing

(a)

(b)

Figure 1: Examples from OntoNotes dataset, with inac-
curate labels in red and unlabeled labels in gray. (a) A
distantly labeled example. (b) A weakly labeled exam-
ple by ChatGPT.

may exhibit superficial resemblances but possess
distinct underlying meanings. For example, the
term "apple" could pertain to a technology corpo-
ration or a fruit. Achieving high performance in
FET typically requires a considerable amount of
annotated data, a resource that is both costly and
time-consuming to acquire. To tackle this issue, re-
searchers have explored various approaches for au-
tomatically labeling training samples. One particu-
larly popular method is distant supervision (Ling
and Weld, 2012; Gillick et al., 2014), which as-
sumes that any text mentions an entity in existing
knowledge bases (e.g., Freebase (Bollacker et al.,
2008)) is related to the corresponding entity types.
However, this technique can be susceptible to noise
and ambiguity (refer to Figure 1a), since it fails to
consider the contextual information surrounding
the entities.

Meanwhile, the large language models (LLMs),
such as ChatGPT1, has drawn significant interest
among researchers in exploring their applications
in text annotation tasks. Recent studies (Gilardi
et al., 2023; Törnberg, 2023) indicate that zero-
shot ChatGPT classifications outperform crowd-
workers. However, despite their remarkable suc-

1https://openai.com/blog/chatgpt
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cess in other domains, the weakly labels ChatGPT
generated for FET still pose challenges. As shown
in Figure 1b, it can generate accurate weakly labels,
but its coverage of fine-grained types may be lim-
ited. This difficulty may arise from the challenge
of designing a prompt that can accurately handle
fine-grained entity types across multiple domains
simultaneously. However, this incomplete recogni-
tion also results in noisy labels, as it mislabels the
correct type as a negative sample.

Training deep models on data with noisy labels
can result in the learning of incorrect patterns and
subsequent incorrect predictions. As a result, sev-
eral approaches have been proposed to tackle the
issue of noisy labels in FET, including designing
robust loss functions (Ren et al., 2016; Xu and
Barbosa, 2018), estimating noise transition matri-
ces (Wu et al., 2021; Pang et al., 2022), and correct-
ing noisy labels (Onoe and Durrett, 2019; Zhang
et al., 2021; Pan et al., 2022). Among these ap-
proaches, correcting noisy labels is often consid-
ered the most desirable, as it leads to more accurate
and informative labels. However, the methods for
noise correction often rely on estimating the distri-
bution of noise, which can be challenging due to the
diverse deviations arising from different labeling
methods. For instance, distant supervision tends to
generate inaccurate labels, while labels generated
by ChatGPT are accurate but incomplete.

In this paper, we propose a novel noise cor-
rection method for FET using the co-prediction
prompt-tuning technique, which leverages multiple
prediction results to identify and correct noisy la-
bels. Specifically, we first fine-tunes a pre-trained
masked language model (PLM) on data with noisy
labels using a co-prediction prompt. This prompt
contains two mask tokens, which focus on differ-
ent predictive capabilities and produce multiple
predictions for each entity mention. Note that the
presence of noisy labels may make it difficult for
the two masks to arrive at a consensus on the out-
puts. In this scenario, one mask may start fitting
the noise before another, leading to divergent co-
predictions. Hence, we design an optimization
objective concerning divergent co-predictions dur-
ing fine-tuning to maintain the fitting difference of
masks on the noise labels and robustness to noise
identification. Afterward, we integrate the multi-
ple prediction results to recall unlabeled labels and
use a differentiated margin to identify inaccurate
labels.

We conduct experiments on three public FET
datasets: OntoNotes and WiKi have distantly an-
notated training data; Ultra-Fine has crowdsourced
training data. The experimental results show that
the performance of a baseline model is significantly
improves after training on the corrected data, in-
dicating the effectiveness of our noise correction
method. Additionally, we utilized ChatGPT to
relabel a subset of training data from OntoNotes
and Wiki and then optimized this data using our
method. The experimental results demonstrate that
our method can further improve the quality of the
data annotated by ChatGPT.

