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Abstract

The task of related work generation aims to
generate a comprehensive survey of related re-
search topics automatically, saving time and
effort for authors. Existing methods simplify
this task by using human-annotated references
in a large-scale scientific corpus as informa-
tion sources, which is time- and cost-intensive.
To this end, we propose a Unified Reference
Retrieval and Related Work Generation Model
(UR3WG), which combines reference retrieval
and related work generation processes in a uni-
fied framework based on the large language
model (LLM). Specifically, UR3WG first lever-
ages the world knowledge of LLM to extend the
abstract and generate the query for the subse-
quent retrieval stage. Then a lexicon-enhanced
dense retrieval is proposed to search relevant
references, where an importance-aware repre-
sentation of the lexicon is introduced. We also
propose multi-granularity contrastive learning
to optimize our retriever. Since this task is not
simply summarizing the main points in refer-
ences, it should analyze the complex relation-
ships and present them logically. We propose
an instruction-tuning method to guide LLM to
generate related work. Extensive experiments
on two wide-applied datasets demonstrate that
our UR3WG outperforms the state-of-the-art
baselines in both generation and retrieval met-
rics.

1 Introduction

The automatic related work generation (RWG) sys-
tem, which aims at generating a related work sec-
tion for a target paper, may help the readers go
through the cutting-edge research progress (Hoang
and Kan, 2010). Two main adjacent stages are
considered fundamental disciplines in RWG task:
(1) selecting related reference papers and (2) fig-
uring out the logical relation to write a summary
to present the evolving process of a specific field.
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Figure 1: Comparison between the existing related work
generation methods and our UR3WG. We propose to
retrieve references and generate related work without
human-annotated references in a unified model.

However, most existing RWG methods (Chen et al.,
2022a, 2021; Wang et al., 2019) only focus on the
second stage, where the human-annotated refer-
ence papers are taken as input via a summariza-
tion model. Consequently, retrieving related papers
from the large-scale corpus remains underempha-
sized. To address this problem, we focus on amalga-
mating the above two stages: retrieving the related
papers and generating the related work. Our unified
model, unlike previous RWG research, alleviates
the user’s burden by requiring only a high-level
abstract of the target paper as input. This approach
minimizes the workload for practical purposes.

An intuitive retrieval practice in RWG is tak-
ing the abstract as a query and employing dense
retrieval methods to obtain the related papers ac-
cording to semantic similarity. However, the ab-
stract given by the user is too vague to be a clear
intention for reference. Some related topics are
inherently correlated with the paper but are not
explicitly mentioned in the abstract, indicating se-
mantic mismatches. Moreover, the presence of rare
proper nouns, e.g., specialized terminologies in sci-
entific papers, makes it difficult for existing dense
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retrieval methods to capture the semantic nuances.
To generate the related work section, a common-
used alternative is leveraging the summarization
models (Chen et al., 2023a,b). Nevertheless, an
ideal related work section should reason intricate
relations among various references, instead of sim-
ply enumerating their main contributions. There-
fore, training the model to grasp the concept of
RWG while producing a high-quality related work
section remains challenging.

In this work, we leverage the large language
model (LLM) to enhance retrieval and generation
stages in the RWG task to tackle the above chal-
lenges. As shown in Figure 2, we propose an
Unified Reference Retrieval and Related Work
Generation framework (UR3WG). Specifically, we
leverage the LLM to extend the vague abstract
and generate a query containing more relevant
background information since the LLM has shown
strong knowledge association ability (Wang et al.,
2023). The generated query is used to subsequent
retrieval stage. To mitigate the diminished perfor-
mance of dense semantic retrieval methods, we pro-
pose a Lexicon-Enhanced dense Retrieval (LER)
method to integrate the advantages of lexical re-
trieval, where a learnable lexical text-matching al-
gorithm is introduced. We also propose a multi-
granularity contrastive learning method to opti-
mize our retriever, including group-wise and pair-
wise contrast. Since the related work section
should comprehensively introduce the relationship
between references, instead of simply summarizing
the main points, we propose an instruction-tuning
method to guide LLM to generate a high-quality
related work section. Extensive experiments con-
ducted on two benchmark datasets show that our
model significantly outperforms all the strong base-
lines, e.g., pushing the ROUGE-1 to 31.59 (8.4%
relative improvement) and BERTScore to 0.70
(6.9% relative improvement).

Our contributions are as follows: (1) We propose
the UR3WG, the first unified reference retrieval
and related work generation model in the RWG
task. (2) We propose a lexicon-enhanced dense re-
trieval method with an LLM-based query extension
method to retrieve highly related reference papers,
supervised by multi-granularity contrastive learn-
ing. (3) We propose an instruction-tuning method
to incorporate the references and guide the LLM to
generate related work logically. (4) Experimental
results on two benchmark datasets show the superi-

ority of our proposed model.

2 Related work

2.1 Related work generation

Similar to multi-document summarization, the task
of related work generation (RWG) which usually
takes multiple reference papers as input and gener-
ate a related work section for a target paper (Chen
et al., 2022a; Hoang and Kan, 2010) via summa-
rizes the related information in a logical order. Ex-
isting RWG methods can be divided into extractive
and abstractive methods. Specifically, extractive
methods select a subset of words or sentences most
relevant to the input abstract to form the final re-
lated work (Hoang and Kan, 2010; Hu and Wan,
2014; Deng et al., 2021) . With the emergence
of neural-based models (Lewis et al., 2019; Raffel
et al., 2019; Touvron et al., 2023), more abstractive
methods are utilized to solve the RWG task (Zhao
et al., 2020a; Chen et al., 2022b). For example,
Chen et al. (2022a) leverage the information of the
target paper and propose a target-aware graph en-
coder to model the relationship between reference
papers. Although these methods have shown exem-
plary performance, they rely on the human-labeled
references in the target paper, which still requires a
lot of manual retrieval work.

