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Abstract

Few-shot classification has made great strides
due to foundation models that, through priming
and prompting, are highly effective few-shot
learners. However, this approach has high vari-
ance both across different sets of few shots
(data selection) and across different finetun-
ing runs (run variability). This is problematic
not only because it impedes the fair compari-
son of different approaches, but especially be-
cause it makes few-shot learning too unreliable
for many real-world applications. To allevi-
ate these issues, we make two contributions
for more stable and effective few-shot learning:
First, we propose novel ensembling methods
and show that they substantially reduce run
variability. Second, we introduce a new ac-
tive learning (AL) criterion for data selection
and present the first AL-based approach specif-
ically tailored towards prompt-based learning.
In our experiments, we show that our combined
method, MEAL (Multiprompt finetuning and
prediction Ensembling with Active Learning),
improves overall performance of prompt-based
finetuning by 2.3 points on five diverse tasks.
‘We publicly share our code and data splits in
https://github.com/akoksal/MEAL.

1 Introduction

Pretrained language models (PLMs) are effective
few-shot learners when conditioned with a few ex-
amples in the input (Brown et al., 2020; Min et al.,
2022, i.a.) or finetuned with a masked language
modeling objective on samples converted into
cloze-style phrases (Schick and Schiitze, 2021a;
Gao et al., 2021). Prompt-based finetuning is espe-
cially promising as it enables researchers to train
relatively small models as few-shot classifiers that
can make accurate predictions with a minimal in-
vestment of time and effort.

However, prompt-based finetuning suffers from
high variance. We observe two causes in our experi-
ments: run variability (different seeds) and data se-
lection (different training sets). Figure 1 illustrates

RTE MRPC
80 80

@E*F*Q

55 55

Accuracy
o ~
1% o

=)
k=)

50 50
#1  #2  #3  #4 #5 #1  #2  #3  #4 #5

Training Sets Training Sets

Figure 1: Multiprompt results with 32 examples for
ALBERT on RTE and MRPC. Prompt-based finetuning
has large variance depending on training data selection
and random initialization. The accuracy difference can
be up to 23.5 with different random seeds (RTE #3) and
13.7 with different training sets (RTE #1 vs #4).

this for five equal-size training sets and 20 runs for
RTE (Dagan et al., 2006) and MRPC (Dolan and
Brockett, 2005). Both sources of variance are of
particular concern in few-shot learning. We may
get lucky and select a “good” training set. But be-
cause no dev set is available there is also a high risk
of selecting a “bad” training set, resulting in much
lower performance than possible for the available
annotation budget. In addition, run variability is
a great methodological problem because it means
that the exact same experimental setup (except for
different random seeds, causing variance in the or-
der of training examples and dropout layers) will
give different results. This makes fair comparison
of different algorithms and architectures difficult.
We propose new approaches to few-shot learning
that address both sources of variance. We first focus
on run variability and show based on loss/accuracy
surface visualizations (Li et al., 2018) that run vari-
ability in few-shot learning is different from fully-
supervised settings: solutions proposed for finetun-
ing PLMs (Mosbach et al., 2021) do not work for
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few-shot prompt-based finetuning. Thus, we pro-
pose ensemble techniques to stabilize finetuning for
different runs. After mitigating the effects of run
variability via a more stable finetuning mechanism,
we are able to address training data selection. We
modify existing active learning (AL) algorithms
and propose a novel approach for selecting train-
ing examples that outperforms prior algorithms —
not just in terms of final accuracy, but also regard-
ing the diversity and representativeness of selected
examples. In general, we are, to the best of our
knowledge, the first to develop AL algorithms tai-
lored to prompt-based finetuning.

We combine our contributions — decrease run
variance and better training sets for improved per-
formance and stability of few-shot classification
—in MEAL (Multiprompt finetuning and predic-
tion Ensembling with Active Learning). MEAL
improves performance of prompt-based finetuning
by 2.3 points on five tasks. Contributions:

1. We propose a training procedure that pro-
duces a single few-shot classification model
with multiple prompts on top of PET (Schick
and Schiitze, 2021a). This reduces model
space complexity and improves overall per-
formance.

2. We show that run variability is a big problem
in few-shot classification and conduct an ex-
haustive analysis of why existing solutions
do not apply to few-shot prompt-based fine-
tuning. We propose ensemble techniques to
improve run stability.

3. We propose a novel AL method for data se-
lection that outperforms prior AL work and
random selection. Our work is the first to
demonstrate that AL is beneficial in prompt-
based learning.