2 Related Work

2.1 Automatic Labeling Techniques for FET

Due to the scarcity of manually labeled data, auto-
matic labeling techniques have gained significant
attention in FET. Some studies (Ling and Weld,
2012; Gillick et al., 2014) utilize distantly super-
vised learning to generate labeled training samples
by mapping entity mentions to entities from pub-
lic knowledge bases and selecting reliable map-
ping types as labels. However, the labels obtained
through this method are independent of sentence
semantics. On the other hand, some studies (Choi
et al., 2018; Dai et al., 2021) use head supervision
to label training samples, where head words are
used to label entities. However, both distant su-
pervision and head supervision have limitations in
producing accurate labels.

Recently, large language models such as Chat-
GPT have shown promising results in weakly su-
pervised learning, even surpassing crowdsourced
annotators in some domains (Gilardi et al., 2023;
Törnberg, 2023). However, due to the large num-
ber of entity types, designing effective prompts for
ChatGPT to generate comprehensive label sets can
be challenging in FET. In this paper, our goal is to
develop a noise correction method that enhances
the quality of weakly labeled data, instead of de-
signing perfect prompts for ChatGPT or rules for
distantly supervised learning.

2.2 Noise Learning Method for FET

The problem of noisy labeling presents a significant
challenge in FET research. Several research studies
have explored label dependencies. Ren et al. (2016)
proposes a hierarchical partial-label loss to handle
noisy labels. Wu et al. (2019) leverages a random
walk process on hierarchical labels to weight out
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noisy labels. Wu et al. (2021) learns the noise
confusion matrix by modeling the hierarchical label
structure. However, these approaches require a
predefined hierarchical label structure, which can
be difficult to establish in practice.

Some studies assume that a subset of clean la-
bels is available. Onoe and Durrett (2019) trains
noise filter and relabel modules on the clean data.
Pang et al. (2022) treats the clean labels as anchors
to estimate noise transition matrices. However, the
efficacy of these methods is heavily reliant on the
size of the clean labels, which may not always be
guaranteed. Hence, some approaches try to esti-
mate noise distribution to produce pseudo-truth
labels (Zhang et al., 2021) or filter out noisy la-
bels (Pan et al., 2022). Nonetheless, unifying the
noise distribution from different automatic label-
ing methods can be challenging. Differ from them,
our approach employs co-prediction prompt tuning
for noise correction, thus avoiding the pitfalls of
estimating noise distribution for various types of
weakly labels.

3 Methodology

In this section, we introduce the problem formu-
lation and describe our noise correction method.
As shown in Figure 2, our method mainly consists
of two main steps: 1) Applying a co-prediction
prompt to fine-tune PLMs with weakly labeled cor-
pora; 2) Correcting noisy labels by analyzing the
co-prediction results of this model.

3.1 Problem Formulation

The FET task aims to assign appropriate semantic
types to an entity mention m based on contextual
information provided by a sentence x.The seman-
tic types are a subset of a pre-defined set of fine-
grained entity types Y = {y1, y2, . . . , yt}. If the
training corpora is labeled by distant or weak su-
pervision, two types of noisy labels may arise. The
first type is inaccurate labeling, which occurs when
an annotator assigns an incorrect semantic type to
an entity mention. The second type is unlabeled
labeling, which happens when the annotator fails
to identify an appropriate semantic type.

In our approach, the goal is to improve the qual-
ity of the training corpus by correcting noise labels,
specifically by removing inaccurate labels and re-
calling unlabeled labels.

3.2 Co-Prediction Prompt Tuning
The accurate identification of inaccurate or unla-
beled labels is a crucial challenge in noise cor-
rection, given that manual identification of such
labels is time-consuming and expensive. Recent
studies (Han et al., 2018; Nguyen et al., 2020)
have highlighted the "memory effect" (Arpit et al.,
2017), which suggests that deep models tend to
memorize clean labels before fitting to noisy la-
bels when trained on data with noise. Building on
this insight, we propose leveraging a co-prediction
prompt-tuning technique for noisy label detection
that explicitly captures the fitting difference.