2.2 Retrieval argument generation

Information retrieval has been widely used in many
knowledge-intensive natural language generation
tasks, e.g., question answering (Guu et al., 2020;
Gao et al., 2023) and knowledge-grounded dia-
logues (Zhao et al., 2020b; Meng et al., 2020; Li
et al., 2021). For example, Lewis et al. (2020)
combine parametric and non-parametric knowl-
edge, where the former employs the pre-train lan-
guage model as a knowledge base while the lat-
ter is a dense vector index of Wikipedia, accessed
with a pre-trained neural retriever. Izacard and
Grave (2021) propose to first retrieve passages
via sparse, e.g., BM25 or dense retrieval, e.g.,
DPR (Karpukhin et al., 2020) to obtain the relevant
passages. Then a sequence-to-sequence (seq2seq)
model is employed to generate the answer based
on the concatenation of the representations of all
the retrieved passages.

These retrieval-augmented methods are usually
designed for scenarios with an explicit and clean re-
trieval goal. However, there have been few attempts
at the RWG task. On the one hand, the model only
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Figure 2: Left: The architecture of proposed framework for reference retrieval and related work generation. Right:
the Lexicon-Enhance Dense Retrieval (LER).

uses the abstract as input, and the abstract does not
indicate which topic should be surveyed in the re-
lated work. On the other hand, it is noteworthy that
the citation relation among multiple documents is
implicit in nature, thereby necessitating the reason-
ing to understand.

3 Task formulation

In this paper, we generate the related work section
of the target paper and only use the abstract X
as the input without the ground-truth references
R∗. Specifically, we propose a unified reference
retrieval and text generation framework, which con-
sists of three steps: (1) leverage the knowledge of
LLMs to extend the input abstract and generate
the query used for the subsequent retrieval stage.
(2) retrieve reference papers R = {r1, r2, ..., r|R|}
from the document corpus D = {d1, d2, ..., d|D|}
according to the similarity S to query at seman-
tic level Ss and lexicon level Sl; (3) generate the
related work section Ŷ of the target paper by sum-
marizing the retrieved references R.

4 Methodology

4.1 Model overview

As shown in Figure 2, UR3WG first generates the
reference retrieval query by extending the abstract
X . Then a lexicon-enhanced dense retriever (LER)
retrieves relevant references by using the extended
abstract as the query. Since RWG is different from
simple text summarization tasks, the logical rela-
tion between input abstract and references should
be carefully considered. We employ an instruction-
tuning method to train LLM to understand the def-

inition of the RWG task and generate the high-
quality related work section.

4.2 Query extension
It has been proven that achieving better retrieval
performance is feasible if the query can be rewrit-
ten to a more similar form to the candidate docu-
ments (Yu et al., 2022). Since the LLMs trained on
massive textual corpora have shown strong knowl-
edge association ability (Wang et al., 2023), we
leverage the knowledge of LLM to extend the ab-
stract X and formulate pseudo references R̂ as an
extended abstract, which contains more rich infor-
mation in the RWG task. The R̂ is taken as a query
to search relevant references accurately. Specif-
ically, we first design an instruction IQE which
contains two parts: (1) DQE is a demonstration ex-
ample which describes the definition of the query
extension task, and (2) X is the abstract of the
target paper:

IQE = Demonstration : {DQE}
Input : {X}.

Then, we leverage the LLM to generate pseudo
references R̂ on the condition of instruction IQE .
Since R̂ is highly relevant to the abstract X and can
be potentially cited, we take R̂ as the query during
the subsequent retrieval stage, assisting in query
disambiguation and guiding the retriever (Wang
et al., 2023). And we optimize the proposed
UR3WG via standard language modeling objec-
tive:

LQE =

|R∗|∑

i=1

|ri|∑

t=1

logPφ(r
(t)
i |r(<t)

i , IQE), (1)
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where the φ is the learnable parameters and R∗ is
the set of ground-truth references.

4.3 Lexicon-enhanced dense retrieval

Current trainable dense retrieval models built on
language models have shown remarkable capa-
bility in capturing sentence-level similarity. De-
spite these advances, they exhibit diminished per-
formance when retrieving references due to their
omission of significant local phrases and enti-
ties (Zhang et al., 2023), which leads to outcomes
worse than those obtained via traditional lexicon-
based retrieval methods (Shen et al., 2022; Thakur
et al., 2021; Lin and Ma, 2021a). To alleviate this
problem, we introduce a Lexicon-Enhanced dense
Retrieval (LER) method that explicitly incorpo-
rates importance-aware lexicon representations into
dense semantic representations. We also design an
approximation to accelerate this method for appli-
cation in the large-scale corpus.

4.3.1 Semantic-oriented retrieval

Inspired by the dense retrieval methods (Khattab
and Zaharia, 2020; Santhanam et al., 2023), we em-
ploy dual independent dense encoders: Encoderq
and Encoderd, which map the query q and candi-
date reference d (a.k.a., document) to token-level
representation, respectively. Specifically, we add
the [CLS] at the beginning of q and d. The query
representation Hq is obtained via:

Hq = Encoderq(q), (2)

where Hq = {h1q , h2q , ...h|q|q } ∈ R|q|×m. The hiq
indicates the representation of each token, and m
is the feature size. Similarly, we derive the token-
level representation of each document d through:

Hd = Encoderd(d), (3)

where Hd = {h1d, h2d, ...h
|d|
d } ∈ R|d|×m, and |d| is

the length of the document. We take the embedding
of [CLS] token as the semantic representation. The
semantic similarity between query q and document
d can be defined based on the inner product:

Ss(q, d) = Linear(h1q)
T · Linear(h1d), (4)

where Linear denotes a linear layer with an activa-
tion function to compress and extract features from
the raw representation.