2 Related Work

Few-shot classification with language model
prompting. GPT-3 (Brown et al., 2020) prepends
examples as conditioning to the input during infer-
ence, without parameter updates. PET (Schick and
Schiitze, 2021a,b) follows a similar approach with
finetuning and achieves comparable results, with
fewer parameters. LM-BFF (Gao et al., 2021) and
ADAPET (Tam et al., 2021) extend PET.

Instability. There are two sources of instabil-
ity in finetuning PLMs for few-shot classification:

run variability and data selection. Run variability
comes from finetuning PLMs with random seeds.
Mosbach et al. (2021) and Dodge et al. (2020a)
show that finetuning PLMs is an unstable process
for fully supervised training. Recently, Zheng et al.
(2022) demonstrated that few-shot finetuning also
exhibits run variability but their experiments have
different training sets in a cross-validation scenario.
They do not address how much instability comes
from finetuning vs. data selection. Our findings
suggest that the instability issue exists in few-shot
training for the same training set, and existing solu-
tions for fully supervised settings (e.g., Dodge et al.
(2020a), Mosbach et al. (2021)) do not stabilize
finetuning for few-shot classification. We propose
the run ensemble method to improve the stability
of few-shot classification. The second type of insta-
bility is training data selection; we target this issue
with AL.

Active Learning. As collecting labeled data is
time-consuming and costly, AL has been a cru-
cial part of supervised learning (Cohn et al., 1996;
Settles, 2009; Rotman and Reichart, 2022). Apart
from efficiency in data labeling, we show that some
training sets have significantly worse performance
than others for few-shot classification. Zhao et al.
(2021a) also show that the selection of the few
shots matters a lot. Hence, we follow an AL setup
to select informative and diverse training sets for
few-shot classification. Schroder et al. (2022) re-
cently showed that uncertainty AL achieves signif-
icant improvements for fully supervised settings
in PLMs. Following this, we modify a variety of
AL algorithms including prior works such as CAL
(Margatina et al., 2021) and BADGE (Ash et al.,
2020) for few-shot prompt-based finetuning, and
propose a novel AL algorithm, IPUSD.

3 Multiprompt Finetuning

Let M be a masked PLM, T its vocabulary, and
MASK € T the mask token. We use Pattern-
Exploiting Training (PET) (Schick and Schiitze,
2021a) for prompt-based finetuning experiments
on few-shot classification without knowledge dis-
tillation and unlabeled data. Patterns (7P) transform
an input z into a cloze-style phrase x;, with a single
mask. Verbalizers (V') convert each label [ € L
into a single token s; € T, representing the task-
specific meaning of the output label.

Our prediction for a label is its probability, ac-
cording to the PLM, as a substitution for the mask:
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Figure 2: Loss and validation accuracy surface visualizations for two RTE runs with the same training set. Left
(training loss): The two models ¢, and 6 have similar loss — they are both located in the upper right blue zero-loss
triangle. Right (validation accuracy): The successful model 6, performs much better than the failed model 6.
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where s,,, gives the raw score of V' (y) from a PLM
M for the MASK position in the cloze-style phrase
of the input. Using the cross-entropy loss of P,
PET trains a separate model for each prompt (i.e.,
single prompt finetuning). In inference, it ensem-
bles model predictions by logit averaging.

We propose multiprompt finetuning, a mod-
ified PET that trains a single model M on all
prompts for a task simultaneously. During infer-
ence time, we also use ensembling with logit av-
eraging across prompts. However, our approach
generates a single finetuned model regardless of
the number of prompts. Compared to PET, this
reduces runtime, memory, and overall complexity.

4 Run Variability

In few-shot classification, finetuning PLMs such as
ALBERT (Lan et al., 2020) with an MLM objec-
tive on samples converted into cloze-style phrases
(Schick and Schiitze, 2021b) performs comparably
to much larger GPT-3 (Brown et al., 2020). Just
as prompting methods are sensitive to data order
(Lu et al., 2022) and label distributions (Zhao et al.,
2021b), finetuning PLMs also exhibits sensitivity
and instability as shown by Dodge et al. (2020b)
for a fully supervised setting.

We show that the instability of finetuning PLMs
also exists in few-shot prompt-based finetuning.
Even though prompt-based finetuning does not in-
troduce new parameters like classifier heads as in
fully supervised classification, there is variance
from dropout and training data order. We conduct
experiments with multiprompt finetuning with de-
fault PET (Schick and Schiitze, 2021a) settings
without knowledge distillation. Figure 1 shows
that runs with different random seeds for the same
training set can vary by as much as 23.5 points.

Mosbach et al. (2021) suggest that longer train-
ing with a low learning rate and warm-up reduces
run variability of PLMs. Their main motivation is
to avoid models ending up in suboptimal training
loss regions. However, this is not valid in few-shot
prompt tuning as the number of training examples
is low, and finetuning achieves almost zero train-
ing loss quickly. Our initial experiments show that
longer training does reduce the standard deviation
between different runs, but that it also causes lower
mean accuracy for most tasks, of up to 7.3 points.