3.2.1 Model Structure
There are two primary components in the prompt-
based model: prompt and verbalizer. The prompt
provides task-related information to guide the pre-
trained language model generating relevant and
accurate output. The verbalizer converts the output
of the model into natural language.

Co-Prediction Prompt Differ from traditional
prompts, we adopt a co-prediction prompt for FET
that contains two different mask tokens: [PMASK]
and [NMASK]:

T(c,m) = {c} [P] {m} belongs to

[PMASK] rather than [NMASK],
(1)

where [P] represents a set of soft words that are
randomly initialized trainable special tokens, and
[PMASK] and [NMASK] are initialized by the em-
bedding of original mask token [MASK]. Clearly,
artificially words (e.g., "belongs to", "rather than")
are used to guide the two mask tokens focus on
different predictive abilities. The objective is to
extract diverse knowledge from PLMs and create
varying difficulty in fine-tuning the representations
of the two mask tokens.

Verbalizer Selection Following the previous
prompt-based model (Ding et al., 2021), we uti-
lize the soft verbalizer that stores a set of mappings
from a soft word v ⊆ Vy to a label y ⊆ Y . As fine-
grained entity types typically have hierarchical type
structure, such as "/organization/company/news",
we use the average embedding of type tokens to
initialize soft words.

To determine the probability distribution of en-
tity mentions m with respect to the label set Y , the
co-prediction model generates two distinct scores
for each entity type y ∈ Y by using [PMASK] and
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Label Word 
Embeddings

MLM
Head

LocLoc

... ...

[P3][P3][P2][P2][P2]

Learnable Special Tokens

Mask Tokens

Learnable Special Tokens

Mask Tokens

[PMASK][PMASK] [NMASK][NMASK]

Figure 2: Overview of our noise correction method, which first fine-tunes a pre-trained masked language model via
co-prediction prompt-tuning and then use this model for noise correction. "GT" denotes the ground-truth. "PP" and
"PN" are prediction scores of [PMASK] and [NMASK].

[NMASK]. The prediction score for each label y can
be calculated as follows:

pp,y|(c,m) = p([PMASK] = v|T(c,m)), (2)

pn,y|(c,m) = p([NMASK] = v|T(c,m)), (3)

where pp,y and pn,y are the prediction scores of
[PMASK] and [NMASK] for label y.

3.2.2 Training with Noise
Drawing on insights from "memory effect" (Arpit
et al., 2017), it is possible for one mask to fit noisy
labels more quickly than another due to differences
in their fine-tuning speeds. This fitting discrepancy
can result in divergent predictions on noisy labels.
Figure 2a provides an example in which the pre-
dictions generated by [PMASK] and [NMASK] for
entity types "Gov" and "Org" are inconsistent. In
accordance with the semantics of the co-prediction
prompt, we define divergent co-predictions that
satisfy one of the following criteria:

{
pp,y ≥ 0.5 and pn,y ≥ 0.5

pp,y < 0.5 and pn,y < 0.5
(4)

Optimization Loss Function As the fine-tuning
process progresses, both [PMASK] and [NMASK]
will eventually fit all noisy labels, leading to a de-
crease of divergent co-predictions. To maintain the
ability of co-prediction model to generate divergent
results on noisy labels, we propose constraining the

model’s learning from the labels that exhibit diver-
gent co-predictions. Hence, we adjust the training
loss function as follows:

L(m, c) = γ
∑

Yk

Ly,k +
∑

Yt−k

Ly,t−k, (5)

where Yk denotes the labels with divergent co-
predictions, k is the number of these labels; Yt−k

denotes the labels with consistent co-prediction, t
is the total number of labels; Ly is the co-prediction
loss for each label y ∈ Y ; γ is a hyper-parameter
that represents the loss weight.

As [PMASK] and [NMASK] focus on opposite
learning abilities, the co-prediction loss Ly is cal-
culated as follows:

Ly = BCE(pp,y|(m, c), p̂y)+
BCE(pn,y|(m, c), 1− p̂y),

(6)

where p̂y ∈ {0, 1} denotes the ground-truth for
whether the entity mention m should be classified
as label y given the context c, and BCE(·) denotes
the binary cross-entropy loss function.