4.3.2 Lexicon-oriented retrieval
To capture the information of local phrases and en-
tities, we propose a token-level interaction network
with a guided interaction mechanism that calcu-
lates the lexicon-level similarity. The architecture
is illustrated in Figure 2. Specifically, we construct
a continuous bag-of-words representation for each
token in q based on Hq:

Eq = softmax(HqWq) ∈ R|q|×|V|, (5)

where Wq ∈ Rm×|V| is the trainable parameter,
and the |V| is the vocabulary size. The Eq indi-
cates the importance of the input token to all the
vocabulary. Then a lexicon representation of query
q can be constructed via a max-pooling layer along
each token of Eq:

θq = MaxPooling(Eq) ∈ R|V|. (6)

Similarly, we obtain the lexicon representation θd
for the document d via:

Ed = softmax(HdWd) ∈ R|d|×|V|, (7)

θd = MaxPooling(Ed) ∈ R|V|, (8)

where the Wd ∈ Rm×|V| is the trainable parameter.
Although the bag-of-words representation con-

tains fine-grained importance of lexicon, the repre-
sentation θq over the entire vocabulary is too sparse
and contains much noisy information. Therefore,
we propose a group-wise local threshold mech-
anism that partitions the sparse representation θq
into several groups containing k tokens, and only
remains the maximum value of each group:

θ̃q = {max(θi∼i+k
q )|i = nk, n ≤ |V|

k
}, (9)

τq = {argmax(θi∼i+k
q )|i = nk, n ≤ |V|

k
}, (10)

where the τq is the index of the maximum of each
group, indicating the most important lexicon for
query q in this group. And the interaction between
the sparse representation of q and d can be guided
by τq to calculate the lexicon-level similarity:

Sl(q, d) =

|τq |∑

i=0

θ̃iq × θ
τ iq
d . (11)

Finally, we combine the similarity score of se-
mantic and lexicon levels as the final matching
score for the query q and document d:

S(q, d) = Ss(q, d) + Sl(q, d). (12)
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For each query q, we retrieve the top-k candidate
reference R as input. Considering the scientific
paper corpus is large-scale in real-world scenarios
while the online interaction mentioned in Equa-
tion 11 is time-intensive, we design an approximate
algorithm for offline matching. The details and
qualitative analysis are provided in Appendix A.1.

4.3.3 Multi-granularity contrastive learning
Unlike the existing passage retrieval task which
assumes there is only one relevant document for a
query (Karpukhin et al., 2020; Khattab and Za-
haria, 2020), in the RWG task, a scientific pa-
per has multiple diverse references. We propose
a multi-granularity contrastive learning method
to alleviate this problem, including group-wise
and pair-wise contrast. Specifically, we denote
the reference cited in the target paper as R+ =
{r+1 , r+2 , . . . , r+|R|} and the irrelevant paper as
R− = {r−1 , r−2 , . . . , r−|R|}.

Group-wise contrastive learning. Given the ab-
stract X of the target paper, the goal of our group-
wise contrastive learning is to minimize the dis-
tance between the abstract X and the positive ref-
erence group R+ and maximize the distance to the
irrelevant document group R−. Specifically, we
employ negative log-likelihood as the loss function
for positive references:

LG(q,R+,R−) (13)

= − log

∑|R+|
i=0 eS(q,r

+
i )

∑|R+|
i=0 eS(q,r

+
i ) +

∑|R−|
i=0 eS(q,r

−
i )

.

Pair-wise contrastive learning. Most of the ex-
isting retrieval methods (Qin et al., 2022; Hossain
et al., 2020) obtain the relevant documents by rank-
ing the candidate documents based on the similar-
ity to the query. They only minimize the negative
log-likelihood of the positive documents, implic-
itly optimizing their model to binary classify the
documents. However, the ranks of documents also
provide a training signal to optimize the retrieval
module. Specifically, we propose a pair-wise con-
trastive loss LP which contrasts each positive ref-
erence r+i in R+ and negative reference r−i in R−,
explicitly optimizing the model to rank r+i before
r−i . The LP can be formulated as:

LP(q,R+,R−) (14)

=

|R+|∑

i=0

|R−|∑

j=0

max(0, S(q, r−j )− S(q, r+i ) + λ),

where the λ is the margin that we defined to explic-
itly constrain the gap between positive and negative
references. Our contrastive loss is the combination
of the LG and LP:

LCL = µLG + (1− µ)LP, (15)

where µ is the weight of two losses.

4.4 Instruction-tuning for generation

Instruction tuning has been shown to improve the
performance and generalization of LLMs in com-
plex tasks for supervising the LLMs following con-
crete instructions (Chung et al., 2022; Wei et al.,
2021). Since the definition of the RWG task is
complex and different from summarizing text di-
rectly, we design an instruction-tuning method to
help LLM understand the approach of generating
related work. Specifically, we describe the defini-
tion of the RWG task via the demonstration DGEN.
The DGEN paired with abstract X and reference R
are concentrated to construct the instruction IGEN,
which can be formulated as:

IGEN = Demonstration : {DGEN}
Input : {abstractX}
Reference : {R}.

We then leverage the LLM to generate related work
on the condition of the IGEN, prompting LLM to
understand the definition of the RWG task and gen-
erate the related work section logically, which is
supervised via the instruction-tuning loss:

LGEN = −
|Y |∑

t=1

logPφ(y
(t)
i |y(<t)

i , IGEN). (16)

The Y is the ground truth related work of the target
paper and φ is the parameters shared with Equa-
tion 1.