In Figure 2, we analyze run variability, by creat-
ing a training loss and validation accuracy surface
visualization of two RTE runs with the same train-
ing set and multiprompt finetuning. The failed
model 67 (red) achieves 58.5% validation accu-
racy while the successful model 6, (green) achieves
71.5%. The two models only differ in finetuning
random seed. The figure illustrates the training loss
and validation accuracy surfaces for combinations
of the model weights of the pretrained model (6,),
the failed model (6y), and the successful model
(65). We create a two-dimensional space based on
f(a,b) = F(0,+ads+bds), where 67 = 0y — 0,
0s = 0,—0,, and F'is loss (left) or accuracy (right).
We use 16 values for a and b to plot loss and accu-
racy surface forms.

Figure 2 shows that there is a large region with
<le-4 training loss (left graph, dark blue) that in-
cludes 0 and 0,. However, most of this region is
suboptimal in terms of validation accuracy (right
graph). This indicates that our instability problem
differs from fully supervised finetuning where large
learning rates often result in suboptimal training
loss; in contrast, we observe ~0 training loss for
each run, including failed ones. Therefore, longer
training with a low learning rate and warm-up only
leads to finetuned models ending up in a similar re-
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gion with lower variance, but it causes suboptimal
validation accuracy scores; see §6 for more details.

To overcome run variability, we propose two
ensemble models: We ensemble the logits over
runs in ENSEMBLE.q and take the average of
parameters over runs in ENSEMBLE,,. We will
show that, for five tasks, these (i) reduce the effect
of failed runs and run variability and (ii) achieve
higher accuracy than accuracy averaged over runs.

The prediction of ENSEMBLE;;q for z is:

R

Pylz) = s(22[ 20 Fr(ylzp)l/ (R +[P]))

r=1 peP
where s is softmax, R is the number of runs, P is
the set of prompts, and F;. gives, for the finetuned
model in run r, the logit of each class for the input
x with prompt p.

Following work on averaging deep networks (Iz-
mailov et al., 2018), we average each parameter
of the finetuned PLMs across runs, resulting in a
single model. The prediction of ENSEMBLE;,
for x is the prediction of this single model.

5 Data Selection

Another important source of variance for few-shot
classification is training data selection. Figure
1 shows this effect: validation accuracy greatly
varies, with a difference of up to 13.7.

Figure 3 shows how we modify AL algorithms
for data selection in few-shot prompt-based finetun-
ing. First, we use a PLM to get contextual embed-
dings, logits, and probabilities for each unlabeled
example in a zero-shot setting. We exploit here that,
due to the cloze-style format, PLMs can make pre-
dictions before any finetuning. Second, we apply
modified AL algorithms for prompts. We select all
examples at once to simplify the selection process.
For each task, we select 16 * L training examples,
where L is the number of labels.

5.1 Prior-Work Active Learning

We use a range of prior-work AL algorithms, in-
cluding random, uncertainty-only (e.g., entropy)
and combined approaches (e.g., BADGE). Al-
though these are prior-work, adapting them to a
prompt-based setup is non-trivial; e.g., for BADGE
it requires concatenating gradient vectors across
prompts. Therefore, this adaptation is one of the
contributions of our paper. Importantly, none of the
prior-work leverages the prediction variety across
different prompts.

Unlabeled Set
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% Logits
- ;:;/nis:ots o <= [ Prob. Distribution
— 14 Gradient Vectors

Active Learner

Figure 3: Our modified active learning pipeline for data
selection is illustrated with an example sentence and
two prompts for sentiment analysis. The PLM outputs
several features in a zero-shot manner. AL selects a
few-shot training set based on these output features.

Random selection draws random examples from
an unlabeled set. We report random selection re-
sults with five different seeds.

Entropy (Roy and McCallum, 2001) computes
the entropy score of an example by summing the
entropy across prompts. We then select examples
with highest entropy scores.

j=L

e(xzi)=>, > —Ply=lj|zip) In P(y=1j|x;p)
j=1 peP

where L is the number of labels, P is the set of
prompts, and x; , is input z; with pattern p.
Breaking Ties (BT) (Luo et al., 2004) selects ex-
amples with minimum difference between the high-
est two probability classes.

bi(zi) = > Py =llzip) — Py = lao|wip)

peEP

where [ and [y are the labels with highest and sec-
ond highest probability for x; ;.
Lowest Confidence (LC) (Culotta and McCallum,
2005) calculates Ic as the sum of probability scores
for the predicted class across prompts. We select
examples with lowest Ic. Ic and bt give the same
order when there are two labels.