During the initial training stage, it is crucial to
recognize that labels with divergent co-predictions
may include a large number of clean labels. There-
fore, we start the model training with γ = 1. As
the fine-tuning process progresses, we gradually de-
crease γ until it reaches the marginal value. Once
the co-prediction model achieves the peak general-
ization performance, we terminate the model train-
ing process. We evaluate the effectiveness of this
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training strategy through empirical experiments in
Section § 5.3.

3.3 Noisy Label Correction
In this section, we will detail how to correct noisy
labels in the training data by recalling unlabeled
labels and eliminating inaccurate labels.

Recalling Unlabeled Labels The co-prediction
model utilizes two mask strategies, [PMASK] and
[NMASK], to extract knowledge from PLMs. By
combining the predictions generated by both strate-
gies, we can produce a more comprehensive set of
predicted labels, some of which might be unlabeled
in the training data. As shown in Figure 2b, the
predicted label "Pro" is not included in the origi-
nal golden labels, which suggests that it may be a
potentially unlabeled label.

Eliminating Inaccurate Labels After obtaining
a more comprehensive label set by recalling unla-
beled labels, the next step is to optimize this set by
removing inaccurate labels. As the co-prediction
model retains the ability to generate divergent pre-
dictions on noisy labels, we can identify inaccurate
labels by measuring the absolute difference in the
co-prediction scores. Specifically, we can calculate
the divergence score δy for each label y as follows:

δy = |pp,y − (1− pn,y)| (7)

We can then classify each label y as either a clean or
inaccurate label by comparing its divergence score
δy to a margin threshold ϵ. If δy > ϵ, we classify
the label y as inaccurate and remove it from the
label set.

Different weak supervision methods may result
in different levels of label noise, so it is important
to choose an appropriate margin threshold ϵ for
each method. For example, distant supervision
often results in inaccurate labels, so it may be more
appropriate to use a small ϵ to remove such noise.
In contrast, ChatGPT may produce accurate but
incomplete labels, in which case a relatively larger
ϵ could be adopted to ensure that more potentially
relevant labels are retained.

4 Experimental Settings

4.1 Datasets
We evaluate our noise correction method on three
publicly FET datasets. OntoNotes (Weischedel
et al., 2013) used sentences from OntoNotes cor-
pus, which was distantly annotated using DBpedia

Datasets WiKi OntoNotes Ultra-Fine

hierarchy depth 2 3 1
entity types 112 89 2519
mentions-train 2009898 253241 2000
mentions-dev - 2202 2000
mentions-test 563 8963 2000

Table 1: Statistics of datasets.

Spotlight (Gillick et al., 2014), with 253K training
samples and 89 entity types. WiKi (Ling and Weld,
2012) used sentences from Wikipedia articles and
news reports, and was distantly annotated using
Freebase (Bollacker et al., 2008), with 2M training
samples and 112 entity types. Ultra-Fine Choi
et al. (2018) collected 6K samples through crowd-
sourcing, which contains 2,519 entity types. Statis-
tics of datasets are in Table 1.

Moreover, we employ ChatGPT to relabel 3k
and 6k training samples from OntoNotes and WiKi,
respectively. For Ultra-Fine, it is challenging to
design a comprehensive prompt for data relabeling
with a huge number of entity types. More details
are in Appendix A.

4.2 Baseline Methods

We first consider previous noise relabeling or cor-
rection methods for FET, including LDET (Onoe
and Durrett, 2019), NFETC-AR (Zhang et al.,
2021), and ANLC (Pan et al., 2022). Meanwhile,
we also compare our method with some noise
learning methods for FET, including AFET (Ren
et al., 2016), NFETC (Xu and Barbosa, 2018), and
FCLC (Pang et al., 2022). Finally, we compare our
method with other competitive FET systems, such
as UFET (Choi et al., 2018), ML-L2R (Chen et al.,
2020b), MLMET (Dai et al., 2021), LRN (Liu et al.,
2021b), UNIST (Huang et al., 2022), and PKL (Li
et al., 2023).

