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Abstract

Pretrained language models have achieved re-
markable success in natural language under-
standing. However, fine-tuning pretrained mod-
els on limited training data tends to overfit
and thus diminish performance. This paper
presents Bi-Drop, a fine-tuning strategy that se-
lectively updates model parameters using gradi-
ents from various sub-nets dynamically gener-
ated by dropout. The sub-net estimation of Bi-
Drop is performed in an in-batch manner, so it
overcomes the problem of hysteresis in sub-net
updating, which is possessed by previous meth-
ods that perform asynchronous sub-net estima-
tion. Also, Bi-Drop needs only one mini-batch
to estimate the sub-net so it achieves higher util-
ity of training data. Experiments on the GLUE
benchmark demonstrate that Bi-Drop consis-
tently outperforms previous fine-tuning meth-
ods. Furthermore, empirical results also show
that Bi-Drop exhibits excellent generalization
ability and robustness for domain transfer, data
imbalance, and low-resource scenarios.

1 Introduction

In recent years, Natural Language Processing
(NLP) has achieved significant progress due to
the emergence of large-scale Pretrained Language
Models (PLMs) (Devlin et al., 2018; Liu et al.,
2019; Raffel et al., 2019; Clark et al., 2020). For
downstream tasks, compared with training from
scratch, fine-tuning pretrained models can usually
achieve efficient adaptation and result in better per-
formance. Despite the great success, fine-tuning
methods still face challenges in maintaining gener-
alization performance on downstream tasks - they
tend to run into the overfitting issue when the train-
ing data is limited (Phang et al., 2018; Devlin et al.,
2018; Lee et al., 2020).

To improve the generalization ability of fine-
tuning methods, many regularization techniques
have been proposed (Chen et al., 2020; Aghajanyan
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Figure 1: Comparisons between Bi-Drop and previous
methods. Unlike previous methods that require multiple
mini-batches of data to asynchronously determine the
sub-net to optimize, Bi-Drop has a synchronous sub-net
selection strategy with a higher data utility.

et al., 2021; Wu et al., 2021; Xu et al., 2021; Yuan
et al., 2022), such as sub-net optimization strate-
gies like Child-TuningD (Xu et al., 2021) and DPS
(Zhang et al., 2022). Child-TuningD selects a static
sub-net for updating based on parameter impor-
tance estimated by Fisher Information (FI). As
an improved variant of Child-TuningD, DPS dy-
namically decides the sub-net to be updated by
estimating FI with multiple mini-batches of data.
Although these FI-based methods achieve better
generalization ability than vanilla fine-tuning, they
still have two limitations: (1) hysteresis in sub-net
updating: the sub-net preference is estimated with
the model parameters in previous iterations and
may be incompatible with the current update step;
and (2) insufficient utility of training data: FI
estimation requires cumulative gradients through
multiple mini-batches, so these methods cannot fit
in situations with data scarcity.

In this paper, we delve deeper into adaptive sub-
net optimization strategies and propose Bi-Drop,
a FI-free strategy for fine-tuning pretrained lan-
guage models. Unlike Fisher information estima-
tion, which requires cumulative gradients of mini-
batches, Bi-Drop only relies on information in a
single mini-batch to select the parameters to update.
Specifically, Bi-Drop utilizes gradient information
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from different sub-nets dynamically generated by
dropout in each mini-batch. As illustrated in Figure
1, within a single training step of Bi-Drop, a mini-
batch will go through the forward pass multiple
times and, due to the randomness introduced by
dropout, yield various distinct sub-nets. We then
apply a parameter selection algorithm with pertur-
bation and scaling factors to stabilize the gradient
updates. With this synchronous parameter selec-
tion strategy, Bi-Drop can selectively update model
parameters according to the information from only
the current mini-batch, and thus mitigate overfitting
with a high utility of training data.

Extensive experiments on the GLUE benchmark
demonstrate that Bi-Drop shows remarkable superi-
ority over the state-of-the-art fine-tuning regulariza-
tion methods, with a considerable margin of 0.53
∼ 1.50 average score. Moreover, Bi-Drop con-
sistently outperforms vanilla fine-tuning by 0.83
∼ 1.58 average score across various PLMs. Fur-
ther analysis indicates that Bi-Drop attains superb
generalization ability for domain transfer and task
transfer, and is robust for data imbalance and low-
resource scenarios.