le(z;) = Y max{P(y = lj|z;p) : j = 1..L}

peEP

Contrastive AL (CAL) (Margatina et al., 2021)
selects examples with the highest KL divergence
between the example and its M nearest neighbors
in the PLM contextual embedding space.

m=M

> 2 KL(P(ylzmp)||P(ylzip))
m=1 peP
Batch AL by Diverse Gradient Embeddings
(BADGE) (Ash et al., 2020) uses as representa-
tion the gradient of the cross entropy loss, condi-
tioned on the one-hot encoding of the predicted
label, with respect to the parameters of the final

cal(x;) =
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(output) layer. For prompt-based finetuning, we
represent z; as the concatenation of the gradient
vectors across prompts by using the decoder of the
masked PLM head as the final layer. We find 16
(i.e., the number of training examples) cluster cen-
ters using kmeans++. These 16L cluster centers
are then selected as the training set. We average
BADGE over five seeds as k-means++ depends on
initialization.

5.2 Prompt-Specific Active Learning

To make AL prior-work usable in prompt-based
learning, we sum over different prompts in §5.1.
However, these algorithms do not consider the
varied predictions made by the PLM across
different prompts. Therefore, we propose a
new uncertainty-only algorithm, called Prompt-
Pair-KL. (PP-KL) specifically designed for
prompt-based learning. We calculate pp-kl(z;) as
the sum of KL divergence scores across prompt
pairs, and then select examples with the highest
pp-kl. This approach gives high scores to z; with
high variability in the model’s predictions indicat-
ing that such examples are “non-redundant” in that
each prompt contributes different information.

pp-kl(z;) = > KL(P(ylzip)||P(ylzig))
(p,q)€P?

Inter-prompt uncertainty sampling with diver-
sity (IPUSD) is our novel AL algorithm that com-
bines prompt-specific uncertainty (i.e., PP-KL) and
diversity sampling. It first represents each example
x as a vector of dimensionality |P|-|L|, the concate-
nation of the L logits for x for each of the patterns
in P. We utilize logits here as they represent the
model’s probability distribution, certainty and di-
vergence across different prompts. We cluster these
representations with k-means, k=8. We sample a
training set, uniformly distributed over the 8 clus-
ters. Then the uncertainty score of the training set is
calculated as the sum of its Prompt-Pair-KL scores.
We repeat the iteration loop 1000 times. Finally, we
select the training set with the highest uncertainty
score. We select based on 1000 iterations to ensure
a balance between randomization and uncertainty.
Our initial experiments suggest that choosing the
most uncertain examples selects outliers, resulting
in poor performance. As k-means and sampling de-
pend on random seed, we repeat IPUSD five times.
See §A.4 for the pseudo-code of IPUSD.

6 Experiments and Results

Setup We use a diverse set of five classification
tasks to compare single to multiprompt finetun-
ing, analyze run variability, and evaluate AL algo-
rithms: RTE (Dagan et al., 2006), SST-2, SST-5
(Socher et al., 2013), TREC (Li and Roth, 2002),
and MRPC (Dolan and Brockett, 2005). We use
four prompts for each, described in §A.3. We re-
port results on the validation set as we conducted
all experiments without hyperparameter tuning by
assuming a realistic few-shot scenario in which
no dev set is available for tuning.! For single
prompt and multiprompt finetuning, we use PET’s
defaults (Schick and Schiitze, 2021a). For longer
training, we compare PET’s defaults to Mosbach
et al. (2021)’s adapted settings. PET’s defaults: 1le-
5 learning rate, 10 epochs, no warm-up. Adapted
settings: 1e-6 learning rate, 50 epochs, linear sched-
uled warm-up with a 0.1 ratio.

Evaluation Metrics We report the average of
both accuracies and run/training set standard devi-
ations for a given dataset and AL algorithm over
five training sets and five runs for each training set.
For AL algorithms without variance (e.g., entropy
and Prompt-Pair-KL), we do not report training set
standard deviation as the algorithm outputs a sin-
gle training set. We increase the number of runs
from 5 to 20 for stability experiments and report
run variance over 20 runs for default and longer
training. For ENSEMBLE, the ensemble size is 5
and we report variance over 4 trials.

For data selection, we treat training examples of
each dataset as unlabeled data from which few-shot
examples are picked via AL. We report the average
accuracy over five datasets and the average rank-
ing of AL algorithms for each dataset following
Schroder et al. (2022) with additional analysis of
diversity (Zhdanov, 2019), representativeness (Ein-
Dor et al., 2020), and label entropy (Prabhu et al.,
2019) as explained in §7.