4.3 Experimental Details

In our co-prediction model, we choose the BERT-
base (Devlin et al., 2019) model as backbone. Then,
the parameters of BERT are optimized by Adam
optimizer (Kingma and Ba, 2015) with the learning
rate of 2e-6, 2e-6 and 2e-5 on WiKi and OntoNotes,
and Ultra-Fine, respectively. Other hyperparame-
ters are in Appendix B.

After obtaining the corrected training sets of
each dataset, we train a basic prompt-based model
using supervised learning to evaluate the effective-
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Model Acc Macro F1 Micro F1

With Distantly Annotated Training Samples

AFET(2016) 55.3 71.2 64.6
NFETChier(2018) 60.2±0.2 76.4±0.1 70.2±0.2
ML-L2R(2020b) 58.7 73.0 68.1
LRN(2021b) 56.6 77.6 71.8
NFETC-ARhier(2021)† 64.0±0.3 78.8±0.3 73.0±0.3
FCLChier(2022) 65.3±0.2 79.6±0.3 74.0±0.3
DenoiseFET(2022)† 59.2±0.2 81.3±0.3 75.3±0.4

Baseline 54.8±0.7 78.1±1.2 71.2±0.9
Baseline (corrected) 58.8±0.8 83.7±0.2 76.3±0.3

w/ co-predict 57.0±0.5 83.1±0.1 75.2±0.2

With ChatGPT Annotated Training Samples

Baseline 64.4±0.7 85.8±0.3 80.5±0.5
Baseline (corrected) 64.6±0.7 87.1±0.1 81.7±0.1

w/ co-predict 64.3±0.6 86.5±0.2 81.3±0.1

Table 2: Performance on OntoNotes test set. † denotes
the previous noise relabeling or correction approach.

Model Acc Macro F1 Micro F1

With Distantly Annotated Training Samples

AFET(2016) 53.3 69.3 66.4
NFETChier(2018) 68.9±0.6 81.9±0.7 79.0±0.7
ML-L2R(2020b) 69.1 82.6 80.8
NFETC-ARhier(2021)† 70.1±0.9 83.2±0.7 80.1±0.6
FCLChier(2022) 71.3±1.1 82.2±0.7 81.1±0.6
DenoiseFET(2022)†∗ 67.5±0.3 82.3±0.6 78.5±0.6

Baseline 58.9±0.5 81.1±0.2 76.7±0.2
Baseline (corrected) 66.4±0.2 84.3±0.2 80.1±0.2

w/ co-predict 66.9±0.4 84.2±0.1 79.9±0.1

With ChatGPT Annotated Training Samples

Baseline 62.2±0.6 80.8±0.1 77.5±0.3
Baseline (corrected) 65.8±0.8 82.6±0.4 79.1±0.4

w/ co-predict 65.1±0.7 82.4±0.3 78.6±0.4

Table 3: Performance on WiKi test sets. † denotes the
previous noise relabeling or correction approach. ∗
means our re-implementation via their code.

ness of our approach2. For this baseline, we fine-
tune the BERT-base model with a standard prompt
(without "rather than [NMASK]").

4.4 Evaluation

Following prior works, we use the strict accu-
racy (Acc), Macro F1, and Micro F1 scores for
OntoNotes and WiKi. As for Ultra-Fine, we use
the Macro precision (P), recall (R), and F1 scores.
Moreover, we conduct our experiment five times
and report the mean and standard deviation values.

2Our code link: https://github.com/mhtang1995/CPPT

Model P R F1

With Crowdsourced Annotated Training Samples

UFET(2018) 47.1 24.2 32.0
LDET(2019)† 51.5 33.0 40.2
LRN(2021b) 54.5 38.9 45.4
MLMET(2021) 53.6 45.3 49.1
UNIST(2022) 49.2 49.4 49.3
DenoiseFET(2022)† 55.6±0.4 44.7±0.3 49.5±0.1
PKL(2023) 52.7 49.2 50.9

Baseline 57.0±0.7 41.2±0.3 48.0±0.2
Baseline (corrected) 53.2±0.7 48.1±0.5 50.5±0.1

w/ co-predict 52.7±0.6 48.2±0.5 50.3±0.1

Table 4: Performance on Ultra-Fine test set. † denotes
the previous noise relabeling or correction approach.