4.5 Multi-task learning

We jointly optimize UR3WG with two tasks, i.e.,
query extension in § 4.2 and instruction-following
generation in § 4.4. The final training objective is
defined as:

J = αLQE + ηLGEN, (17)

where the α and η are the hyper-parameters, denot-
ing the weights of the two losses, respectively.
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Table 1: Results on two datasets. We abbreviate ROUGE as R. We underline the best results in each category of
baseline methods. All ROUGE scores have a 95% confidence interval as reported by the official ROUGE script.

Methods TAS2 Dataset TAD Dataset

R-1 R-2 R-L R-SU R-1 R-2 R-L R-SU
Multi-document summarization methods

NES (Wang et al., 2019) 26.04 3.39 22.46 6.14 26.13 3.24 23.20 6.18
MGSum (Jin et al., 2020) 25.54 3.75 23.16 6.49 27.49 4.79 25.21 7.29
LexRank (Erkan and Radev, 2004) 25.74 2.81 22.43 6.03 25.70 2.86 22.68 5.90
BertSumEXT (Liu and Lapata, 2019) 25.85 2.90 22.66 6.21 25.95 2.91 23.05 6.25
BertSumABS (Liu and Lapata, 2019) 25.45 3.82 23.04 6.39 27.42 4.88 25.15 7.22
EMS (Zhou et al., 2021) 26.17 4.16 23.63 6.67 28.21 5.15 25.74 7.56

Large language models
Llama-7B (Touvron et al., 2023) 18.28 2.05 15.29 4.01 15.45 1.62 13.48 2.91
Claude 27.59 3.88 24.99 7.28 30.69 5.11 28.00 9.04
Vicuna-7B 28.40 4.01 25.39 7.01 31.09 4.91 27.62 8.9
Davinci-text-003 22.80 2.49 20.26 5.08 24.59 3.15 21.97 5.89
ChatGPT 29.13 4.08 25.59 7.89 31.41 5.34 28.15 9.33

Related work generation methods
RRG (Chen et al., 2021) 26.79 4.43 24.46 6.85 28.94 5.59 26.46 7.92
TAG (Chen et al., 2022a) 28.04 4.75 25.33 7.69 30.48 6.16 27.79 8.89
UR3WG 31.59 5.86 26.13 9.62 32.68 7.74 28.87 9.54

Ablation study
- w/o LQE 28.30 4.25 24.84 7.35 31.05 5.77 27.64 8.68
- w/o LGEN 30.42 5.02 25.11 8.10 30.77 4.97 26.78 8.25

5 Experiment Setup

5.1 Datasets

We conduct experiments on two widely-applied
datasets: TAS2 and TAD (Chen et al., 2022a).
Specifically, the TAS2 consists of 117,700 scien-
tific publications from several fields, whereas TAD
consists of 218,255 scientific publications from
the computer science field. For each example in
datasets, it includes (1) the abstract of the article,
(2) a paragraph of the related work, and (3) the
reference paper cited in this paragraph (four refer-
ences per paragraph on average).

5.2 Evaluation metrics

Following Chen et al. (2018); Zhou et al. (2021);
Chen et al. (2022a), we mainly employ ROUGE
(1,2,L,SU) for evaluation. Since only using the
ROUGE metric to evaluate generation quality can
be misleading (Shi et al., 2023), we also con-
sider the other metrics, including the lexicon-based
metric, e.g., BLEU (Papineni et al., 2002) and
semantic-based metrics, e.g., BERTScore (Zhang
et al., 2019) and BARTScore (Yuan et al., 2021).
We evaluate the retriever with Recall@K (k=5, 10,
20) metrics. The statistical significance of differ-
ences observed between the performance of two
runs is tested using a two-tailed paired t-test at
α = 0.01 and p < 0.05.

we also conduct the human evaluation. Three

well-educated Master students are invited to judge
40 randomly sampled examples with a three-scale
in the four aspects: Relevance (Rel.), Fluency
(Flu.), Coherence (Cohe.), Informativeness (Info.).
The details of these aspects can be found in Ap-
pendix A.5.

5.3 Baselines

We mainly compare our UR3WG with three types
of baselines: multi-document summarization meth-
ods, related work generation methods, and large
language models.

The multi-document summarization baselines in-
clude extractive methods, such as LexRank (Erkan
and Radev, 2004), BertSumExt (Liu and Lapata,
2019) and NES (Wang et al., 2019) as well as ab-
stractive methods like BertSumAbs (Liu and La-
pata, 2019) and EMS (Zhou et al., 2021). These
baselines take the references as input. The related
work generation methods include RRG (Chen et al.,
2021) and TAG (Chen et al., 2022a), which take
the abstract and references as input. The large lan-
guage models include Llama-7B (Touvron et al.,
2023), Vicuna 1, Claude 2, Davinci-text-003, and
ChatGPT 3, which take the instruction IGEN input.

We also compare our retrieval method LER with
strong baselines, including traditional term-based

1https://github.com/lm-sys/FastChat
2https://www.anthropic.com/
3https://openai.com/blog/chatgpt
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Table 2: The recall@K (K=5,10,20) score for retrieval methods on two datasets.