To sum up, our contributions are three-fold:

• We propose Bi-Drop, a step-wise sub-net op-
timization strategy that adaptively selects the
updated sub-net based on the current mini-
batch data. Compared with prior FI-based
methods, Bi-Drop derives a more stable and
robust training trajectory with simultaneous
sub-net update and high utility of training
data.1

• With extensive experiments on various PLMs,
we demonstrate that Bi-Drop achieves con-
sistent and remarkable superiority over prior
fine-tuning regularization methods.

• Further analysis shows that Bi-drop attains
superb generalization ability for domain trans-
fer and task transfer, and is robust for data
imbalance and low-resource scenarios.

2 Related Work

Pretrained Language Models In recent years,
the field of natural language processing (NLP) has
witnessed significant advancements due to the de-
velopment of large-scale pretrained language mod-
els (PLMs). The introduction of BERT (Devlin

1Our code is available at https://github.com/
tongshoujie/Bi-Drop

Models Sub-net
Granularity

Hyste-
resis

Data
Depend.

Child-TuningD task-wise Yes Yes
DPS cycle-wise Yes Yes
Bi-Drop step-wise No No

Table 1: Comparison of Bi-Drop with prior FI-based
sub-net optimization methods. “cycle-wise” refers to
the granularity that includes multiple mini-batches of
data.

et al., 2018) sparked a continuous emergence of
various pre-trained models, including RoBERTa
(Liu et al., 2019), ELECTRA (Clark et al., 2020),
XLNet (Yang et al., 2019), GPT-2 (Radford et al.,
2019), and GPT-3 (Brown et al., 2020), which have
brought remarkable improvements in model struc-
tures and scales. Until now, fine-tuning is still one
of the most popular approaches to adapting large
pretrained language models to downstream tasks.

Regularization Methods for Fine-tuning Large-
scale PLMs are prone to over-fitting (Phang et al.,
2018; Devlin et al., 2018) and exhibit inadequate
generalization ability when fine-tuned with limited
training data (Aghajanyan et al., 2021; Mahabadi
et al., 2021), resulting in degraded performance. To
tackle this issue, various regularization techniques
have been suggested to enhance the generalization
capacity of models, including advanced dropout
alternatives (Wan et al., 2013; Wu et al., 2021), ap-
plying adversarial perturbations (Aghajanyan et al.,
2021; Wu et al., 2022; Yuan et al., 2022) and con-
strained regularization methods (DauméIII, 2007;
Chen et al., 2020). In recent years, Child-tuning
(Xu et al., 2021) and DPS (Zhang et al., 2022) pro-
pose to estimate parameter importance based on
Fisher Information (FI) and selectively optimize a
sub-net during fine-tuning to mitigate overfitting.

FI-based methods have a strong dependence on
the training data and exhibit hysteresis in sub-net
updating. As shown in Table 1, compared with
prior FI-based methods, Bi-Drop introduces a step-
wise sub-net optimization strategy that adaptively
selects the sub-net to be updated based on the cur-
rent mini-batch. It is worth noting that, as a model-
agnostic technique, Bi-Drop is orthogonal to most
previous fine-tuning methods, which could further
boost the model’s performance.
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Figure 2: An overall illustration of Bi-Drop. Bi-Drop splits each training step into three sub-steps: (1) Multiple
forward propagations: each mini-batch sample goes through the forward pass multiple times (denoted as k) with
dropout; (2) sub-net selection: an advanced strategy is adopted to select the sub-net to be updated based on the
gradients of distinct sub-nets generated by dropout; (3) Parameter updating: only the parameters of the selected
sub-net are updated to mitigate overfitting.

3 Methodology

3.1 Background
We first introduce the paradigm of sub-net opti-
mization by giving general formulations of the
backpropagation during the vanilla fine-tuning and
CHILD-TUNINGD. We denote the parameters of
the model at t-th iteration as θt = {θt,i}ni=1, where
θt,i represent the i-th element of θt at the t-th
training iteration. θ0 denotes the parameter matrix
of the pre-trained model. The vanilla fine-tuning
adopts Stochastic Gradient Descent (SGD) to all
the model parameters, formally:

θt+1 = θt − η
∂L (θt)