5 Results and Discussion

5.1 Main Results

Results on Distantly Annotated Data Table 2
and 3 present the results on OntoNotes and WiKi
with distantly annotated training set. Compared
with previous SOTA methods for FET, the simple
baseline (BERT-base + Prompt Tuning) achieves
on-par or inferior performance when training on
the original training set. Afterward, this baseline
model achieves the best Macro F1 scores over all
datasets when training on the corrected training
set, outperforming previous SOTA methods by a
magnitude from 1.1 to 2.4 percentages.

Results on ChatGPT Annotated Data Tables
2 and 3 also present the results on the OntoNotes
and Wiki using a ChatGPT annotated training set.
It is noteworthy that the baseline model achieves
comparable or superior performance with a limited
number of ChatGPT annotated training samples, as
compared to a significantly larger number of dis-
tantly annotated training samples (3k vs. 253k in
OntoNotes, and 9k vs. 2M in Wiki). Furthermore,
we apply our noise correction approach on these
training samples, resulting in significant perfor-
mance improvements of the baseline model across
all metrics. These results provide further evidence
of the effectiveness of our approach in accurately
identifying and correcting noisy labels.

Results on Crowdsourced Annotated Data Ta-
ble 4 presents the results on Ultra-Fine. The per-
formance of the baseline model is significantly
improved after training on the corrected training
set, achieving comparable results with the previ-
ous best method. This finding indicates that our
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noise correction method can enhance the quality of
human-annotated training data, even in a challeng-
ing dataset such as Ultra-Fine.

Furthermore, compared with previous best noise
correction method (DenoiseFET), our approach has
the advantage of being straightforward to imple-
ment, which does not require counting the noise
distribution of each type and training additional
models for noise correction.

5.2 Ablation Study
To evaluate the contribution of each component in
our noise correction method, we conduct ablation
studies on the three datasets.

As the co-prediction prompt plays a crucial role
for noise correction, we first assessed its impact
on the model’s performance. To be specific, the
case "w/ co-predict" denotes a baseline model
(BERT-base + Co-Prediction Prompt Tuning) are
trained on the corrected training set. Performance
of [PMASK] are reported in Table 2, 3 and 4. How-
ever, the results show a slight decline in perfor-
mance when the co-prediction prompt are used,
which suggests that it may not enhance the peak
generalization performance of the model.

Next, we investigated the impact of each step in
the noise correction process § 3.3. As shown in
Table 5, the case "w/o unl." indicates that the noisy
labels are corrected without recalling unlabeled la-
bels. As we can see, the baseline model achieves
higher precision but lower recall scores over the all
datasets. These results demonstrate the effective-
ness of this step in recalling unlabeled labels and
can be applied to various common types of weak
labels. The case "w/o ina." indicates that the noisy
labels are corrected without eliminating inaccurate
labels. Similarly, as shown in Tables 5, the base-
line model achieves relatively lower precision but
higher recall scores over all datasets.

Overall, these ablation studies demonstrate the
comprehensive effectiveness of our method in cor-
recting noisy labels by combining the two essential
steps: recalling unlabeled labels and eliminating in-
accurate labeled labels. By utilizing the knowledge
from PLMs, our method can effectively address the
issue of insufficient coverage of fine-grained entity
types in the training samples weakly annotated by
the large language model ChatGPT.