Methods TAS2 Dataset TAD Dataset

Recall@5 Recall@10 Recall@20 Recall@5 Recall@10 Recall@20
BM25 (Robertson et al., 2009) 6.32 9.79 13.82 2.62 4.62 7.10
DPR (Karpukhin et al., 2020) 13.23 18.30 27.89 6.28 9.65 16.9
DLR (Lin and Lin, 2022) 23.68 25.77 30.57 15.61 18.87 27.95
SPLADE (Formal et al., 2021) 24.21 30.51 37.31 15.70 20.80 26.29
ColBERT (Khattab and Zaharia, 2020) 15.56 21.14 27.89 23.34 24.12 25.11
Condenser (Gao and Callan, 2021) 20.84 28.94 38.48 11.22 16.61 23.94
UniCOIL (Lin and Ma, 2021b) 15.35 19.33 24.25 8.74 11.60 15.16
Lexicon-enhanced retrieval (LER) 37.35 41.56 44.17 31.20 40.20 49.47

Ablation study
- w/o LQE 29.30 33.70 37.28 23.47 23.22 27.77
- w/o LP 33.24 39.15 40.21 25.41 38.01 45.14
- w/o Sl 34.10 40.23 41.03 29.16 35.26 44.87

methods like BM25 (Robertson et al., 2009), and
dense retrievers, such as DPR (Karpukhin et al.,
2020), ColBERT (Khattab and Zaharia, 2020), Con-
denser (Gao and Callan, 2021), as well as lexicon-
aware retrievers, e.g., DLR (Lin and Lin, 2022),
SPLADE (Formal et al., 2021) and UniCOIL (Lin
and Ma, 2021b). Since the abstract is too long
with many irrelevant words, we take concatenation
of the keywords extracted from the abstract as the
query. To ensure the fairness of comparison, all
the baselines are finetuned with the same datasets
as our proposed method. More details about the
baselines are provided in Appendix A.3.

5.4 Implementation details

We initialize the parameters with Llama-7B (Tou-
vron et al., 2023). We vary the weight of contrastive
learning loss µ in {0.5, 0.6, 0.7, 0.8, 0.9}, and find
that 0.7 achieves the best performance. Follow-
ing the Sun et al. (2022), we tune the weight α
to 0.5, η to 0.5 at initialization, respectively, and
linearly decrease to 0.3 and 0.2. We optimize the
model using AdamW optimizer with parameters
β1 = 0.98, β2 = 0.99, the learning rate of 2e−5,
and the weight decay coefficient of 0.01. The train-
ing of our model can be done within 28 hours on
the TAD dataset and 17 hours on the TAS2 dataset
using four NVIDIA A100 PCIE GPUs.

6 Result and analysis

6.1 Experiment result

Generation performance evaluation. Table 1
shows the details of the results. Overall,
UR3WG achieves the best performance compared
to the other baselines. For example, UR3WG
gets ROUGE-1=32.68, ROUGE-2=7.74 in TAD

datasets, with 8.4% and 25.6% relative improve-
ment compared to existing state-of-the-art baseline.
As shown in Table 4, we also select several strong
baselines for more comprehensive evaluation. The
proposed UR3WG outperforms the strong base-
lines in terms of the lexicon-level and semantic-
level metrics, e.g., pushing BLEU-1 to 23.22 and
BERTScore to 0.70 in TAS2 dataset. These results
demonstrate that our UR3WG fits well in generat-
ing high-quality related work with the assistance
of curated instruction.

Retrieval performance evaluation. As shown
in Table 2, our retrieval module outperforms the
strong retrieval baselines by a large margin. For ex-
ample, LER reaches Recall@5=37.35 in the TAS2
dataset with 13.14 absolute improvement compared
to the state-of-the-art baseline SPLADE, which il-
lustrates that our proposed lexicon-enhanced dense
retrieval is more suitable for reference retrieval sce-
narios. We also consider several variant models for
more comprehensive comparison in Section 7.

6.2 Human evaluation

Table 6 shows the results of the human evalua-
tion. We find that the UR3WG outperforms the
best RWG baselines TAG in four aspects, e.g., push-
ing Relevance to 2.77 (0.47 absolute improvement)
in TAD dataset. We also observe that UR3WG
achieves comparable and better performance with
ChatGPT (175B) with only 7B parameters, indi-
cating the effectiveness of our method. The av-
erage Kappa statistics for four evaluation metrics
are 0.72, 0.70, 0.71, and 0.73, illustrating agree-
ment among the annotators. More results details
are provided in Appendix A.5.
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Table 3: The recall score for retrieval on two datasets. We take the input abstract, extended abstract (denoted as
abstract∗) and keywords extracted from input abstract as the query to search relevant documents, respectively.

Method Query TAS2 TAD

Recall@5 Recall@10 Recall@20 Recall@5 Recall@10 Recall@20

ConDenser
abstract 7.13 11.49 17.48 3.99 6.81 11.04
abstract∗ 29.27 32.56 36.04 19.6 21.89 24.49
keywords 11.22 16.61 23.94 20.84 28.94 38.48

ColBERT
abstract 2.93 5.16 8.07 1.91 3.31 5.34
abstract∗ 32.98 33.92 35.33 23.34 24.12 25.11
keywords 12.47 17.14 22.63 10.55 14.70 19.26

SPLADE
abstract 6.08 9.08 13.10 4.06 6.48 9.59
abstract∗ 36.38 41.92 47.20 30.42 36.14 41.36
keywords 24.21 30.51 37.31 15.70 20.80 26.29

UniCOIL
abstract 2.13 4.62 6.57 1.76 2.67 4.13
abstract∗ 19.18 21.33 24.15 12.72 14.26 16.16
keywords 15.35 19.33 24.25 8.74 11.60 15.16

Approximation
LER (w. approx.) abstract∗ 35.59 40.50 43.23 29.14 40.11 48.32
LER abstract∗ 37.35 41.56 44.17 31.20 40.20 49.47

Table 4: More evaluation results. B1: BLEU-1; B2:
BLEU-2; BES: BERTScore, BAS: BARTScore.