∂θt
(1)

where L represents the training loss within a batch;
η is the learning rate. Instead of fine-tuning the
entire network, CHILD-TUNINGD proposes to only
optimize a subset of parameters (i.e., the sub-net).
It first adopts the Fisher Information (FI) to esti-
mate the relative importance of the parameters for a
specific downstream task, which can be formulated
as:

F (θ0) =

|D|∑

j=1

(
∂L (θ0)

∂θ0

)2

(2)

MCTD
= F (θ0) > sort (F (θ0))p (3)

where D is the training data, F (θ0) denotes the
fisher information matrix of the pretrained param-
eters; sort(·)p represents the highest value of p
percentile in F (θ0) after sorting in ascending or-
der; MCTD

is a mask matrix that is the same-sized
as θ0. During fine-tuning, CHILD-TUNINGD only
optimizes the selected sub-net in MCTD

:

θt+1 = θt − η
∂L (θt)

∂θt
MCTD (4)

3.2 Bi-Drop

As introduced in Section 3.1, CHILD-TUNINGD

only optimizes an unchanged sub-net during fine-
tuning and ignores the update of other parameters,
which may degrade the model’s performance on
downstream tasks. In this section, we offer a de-
tailed introduction to our proposed method, Bi-
Drop, which selects the updated parameters adap-
tively at each fine-tuning step. Specifically, Bi-
Drop splits each training step into three sub-steps:
(1) multiple forward propagations, (2) sub-net se-
lection, and (3) parameter updating. We provide a
pseudo-code of Bi-Drop in Algorithm 1.

3.2.1 Multiple Forward Propagations
Instead of prior FI-based methods that require accu-
mulated gradients to measure the parameter impor-
tance, Bi-Drop leverages distinct sub-nets gener-
ated by dropout to select the sub-net to be updated.
Inspired by Wu et al. (2021), given the training data
D = {(xi, yi)}mi=1, at each training step, we feed
xi to the model multiple times in the forward pass
with different dropouts, and obtain their gradients
correspondingly:

g
(j)
t =

∂L(θ(j)
t )

∂θ
(j)
t

, j = 1, 2, ..., k (5)

where θ(j)
t and g(j)

t represents the parameters of the
j-th forward pass and its corresponding gradients.
k denotes the number of forward passes, i.e., the
number of distinct sub-nets with different dropouts.
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Algorithm 1 Bi-Drop for Adam Optimizer

Require: θ0: initial pretrained weights; L(θ):
stochastic objective function with parameters
θ; β1, β2 ∈ [0, 1): exponential decay rates for
the moment estimates; η: learning rate;

1: initialize timestep t← 0, first moment vector
m0 ← 0, second moment vector v0 ← 0

2: while not converged do
3: t← t+ 1

// Multiple forward propagations

4: g
(j)
t ←

∂L(θ(j)
t )

∂θ
(j)
t

, j = 1, 2, ..., k

// Sub-net selection
5: Mt ← SelectSubNetwork(gt)

// Gradients Updating
6: gt ← gt ⊙Mt

7: mt ← β1 ·mt−1 + (1− β1) · gt
8: vt ← β2 · vt−1 + (1− β2) · g2

t

9: m̂t ←mt/(1− βt
1)

10: v̂t ← vt/(1− βt
2)

// Update weights
11: wt ← wt−1 − η · m̂t/(

√
v̂t + ϵ)

12: end while
13: return wt

3.2.2 Sub-net Selection
In this subsection, we introduce our sub-net se-
lection strategy, which estimates the relevant im-
portance of parameters based on the gradients of
distinct sub-nets generated by different dropouts.
Concretely, our strategy is based on two estima-
tion factors: the perturbation factor and the scaling
factor.

Perturbation Factor We propose the perturba-
tion factor, which estimates the importance of pa-
rameters according to their stability with different
dropouts in the forward pass. We point out that var-
ious sub-nets generated by dropout can be viewed
as adversarial perturbations to the vanilla model.
The perturbation factor is formalized as follows:

µt =
1

k

k∑

j=1

g
(j)
t (6)

Fper(θt) = |µt| ·
[∑

j

(
g
(j)
t − µt

)2
]− 1

2

(7)

where µt is the average gradients of parameters.
Fper measures the stability of parameters by both
considering the mean and variance of gradients
with adversarial perturbations, i.e. sub-nets with

consistently larger gradients and smaller variances
are more favorable by this factor.