5.3 Detailed Analysis
Effect of Loss Adjustment As previously dis-
cussed, we have developed a strategy to adjust

Dataset Model P R F1

With Distantly Annotated Training Samples

OntoNotes
Baseline 87.8±0.9 80.0±0.6 83.7±0.2

w/o unl. 89.3±0.2 76.0±1.0 81.8±0.3
w/o ina. 83.9±0.6 82.1±0.8 83.0±0.2

WiKi
Baseline 82.9±0.1 86.1±0.2 84.3±0.2

w/o unl. 83.5±0.1 84.2±0.3 83.8±0.1
w/o ina. 70.7±0.4 90.9±0.4 79.5±0.2

With ChatGPT Annotated Training Samples

OntoNotes
Baseline 88.8±0.9 85.4±0.9 87.1±0.1

w/o unl. 90.2±0.5 80.1±0.6 84.9±0.2
w/o ina. 85.4±0.6 86.1±0.2 85.7±0.3

WiKi
Baseline 82.2±0.5 83.1±0.2 82.6±0.4

w/o unl. 83.0±0.4 79.8±0.4 81.3±0.1
w/o ina. 80.5±0.2 83.3±0.2 81.8±0.1

With Crowdsourced Annotated Training Samples

Ultra-Fine
Baseline 53.2±0.7 48.1±0.5 50.5±0.2

w/o unl. 59.5±1.2 41.0±0.7 48.5±0.3
w/o ina. 51.5±0.6 48.8±0.4 50.1±0.1

Table 5: Ablation studies on three different types of
weakly label.
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Figure 3: Left: The rate curves of divergent co-
predictions on ChatGPT annotated training set in WiKi
dataset. Right: The performance curves of our co-
prediction model in WiKi test set, and macro F1 scores
of [PMASK] are reported.

losses for labels that demonstrate divergent co-
predictions. This approach aims to help the model
maintain its ability to predict divergent results on
noisy labels. To assess the efficacy of this strat-
egy, we present the evolution trend of divergent
co-predictions during the training process.

Figure 3 displays the evolution curve of diver-
gent co-predictions generated on the WiKi training
set (weakly labeled by ChatGPT). As the model
training progresses, the number of divergent co-
predictions decreases gradually. According to the
memory effect theory, the reason may be that both
[PMASK] and [NMASK] are gradually fitting more
noisy labels. However, our loss adjustment strat-
egy allows the model to generate more divergent
co-predictions on the training data.
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Figure 4: Performances on Ultra-Fine and OntoNotes
when using different loss weight γ and threshold ϵ.

Training deep models on noisy labels can neg-
atively impact their performance on unseen data.
Therefore, we report the model’s performance on
WiKi test set. As seen, our strategy leads to a better
peak generalization performance. This finding sug-
gests that the labels with divergent co-predictions
may indeed contain potentially noisy labels, and
our strategy can mitigates their negative impact by
restricting the model learning them.

Sensitivity of Hyperparameters We explore the
performance changes with respect to different γ
(Eq.5) and ϵ (Eq.7).

Selecting an appropriate γ is crucial for the co-
prediction model to effectively identify noisy la-
bels. Since it is difficult to directly evaluate the
noise detection ability, selecting an appropriate γ
relies on the model’s generalization performance.
Figure 4(a, b) present the results on Ultra-Fine
and OntoNotes. To achieve optimal performance,
hyper-parameter tuning for γ is necessary when
training the co-prediction model in real-world sce-
narios.

The performance analysis of corrected training
sets generated with different threshold ϵ is pre-
sented in Figure 4(c, d). The results clearly demon-
strate the impact of varying ϵ values on the cor-
rected training sets. A small ϵ can improve the
precision score significantly, but it may also ad-
versely affect the recall score. Therefore, choosing
a reasonable ϵ value requires striking a balance be-
tween precision and recall scores to ensure optimal
model performance.

(a) Original

(b) Corrected

Figure 5: T-SNE virtualization of [PMASK] representa-
tions on OntoNotes test set: optimized by (a) original
and (b) corrected distantly annotated training sets. The
entity type "/other" is removed, as well as the types with
less than 50 samples.