Methods TAS2 Dataset TAD dataset

B1 B2 BES BAS↑ B1 B2 BES BAS↑
TAG 17.23 7.50 0.660 -4.61 18.82 7.61 0.653 -4.76
Claude 15.30 5.37 0.650 -5.38 17.41 6.51 0.660 -5.17
Vicuna 14.17 4.34 0.604 -4.85 17.61 6.18 0.651 -5.20
Davinci-text-003 14.92 4.19 0.589 -5.50 16.25 4.91 0.601 -5.31
ChatGPT 16.77 5.18 0.645 -5.37 15.93 5.25 0.654 -5.20
UR3WG 23.22 8.71 0.700 -3.74 24.31 7.64 0.674 -4.30

Ablation study
- w/o LQE 22.47 8.09 0.664 -4.34 23.72 7.01 0.656 -4.97
- w/o LGEN 22.47 8.64 0.650 -4.02 22.98 7.24 0.632 -5.01

6.3 Ablation study

To better understand the impact of different com-
ponents of our UR3WG, we employ the following
modifications to the architecture.

–w/o LP. We remove the loss LP mentioned in
Equation 15. We observed an average decrease in
recall of 8 ∼ 10 on both datasets, e.g.,, the Re-
call@10 drops from 41.56 to 39.15 with 6.16%
relative decrease, 40.20 to 38.01 with 5.76% rel-
ative decrease, which indicates the effect of our
multi-granularity contrastive.

–w/o Sl. We remove the lexicon matching score
Sl(q, d) (in § 4.3.2). From the results shown in Ta-
ble 2, the recall metrics have a significant decline,
which indicates that the lexicon information is criti-
cal to retrieve relevant references in the RWG task.

–w/o LQE. We remove the loss LQE for query
extension. As shown in Table 2 and Table 1, both
the generation and retrieval performance suffers
from a significant decrease. This result indicates
that the external knowledge injected via LQE assists
the UR3WG in generating more informative pseudo

references and final related work section.
–w/o LGEN. We replace the instruction-tuning

loss LGEN with a standard language modeling ob-
jective (Zhao et al., 2020c; Johansen and Juselius,
2010), where we take the concatenation of abstract
and references as input, supervising the model pre-
dict the ground-truth related work. As shown in
Table 1, the performance significantly declines,
demonstrating that the instruction we design fits
the LLMs well in the RWG task and improves the
capability in complex generation scenarios.

6.4 Case study

We conduct several case studies and find that
UR3WG is more effective at retrieving relevant ref-
erences and generating more informative text than
baselines. Details are provided in Appendix A.6.

7 Discussion

Variant model for reference retrieval. For each
retrieval, we take the abstract, keywords of abstract,
and extended abstract as the query to search rele-
vant documents. Specifically, the keywords are
extracted via KeyBert (Grootendorst, 2020), and
extended abstract is generated via the proposed
UR3WG. As shown in Table 3, for each retrieval
method, taking the extended abstract as the query
reaches the best performance, which indicates that
our query extension method can be combined with
different retrieval methods. And this result further
illustrates that the extended abstract contains rich
information about the target paper. We also observe
a significant decline when we replace the query
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Figure 3: The retrieval performance of TAS2 dataset (a and b) and TAD dataset (c and d) based on different slice.
For each figure, the horizontal axis indicates the group size (128, 512, 768, 1024, 2048) and the vertical axis
indicates the corresponding Recall@k score (k=5, 10).

from abstract to keywords. The potential reason is
that the abstract is too long with many irrelevant
words, hindering the performance of retrieval.

The impact of lexicon representation group size.
we conduct experiments to alternate the sparse lex-
icon representation into different dimensions. As
shown in Figure 3, we find that the recall keeps
increasing and peaks at 1024 (TAD datasets) and
768 (TAS2 datasets), indicating that more repre-
sentative lexicon information can be used to match
relevant documents in the retrieval stage. How-
ever, when the dimension increases to 2048, the
recall decreases, suggesting that some low-featured
lexicon information is retained.

Qualitative analysis about the approximation
We explore the impact by comparing the perfor-
mance before and after approximation, and results
are are shown in Table 3. Comparing with the
vanilla LER, we observe that LER (w. approx.)
an average decrease of about 3.13% and 3.68% in
TAS2 and TAD datasets, respectively. This result
illustrates that the approximation can improve re-
trieval efficiency at a slight performance cost. More
details can be found in Appendix A.2.

8 Conclusion

In this paper, we propose a UR3WG, which fuses
the reference retrieval and related work generation
into a unified framework based on large language
models (LLMs). Concretely, UR3WG first extend
the input abstract and generate the query used for
next retrieval stage. Then a lexicon-enhanced dense
retrieval (LER) is proposed to retrieve the relevant
document at the semantic and lexicon level. The
LER is optimized via multi-granularity contrastive
learning, including group- and pair-wise contrasts.

Since RWG is different from simple text summa-
rization tasks, we employ an instruction-tuning
method, enabling the LLM to understand the def-
inition of RWG task and generate a high-quality
related work section. Experiments on two datasets
demonstrate that our model establishes a new state-
of-the-art with automatically retrieved references.

Limitations

The main limitation of this paper is the requirement
of massive computation resource. We will explore
how to employ our method in low-resource scenar-
ios. Another limitation is that we only consider the
single-lingual retrieval scenario. In the future, we
plan to extend our model to multi-lingual applica-
tions, which is common in real-world.

Ethics Statement

The paper proposes UR3WG, a unified reference
retrieval and related work generation framework.
Given the abstract as input, the UR3WG first
searches relevant papers as references and generate
related work. Moreover, reference papers should
be cited appropriately.
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A Appendix

A.1 Retrieving on large-scale corpus
Since the scientific paper corpus is usually large-
scale in the real-world scenario, our UR3WG
should support a billion-scale similarity search
more efficiently. Following the Lewis et al. (2020),
we first encode all candidate documents into vector
representations using the encoder Encoderd, and
utilize Faiss to store and conduct the real-time vec-
tor search. Faiss4 is a library for efficient similarity
search and clustering of dense vectors. Faiss em-
ploys the MIPS (Maximum Inner Product Search)
to find the document vectors with the highest in-
ner product with the query vector (Mussmann and
Ermon, 2016).