Single and Multiprompt Finetuning In Table 1,
we compare single prompt to multiprompt finetun-
ing. Multiprompt consistently outperforms single
prompt on average accuracy for each stability tech-
nique, up to 1.8 points (L2 vs L6). Across all 20
experimental setups for each dataset and stability
technique, multiprompt (L5 — L8) achieves better
average accuracy in 16 cases than single prompt

' Additionally, RTE has no public test set. We therefore
use the validation set for consistency across datasets.
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No Finetuning Stability Technique RTE SST-2 SST-5 TREC MRPC Average
L1 Default (PET) 63.7+191 93.1+054 51.6+073 81.3+1.11 67.7+107 71.5+107
L2 Sinele Prompt Longer Training 63.4+042 92.1+010 5021020 74.0+045 67.0+020 69.3+027
L3 g P ENSEMBLE,4:a 64.0+135 93.2+027 5194040 80.6+056 67.5+070 7T1.4+066
L4 ENSEMBLE;;eq 64.0+095 93.2+030 52.0+051 81.9+072 67.9+058 71.8+061
L5 Default (PET) 6421488 91.7+155 52.1+092 82.9+177 67.9+205 71.8+228
L6 Multipromt Longer Training 66.2+045 93.0+008 50.4+026 79.0+034 66.8+036 71.1+030
Ly uupromp ENSEMBLE,., 6441253 92.5:1031 529047 8371100 6831134 72.4+113
L8 ENSEMBLE)eq 6544286 92.4+043 52.84042 84.4+087 689+1.03 T2.8+1.12

Table 1: Comparing stability techniques for prompt-based finetuning with single and multiple prompts with
ALBERT on randomly selected training sets. Multiprompt improves overall performance compared to single
prompt. ENSEMBLE,,.q improves stability while achieving higher performance for single prompt and multiprompt.
Standard deviation is calculated across runs (trials for ENSEMBLE) and averaged over five random training sets.

(L1 — L4). Even though multiprompt produces a
higher standard deviation in the default setup (L5
vs L1), ENSEMBLE (L7, L8) overcomes this. Over-
all, multiprompt finetuning not only provides better
overall performance than single prompt, but also
simplifies training and deployment because it out-
puts a single model, compared to one model per
prompt for single prompt.

Run Variability For each task, we compare the
default PET (Schick and Schiitze, 2021a) setup (hy-
perparameters given in §6), Mosbach et al. (2021)’s
proposal of longer training with a lower learning
rate and warm-up training, and ENSEMBLE over
five randomly selected training sets.

Table 1 shows that Mosbach et al. (2021)’s
longer training reduces run standard deviation,
but causes suboptimal accuracy results for SST-5,
TREC, and MRPC in multiprompt finetuning (L6
vs L5), and for all datasets in single prompt fine-
tuning (L2 vs L1). We conclude: a longer training
approach is not advisable for practical scenarios.

ENSEMBLEq consistently reduces the stan-
dard deviation for each dataset, both in single
prompt (L4 vs L1, 43%) and multiprompt finetun-
ing (L8 vs L5, 51%). This reduction in standard
deviation is accompanied by an increase in accu-
racy of up to 1.0 absolute points, contrary to longer
training. On the other hand, ENSEMBLE,;;, con-
sistently performs better than the default only in
multiprompt (L7 vs L5), but speeds up the predic-
tion process during inference time with a single
model while also reducing the standard deviation.

On top of that, both ENSEMBLE techniques
avoid failed runs. For example, the default ap-
proach with multiprompt gets 87.4% average ac-
curacy (not shown in the table) with one of the
five random training sets in SST-2 while its worst

run with the same training set has 77.6% accu-
racy. ENSEMBLE,;.¢ and ENSEMBLE,;., ensure
better average accuracy (88.5% and 88.8%) with-
out any suboptimal models (accuracy of worst tri-
als: 87.8% and 88.4%) for the same training set.
Thus, the default approach can result in suboptimal
performance and is therefore not reliable for real-
world applications without validation data. Over-
all, ENSEMBLEq achieves clearly better over-
all performance and a lower standard deviation,
but with the additional cost of multiple models
(i.e. five in our experiments) during inference time.
ENSEMBLE,,;, is an alternative approach to in-
crease stability and performance while providing
a single model with lower time complexity during
inference time.

Data Selection Table 2 compares our AL al-
gorithms with uncertainty and diversity-based
prior-work. To provide more stable results and
fair comparison by reducing noise from differ-
ent runs, we employ multiprompt finetuning with
ENSEMBLE),., for each AL algorithm in this sec-
tion. Our results show that all uncertainty-only
algorithms — entropy, lowest confidence, breaking
ties and Prompt-Pair-KL (L2-L5) — perform worse
than random selection (L1) on the average over five
datasets. Our interpretation is that, considering
that we are finetuning a PLM with few examples,
finetuning with the highest uncertainty examples
does not generalize well. In contrast, Schroder
et al. (2022) found that uncertainty-only AL con-
sistently performs better than random selection for
fully supervised settings in PLMs.