Visualization To demonstrate the effectiveness
of our noise correction method, we visualize
[PMASK] representations optimized separately by
the original and corrected training sets. We choose
to display the fine-grained type since some types
have only a few test samples. Upon comparing
Figure 5(a) and (b), we observe more prominent
margins and clearer decision boundaries between
different types after noise correction. However,
some clusters still contain confusing samples. We
attribute this to the fact that many samples have
multiple fine-grained entity types (such as "/organi-
zation/government" and "/location/country"), but
only one can be reported. This also highlights the
complexity of noise correction in FET, as it requires
determining the correctness of each type in the la-
bel set, rather than simply selecting one correct
label.

6 Conclusion

This paper presents a novel noise correction method
for FET through the utilization of co-prediction
prompt tuning. Our approach is not only straight-
forward but also highly effective, leveraging a pre-
trained language model that has been fine-tuned
with a co-prediction prompt. This fine-tuned model
is capable of identifying and rectifying noisy labels.
To evaluate the performance of our method, we con-
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ducted experiments on three publicly available FET
datasets, each containing different types of training
samples, including those annotated through distant
supervision, ChatGPT, and crowdsourcing. The re-
sults of our experiments demonstrate the versatility
of our noise correction method, as it significantly
enhances the quality of the training data in all three
scenarios. Consequently, it leads to a substantial
improvement in the overall performance of the FET
model.

Limitations

We have developed a co-prediction prompt specifi-
cally for fine-tuning pre-trained masked language
models. However, it is important to note that this
is just one example of co-prediction prompt tuning,
and there exist numerous possibilities for design-
ing more engaging prompts. For instance, one can
consider increasing the number of [MASK] tokens
or designing prompts with more instructive words.
These alternative approaches can be complemented
by a novel process that utilizes the co-prediction
results to further enhance the accuracy of noise cor-
rection. In addition, our method does not rely on
prior knowledge or information about entity types,
such as predefined hierarchical structures or de-
tailed type introductions. While this information
is often not readily available, it can be useful for
identifying noisy labels.
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A Automatic Labeling with ChatGPT

In order to reduce both the cost and time required
for labeling, we choose to relabel only a subset
of high-quality training samples in OntoNotes and
Wiki datasets.

Firstly, we apply a frequency-based filtering ap-
proach to remove entity mentions from the training
samples, specifically discarding those with a fre-
quency lower than 10 in OntoNotes and 20 in Wiki.
Additionally, nonsensical non-entity mentions such
as "yes" and "please" are also removed. Finally, we
randomly extract 3,000 and 9,000 training samples
for OntoNotes and Wiki datasets, respectively.

These samples are merged with an artificially
designed prompt and then fed into GPT-3.5 text-
davinci-003 model via its official API3 for relabel-
ing. For parameters, we use top-p 1, with temper-
ature 0.7. An example of the labeling process is
shown in Figure 6.

B Hyperparameters

We use a grid search to find the best hyperparame-
ters depending on development set performances.
The hyperparameters we used to fine-tuning BERT
and correct noisy labels in three datasets are listed
in Table 6.

3https://openai.com/api/

Fine-grained entity typing aims to assign semantic types 
to entities in texts. The type set contains: /person, /
location, /organization, /other, /location/city, ……
For example:
Columbia Savings is a major holder of so - called junk 
bonds. The semantic types of "Columbia Savings" 
contain: /organization, /organization/company.
Question:
President Chen further stated that after Taiwan joins the 
World Trade Organization-LRB-WTO-RRB. The semantic 
types of "President Chen" contain:

/person, /person/political_figure/person, /person/political_figure/person, /person/political_figure

ChatGPTChatGPT

Figure 6: An example of using ChatGPT to label entity
mentions.

Parameters OntoNotes WiKi Ultra-Fine

Batch size 16 16 16
Learning Rate 3e-6 3e-6 2e-5
Adam epsilon 1e-8 1e-8 1e-8
Warmup ratio 0.0 0.0 0.0
Emb. dropout 0.2 0.2 0.2
Weight decay 0.01 0.01 0.01
Clipping grad 0.1 0.1 0.1

Loss weight γ 0.1 0.1 0.005
Threshold ϵ 0.2 0.05 0.8
ϵ on ChatGPT 0.3 0.5 -

Table 6: Hyper-parameters in OntoNotes, WiKi and
Ultra-Fine datasets.
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