Since the online interaction mentioned in Equa-
tion 11 is time-intensive, we can approximate it
by creating an index of group-wise maximum and
minimum values of θ:

τd = {argmax(θi∼i+k
d )|i = nk, n ≤ ⌊|V|

k
⌋},

θ̃d,max = {max(θi∼i+k
d )|i = nk, n ≤ ⌊|V|

k
⌋},

θ̃d,min = {min(θi∼i+k
d )|i = nk, n ≤ ⌊|V|

k
⌋},

where the ⌊·⌋ indicates the lower rounding.
The essence of our approximation method is that

the bag-of-words representation is highly sparse,
so we can assume that only one individual element
in each group is significantly larger than the other
elements, while the other elements are only slightly
different. Therefore, the Equation 11 can be further
simplified as:

Sl =

|τq |∑

i=0

σi · θ̃iq · θ̃id,max + (1− σi) · θ̃iq · θ̃id,min

where σi is a label defined as:

σi =

{
0, τ iq ̸= τ id
1, τ iq = τ id

. (18)

For i-th group of θd during the matching, if the τ id
equals to τ iq , there is no bias. If the τ id not equals
to τ iq , the value τ id-th element in θd can be alternate
by the minimum value of this group based on our
assumption. With this approximation, we can use
Faiss to perform semantic matching on the large-
scale corpus.

4https://github.com/facebookresearch/faiss

A.2 Qualitative analysis about the
approximation

To support the retrieval on the large-scale corpus,
we approximate the interaction to adapt the vector
retrieval method in Faiss (in Eq A.1), which un-
avoidably introduces the loss of information. We
explore the impact by comparing the performance
before and after approximation, and the results are
shown in Table 3 as LER (w. approx.). Compar-
ing with the vanilla LER , we can observe that the
performance of the algorithm has decreased, with
an average decrease of about 3.13% and 3.68% in
TAS2 and TAD datasets, respectively. This result
illustrates that the approximation can improve re-
trieval efficiency at a slight performance cost. With
this approximation, we can use Faiss to perform
semantic matching on the large-scale corpus. Oth-
erwise, it will be difficult for us to retrieve on a
large-scale corpus with acceptable latency.

A.3 Details for baselines

We mainly compare our UR3WG with three types
of baselines: multi-document summarization meth-
ods, related work generation methods, and large
language models.

The multi-document summarization baselines in-
clude: LEAD, which concatenates the first sentence
of each reference; LexRank (Erkan and Radev,
2004), which extract summarization based on the
graph representation of sentences; NES (Wang
et al., 2019), a extractive method which measures
the relevance via bibliography graph; MGSum (Jin
et al., 2020), an abstractive method based on multi-
granularity interaction network; BertSum (Liu and
Lapata, 2019), a summarization system built on a
pre-trained BERT (Devlin et al., 2019); EMS (Zhou
et al., 2021), which augments the encoder-decoder
framework with a heterogeneous graph.

The related work generation methods include:
RRG (Chen et al., 2021) , which enhanced by a
iteratively refined relation-aware graph between
references; TAG (Chen et al., 2022a), a transformer-
based model with a target-aware graph encoder.

The large language models (LLMs) include
flan-t5 (Chung et al., 2022), Llama-7B (Touvron
et al., 2023), ChatGLM (Du et al., 2022), Vicuna 5,
claude 6, Davinci-text-003, and ChatGPT 7, where
the instruction IGEN is taken as input.

5https://github.com/lm-sys/FastChat
6https://www.anthropic.com/
7https://openai.com/blog/chatgpt
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Table 5: Results on the TAS2 and TAD dataset. We abbreviate ROUGE as R We underline the best results in each
category of baseline methods. w/ T denotes the method which uses both references and abstract as input. All
ROUGE scores have a 95% confidence interval as reported by the official R script.

Methods TAS2 Dataset TAD Dataset

R-1 R-2 R-L R-SU R-1 R-2 R-L R-SU
Summarization methods

LEAD 19.63 1.75 16.88 3.73 22.74 2.32 20.15 4.87
NES w/ T (Wang et al., 2019) 26.04 3.39 22.46 6.14 26.13 3.24 23.20 6.18
MGSum (Jin et al., 2020) 25.54 3.75 23.16 6.49 27.49 4.79 25.21 7.29
LexRank (Erkan and Radev, 2004) 25.74 2.81 22.43 6.03 25.70 2.86 22.68 5.90
LexRank w/ T (Erkan and Radev, 2004) 27.04 3.18 23.48 6.55 27.29 3.50 24.06 6.61
BertSumEXT (Liu and Lapata, 2019) 25.85 2.90 22.66 6.21 25.95 2.91 23.05 6.25
BertSumEXT w/ T (Liu and Lapata, 2019) 27.43 3.56 24.01 6.97 27.60 3.64 24.51 6.98
BertSumABS (Liu and Lapata, 2019) 25.45 3.82 23.04 6.39 27.42 4.88 25.15 7.22
BertSumABS w/ T (Liu and Lapata, 2019) 26.35 3.23 23.73 6.65 28.48 3.93 25.91 7.63
EMS (Zhou et al., 2021) 26.17 4.16 23.63 6.67 28.21 5.15 25.74 7.56
EMS w/ T (Zhou et al., 2021) 26.50 4.22 23.90 6.84 28.74 5.36 26.37 7.89