AL prior-work that combines uncertainty and di-
versity — CAL (L6) and BADGE (L7) — perform bet-
ter than uncertainty-only algorithms (L2-L5). Fur-
thermore, BADGE outperforms random on three
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No Algorithms RTE SST-2 SST-5 TREC MRPC Average
L1 Random 653458  92.1124 52.8+07 83.8+23 69.3127 72.6128
L2  Entropy 71.1 89.3 49.0 76.2 68.9 70.9
L3  Lowest Confidence 71.8 914 48.8 72.6 70.1 70.9
L4  Breaking Ties 71.8 914 49.9 77.2 70.1 72.1
L5  Prompt-Pair-KL (Ours) 59.6 89.8 53.5 77.4 65.4 69.1
L6  CAL (Margatina et al., 2021) 56.7 92.9 49.0 81.6 71.8 704
L7 BADGE (Ash et al., 2020) 68. 7489 932108 51.2+28 82.7+31  70.3109 732433
L8  IPUSD (Ours) 70.1+38 929109 S51.4+14 85.0+22 69.8433 73.9123

Table 2: Comparison of active learning methods. Random, BADGE, IPUSD (inter-prompt uncertainty sampling
with diversity) are non-deterministic. We run these algorithms for five random seeds and then average accuracy and
standard deviation (averaged across training sets with a single trial for non-deterministic algorithms). Best results
are indicated in bold, results better than random are underlined.

out of five tasks. However, BADGE has higher
standard deviation (3.3) than random (2.8).

Finally, when averaged over the five tasks, our
proposed algorithm IPUSD (L8) performs better
than random (L 1) and better than all AL prior-work
(L2-L7) with higher accuracy and lower standard
deviation.

7 Analysis

We now perform an in-depth analysis of AL al-
gorithms to understand their relative performance
better and to understand failure cases like SST-5.
We believe that these insights will lead to improved
AL strategies in future work.

Balancing desiderata in AL We investigate
three desiderata in AL: diversity, representative-
ness and label entropy.

Diversity (Zhdanov, 2019) measures the redun-
dancy/similarity of training examples by calculat-
ing the reciprocal of the average distance between
unlabeled examples and their nearest training ex-
ample. Representativeness (Ein-Dor et al., 2020)
captures the well-known issue of selecting outlier
examples in AL; it is calculated as the reciprocal
of the average distance between the selected train-
ing examples and their k (k=10) nearest neighbors
from unlabeled examples. Label Entropy (Prabhu
etal., 2019) is the KL divergence between the class
distribution of the unlabeled data and that of the
selected training examples.

Table 3 shows that our proposed AL algorithm,
IPUSD, outperforms all AL prior-work with higher
average accuracy, better ranking, and lower stan-
dard deviation. It outperforms random, a strong
baseline, by 1.3 points.

Table 3 also shows that uncertainty-only algo-
rithms usually have higher label entropy (E) —

Acc.T Rank| Div.T Reprt Ent.|

Random 72.6+28 4.0 13.6 17.6 2.0
Entropy 70.9 6.4 13.3 16.9 6.1

LC 70.9 5.6 13.5 17.2 53

BT 72.1 4.0 13.4 17.1 5.6
PP-KL 69.1 5.6 13.4 16.9 9.0
CAL 70.4 4.4 13.1 17.1 23.5
BADGE 73.2+33 3.0 13.6 17.6 2.2
IPUSD 73.9:23 3.0 13.5 17.6 2.0

Table 3: Comparing average accuracy, ranking, diversity
(D), representativeness (R), and label entropy (E) scores
for seven active learning algorithms. IPUSD outper-
forms AL algorithms by better balancing out the three
desiderata D, R and E. Uncertainty-only AL algorithms
have worse scores for each of D, R, E, resulting in lower
performance. Arrows indicate whether higher (1) or
lower (]) is better.

which indicates a class distribution different from
unlabeled data — and lower representativeness (R)
and diversity (D). We see that random selection
provides a strong baseline for E, R and D. While
BADGE and IPUSD have similar scores for E, R
and D, a slight change in label entropy (i.e., select-
ing a training set with different distribution than
unlabeled data) can cause a big performance drop.
Our algorithm IPUSD outperforms prior-work AL
because it achieves a good balance between the
three desiderata of a good few-shot training set:
diversity, uncertainty and representativeness.

IPUSD: Underlying assumptions We observe
that a training data selection strategy for few-shot
finetuning is quite challenging because it can only
rely on zero-shot information gathered from PLMs
— in contrast to the fully-supervised PLM setting.
Therefore, we now share our insights on the lim-
itations of IPUSD on SST-5 and MRPC to guide
future work in the field.
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Table 2 shows that IPUSD performs worse than
random only on SST-5 even though there is no
large difference between random and IPUSD for
diversity, representativeness, and label entropy on
SST-5 (not shown in the table). The problem is that
the SST-5 classes negative/very negative and posi-
tive/very positive are not clearly differentiated. In a
manual investigation, we found that IPUSD selects
examples that are good candidates either for both
negative/very negative or for both positive/very pos-
itive. Thus, IPUSD succeeds in identifying the
most challenging examples. But training on these
does not increase accuracy because this is an un-
derlying uncertainty of the dataset. To test this,
we finetuned a fully-supervised ROBERTA[ aArGE
model on a fine-grained sentiment analysis task
with YELP (Zhang et al.,, 2015). This model
achieves 47.7% accuracy on randomly selected ex-
amples vs. 39.2% with IPUSD. This suggests that
IPUSD selects challenging examples (i.e., not clear
which class they belong to), which are non-helpful
examples if there is underlying uncertainty in class
distinctions.

In summary, IPUSD makes the assumption that
discrimination between classes can be learned well.
If that is not the case, then it can underperform.

Table 2 also illustrates a rather small improve-
ment in MRPC with a higher standard deviation
than random. MRPC unlabeled data have a non-
uniform distribution 68:32 for equivalent class vs
non-equivalent class. As indicated by its label en-
tropy score (2.0), IPUSD usually selects training
sets with a distribution similar to the original —
because of its clustering mechanism. However,
IPUSD selected a training set with a 53:47 distri-
bution in one of the five selections — very different
from 68:32 and resulting in low accuracy (64.2, not
shown). IPUSD’s four other selections are close to
68:32 and have higher accuracy (71.2+1.3).

In summary, IPUSD makes the assumption that
selected training sets have a label distribution simi-
lar to the overall distribution. If this assumption is
not true, it can underperform.

Table 4 shows an ablation study that looks at
MEAL’s three main components: active learning,
ensemble, multiprompting. We see that, in addi-
tion to providing more stable results, MEAL in-
creases overall performance by 2.3 and 2.0 points
over default prompt-based finetuning for ALBERT
(Lan et al., 2020) and RoBERTay porgg (Liu et al.,
2019). The AL module of MEAL, IPUSD, gives

ALBERT RoBERTa

MEAL 73.9 72.7
w/o active learning 72.6 71.8
w/o ensemble 72.0 71.1
w/o multiprompt 71.6 70.7

Table 4: Ablation. Performance over the five tasks for
ALBERT jarge-v2 and ROBERTag arge. Average of five
runs. MEAL: our method with IPUSD (active learning),
ENSEMBLE,.¢ and multiprompt. The rows show cu-
mulative performance drop — so the last row corresponds
to random selection, no ensemble, single prompt. The
ablation demonstrates that each component contributes
to MEAL’s overall performance gain.

the highest performance improvement by 1.3 and
0.9 points (“w/o active learning”), showing the po-
tential of AL in few-shot learning. ENSEMBLE;eq
improves overall performance by 0.6 and 0.7 (“w/o
ensemble”); recall that apart from this positive per-
formance effect, ensembling has the added benefit
of improved stability (see §6). We see an addi-
tional improvement with multiprompt finetuning
by 0.4 (“w/o multiprompt”), which means that mul-
tiprompt is a win both on accuracy and on reduced
model space complexity. Finally, we see consistent
improvements for each component across the two
PLMs; this illustrates MEAL’s robustness.

8 Conclusion

We demonstrate two stability problems of few-shot
classification with prompt-based finetuning: insta-
bility due to run variability and training data selec-
tion. We show that existing solutions for instability
fail. We first propose finetuning a single model
with multiple prompts. This results in better per-
formance and less model space complexity than
finetuning several models with single prompts. We
then propose run ensemble techniques that improve
stability and overall performance.