Large language models
Llama-7B (Touvron et al., 2023) 18.28 2.05 15.29 4.01 15.45 1.62 13.48 2.91
Claude 27.59 3.88 24.99 7.28 30.69 5.11 28.00 9.04
Vicuna-7B 28.40 4.01 25.39 7.01 31.09 4.91 27.62 8.9
Davinci-text-003 22.80 2.49 20.26 5.08 24.59 3.15 21.97 5.89
ChatGPT 29.13 4.08 25.59 7.89 31.41 5.34 28.15 9.33

Related work generation methods
RRG (Chen et al., 2021) 26.79 4.43 24.46 6.85 28.94 5.59 26.46 7.92
TAG (Chen et al., 2022a) 28.04 4.75 25.33 7.69 30.48 6.16 27.79 8.89
UR3WG 31.59 5.86 26.13 9.62 32.68 7.74 28.87 9.54

We compare our lexicon-enhance re-
trieval method with the following baselines:
BM25 (Robertson et al., 2009), a classical
sparse retrieval; DPR (Karpukhin et al., 2020),
a dense retrieval method with a dual-encoder
framework; SPLADE (Formal et al., 2021), a
passage ranker based on sparsity regularization
and a log-saturation effect; ColBERT (Khattab and
Zaharia, 2020), which searches relevant passages
via contextualized late interaction. UniCOIL (Lin
and Ma, 2021b), an extension of classical sparse
retrieval COIL (Gao et al., 2021). Since the
abstract is too long with many irrelevant words, we
take concatenation of the keywords extracted from
the abstract as the query.

A.4 Variant model

Since the existing summarization baselines only
use the references as input, the abstract of the
target paper also contains much useful informa-
tion. To make a fair comparison, we develop a
variant model for each multi-document summariza-
tion method which uses the concatenation of the
abstract of the target paper and references as in-
put. We add the notion (w/ T) to each original
summarization method to denote the variant model.
We also implement a baseline, denoted as LEAD,
which concatenates the first sentence of each ref-

erence. As shown in Table 5, the ROUGE metrics
increase when the abstract is concatenated to the
reference as input, e.g., an average 4% relative im-
provement in ROUGE-1 metrics. However, it still
lags behind the proposed UR3WG.

A.5 Human evaluation

A.5.1 Details for human evaluation

We conduct human evaluation, where three well-
educate Master students are invited to judge 40 ran-
domly sampled examples. Specifically, we show
each annotator the abstract, related work, and cor-
responding references. Each annotator is asked
to rate the related work with a three-scale in the
following metrics: (1) Relevance (Rel.): the rel-
evance between the raw abstract and the related
work. (2) Fluency (Flu.): whether the related work
is fluent with no grammatical errors. (3) Coherence
(Cohe.): coherence refers to how well the sentences
are connected and how they flow together to form a
coherent and understandable text. (4) Informative-
ness (Info.): Whether related work covers the key
information mentioned in the article or can provide
more extensions. Table 6 shows the details of the
human evaluation results.
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Table 6: Human evaluation results on two datasets.

Methods TAD dataset TAS2 dataset

Rel. Flu. Cohe. Info. Rel. Flu. Cohe. Info.

TAG (Chen et al., 2022a) 2.30 2.50 2.43 2.25 2.54 2.40 2.55 2.35
Claude 2.15 2.70 2.45 2.33 2.35 2.77 2.35 2.39
Vicuna 2.25 2.75 2.32 2.35 2.34 2.77 2.44 2.47
Davinci-text-003 1.90 2.51 1.97 1.97 2.05 2.60 2.01 2.05
ChatGPT 2.65 2.86 2.40 2.65 2.54 2.83 2.44 2.65

UR3WG 2.77 2.79 2.45 2.60 2.57 2.70 2.54 2.70

Human 2.84 2.85 2.78 2.89 2.79 2.74 2.95 2.75

Table 7: An example of generated related work by our model and baselines. The same color denotes the same key
information.

Abstract of target paper (truncated):
we explore a simple method for predicting the genre of artists based on co-occurrence analysis, i.e., analyzing
co-occurrences of artist and genre names on music related web pages. We investigate four different query schemes and
two probabilistic approaches for predicting the genre of artists.
Ground Truth Reference Papers (the same as our retrieved reference):
[1] Detecting artists that can be considered as prototypes for particular genres or styles of music is an interesting task.
[2] We use the relation between the prototypicality ranking and a ranking obtained by page counts of search to google
that contain artist and genre.
Ground truth related work : Co-occurrence analysis has also been applied to thedetecting prototypical artists task
for a given genre[1]. In [2], they used a technique based on a page rank citation ranking on page count estimates to
derive the prototypicality of each of artist for a given genre.
Baseline TAG output: Co-occurrences of artist names on web pages have been used for artist co-occurrence analysis in
[1]. In [2], the authors use the co-occurrence analysis of artist and genre names to determine artist similarity. They use
cosine similarity to find co-occurrences.
Baseline ChatGPT output: This survey focuses on a web-based Co-occurrences technique for genre prediction of
music artists. By evaluating the effectiveness of this approach and considering the integration of objective rating
methods like Pagerank, it aims to contribute to the development of accurate and reliable genre prediction models.
UR3WG output: [1] use co-occurrences of artist and genre names on music related web pages to predict the genre
of a given artist. [2] propose a method for predicting the genres of an artist which relies on the page counts provided by
google to estimate the relatedness of an arbitrary artist to each of a set of genres.

A.6 Case study
Table 7 presents an example of the generated re-
lated work by UR3WG and the start-of-the-art base-
line TAG. And we highlight the same key informa-
tion with the same color. We first observe that
UR3WG retrieves the ground-truth references cor-
rectly, even though the keyword “page rank” is not
mentioned in the abstract, which verifies the effi-
ciency of our retriever. Moreover, the related work
generated by UR3WG captures more highly related
key information than the TAG baseline.
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