Our setup with less run variability allows us to
explore training data selection for prompt-based
finetuning in a sufficiently stable experimental
setup. We compare a set of modified AL algo-
rithms to reduce training data selection instabil-
ity and improve overall performance. Our novel
AL algorithm, inter-prompt uncertainty sampling
with diversity (IPUSD), outperforms prior AL al-
gorithms (and random selection) for both ALBERT
and RoBERTaL ARGE-

Apart from our algorithmic innovations for few-
shot prompt-based learning, we hope that our study
will support fairer comparison of algorithms and
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thereby help better track progress in NLP. We
publicly share our code and data splits in https:
//github.com/akoksal/MEAL.
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A Appendix

A.1 Limitations

We exploit information in Pretrained Language
Models (PLMs) to effectively use them in prompt-
based finetuning for few-shot classification. There-
fore prompt-based few-shot classification might be
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more open to reflecting biases in pretrained lan-
guage models. Furthermore, our ENSEMBLE ¢q
technique increases the model complexity during
inference time to provide better performance and
stability. However, ENSEMBLE,,;, can be an alter-
native as it also improves performance and stability
over the default setting while maintaining model
complexity same. Furthermore, this work is only
demonstrated for tasks in the English language.

A.2 Implementation Details

We implement our contributions on top of the PET
library. 2 For prompt-based finetuning with sin-
gle and multiple prompts, we use 10 epochs, le-5
learning rate, and also the default parameters for
other hyperparameters. For a longer training ap-
proach, we use 50 epochs with a 1e-6 learning rate
and warm-up with a ratio of 0.1. We report results
with five different runs on five different training
data.

We conduct our experiments with NVIDIA
GeForce GTX 1080 Ti, and one run of prompt-
based finetuning with a single prompt takes approx-
imately 20 minutes while one run of prompt-based
finetuning with a multiprompt approach takes ap-
proximately 18 minutes for 32 examples and 4
prompts via ALBERT xxjarge-v2 model with 223M
parameters. As described in §5, we select training
sets with 16 x L examples where L is the number of
labels. Therefore, RTE, SST-2, and MRPC have 32
training examples, SST-5 has 80 training examples,
and TREC has 96 training examples. RTE, SST-2,
SST-5, TREC, and MRPC contain 277, 872, 1101,
500, and 408 validation examples respectively.

A.3 Datasets

We provide four fixed prompts and verbalizers for
each dataset without performing prompt search.
RTE and MRPC prompts are taken from (Schick
and Schiitze, 2021b) and SST-2 and SST-5 prompts
are taken from (Gao et al., 2021). We provide a set
of prompts for TREC without performing a prompt
search as we were not able to find a prior work on
prompting with the TREC dataset.

RTE (Dagan et al., 2006) is a textual entailment
dataset that contains text pairs of premise and hy-
pothesis with the objective of detecting entailment
and contradiction. For a premise-hypothesis pair
(p, h), we use

Zhttps://github.com/timoschick/pet

h?| MASK, p , “h’? | MASK, “p”

h?|MASK.p , “h’? | MASK. “p

patterns and a verbalizer yes and no for entailment
and no entailment labels.

SST-2 and SST-5 (Socher et al., 2013) is a sen-
timent analysis dataset of movie reviews. SST-2
contains two classes: positive and negative. SST-5
has five labels; very positive, positive, neutral, neg-
ative, and very negative. For a given movie review
t, we use

t It was MASK. , t A MASK one. ,

t The movie is MASK. , ¢ Allin all MASK.

patterns and verbalizers “great”, “terrible” (SST-
2) and “great”, “good”, “okay”, “bad”, “terrible
(SST-5).

TREC (Li and Roth, 2002) is a question classifi-
cation dataset. We use six coarse classes: abbrevia-
tion, entity, description, human, location, numeric

value. For a question ¢, we use

L3

[Question Category: MASK] t , [Category: MASK] t ,

t This question is related to MASK category. ,

I'd like to ask a question about MASK. ©

patterns and verbalizers “abbreviated”, “entity”,
“description”, “human”, “location”, “number”.
MRPC (Dolan and Brockett, 2005) is a para-
phrase identification dataset of sentence pairs. For
two sentences (t1, t2), the task is to decide whether
they are semantically equivalent or not. We use the

same pattern and verbalizer as for RTE.

A4 TPUSD Algorithm

We provide the pseudo-code of IPUSD in Algo-
rithm 1.
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Algorithm 1 IPUSD: Inter-prompt uncertainty sampling with diversity

Require: Pretrained Language Model M, Unlabeled Set U, Size of Training Set N, Pattern Set P
1: Compute logits representation for each example in the unlabeled set, L(u) by concatenating each
pattern’s logits: M (X =xz,) forz € Uandp € P
Train k-means from logits representation with 8 clusters
for iter =1,2,...,1000 do
Select N examples, uniformly distributed in 8 clusters with random seed iter, called Xiter

Scoresiter = > KL(P(ylzip, M)||P(y|ziq, M))
;€ Xiter (p, q)€P?

end for

7: MostUncertainlteration = argmax ScoresSjter
iter=1,2,...,1000

a

8: return XMostUncertainIteration
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