Scaling Factor We further propose the scaling
factor as a regularization term. This factor mea-
sures the ratio of the average parameter gradients to
the original parameters. Parameters whose gradient
scale is much smaller than the original parameters
will not be updated, which is similar in spirit to
gradient clipping.

Fsca(θt) = |µt| · |θt|−1 (8)

3.2.3 Parameter Updating

Following prior work (Xu et al., 2021; Zhang et al.,
2022), we derive a step-wise mask matrix Mt fil-
tered by selecting the highest value of p percentile
measured by the aforementioned two estimation
factors.

Ffinal(θt) = Fper(θt) · Fsca(θt) (9)

Mt = Ffinal(θt) > sort (Ffinal(θt)))p (10)

Then, we utilize Mt to update the sub-net which
consists of important parameters at each training
step. We denote the formulation by simply replac-
ing Eq.4 with our step-wise mask matrix Mt:

θt+1 = θt − ηµt ·Mt (11)

4 Experiments

4.1 Datasets

GLUE Benchmark Following previous work
(Lee et al., 2020; Dodge et al., 2020; Zhang et al.,
2021), we conduct extensive experiments on the
GLUE benchmark, including natural language in-
ference (RTE, QNLI, MNLI), paraphrase and simi-
larity (MRPC, STS-B, QQP), linguistic acceptabil-
ity (CoLA), and sentiment classification (SST-2).
We include the detailed statistics and metrics of
the datasets in Appendix A. Since the test results
are only accessible online with limited submission
times, we follow prior studies (Phang et al., 2018;
Lee et al., 2020; Aghajanyan et al., 2021; Dodge
et al., 2020; Xu et al., 2021; Zhang et al., 2022)
that fine-tune the pretrained model on the training
set and report the results on the development sets
using the last checkpoint.
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Method CoLA MRPC RTE STS-B Avg ∆

Vanilla 63.76(65.55) 90.41(91.91) 70.97(74.01) 89.70(90.58) 78.71(80.51) 0.00

Weight Decay 63.70(65.53) 90.89(91.98) 72.24(74.37) 89.66(90.22) 79.12(80.53) +0.41(0.02)
Top-K Tuning 63.89(65.37) 91.09(92.05) 72.84(75.17) 89.64(90.83) 79.37(80.86) +0.66(0.35)
Mixout 64.05(65.41) 91.19(92.05) 72.32(75.52) 89.89(90.42) 79.36(80.85) +0.65(0.34)
RecAdam 64.09(65.35) 90.88(91.89) 72.48(74.30) 89.67(90.62) 79.28(80.54) +0.57(0.03)
ChildTuningD 64.25(65.81) 91.19(92.20) 72.35(76.53) 90.18(90.88) 79.49(81.36) +0.78(0.85)
R3F 64.88(66.33) 91.55(92.28) 72.42(74.37) 89.70(90.58)∗ 79.64(80.89) +0.93(0.38)
DPSmix 64.40(66.21) 91.05(92.17) 72.88(75.81) 90.47(91.02) 79.70(81.30) +0.99(0.79)
R-Drop 64.83(66.79) 91.76(92.17) 73.12(76.53) 90.14(90.42) 79.96(81.48) +1.25(0.97)

Bi-Drop 64.94(66.69) 91.79(92.68) 73.79(77.61) 90.59(91.04) 80.26(82.01) +1.55(1.50)

Table 2: Comparison between Bi-Drop with prior fine-tuning methods. We report the mean (max) results of 10
random seeds. The best results are bold. Note that since R3F is not applicable to regression, the result on STS-B
(marked with ∗) remains the same as vanilla. Bi-Drop achieves the best performance compared with other methods.

NLI Datasets We also evaluate the generaliza-
tion ability of Bi-Drop on several Natural Language
Inference (NLI) tasks, including SNLI (Bowman
et al., 2015), MNLI (Williams et al., 2018), MNLI-
M (Williams et al., 2018) and SICK (Marelli et al.,
2014). We report all results by Accuracy on the
development sets consistent with GLUE.

4.2 Baselines

Besides the vanilla fine-tuning method, we mainly
compare Bi-Drop with the following baselines:

Mixout (Lee et al., 2020) is a fine-tuning tech-
nique that stochastically replaces the parameters
with their pretrained weight based on the Bernoulli
distribution. R3F (Aghajanyan et al., 2021) is a
fine-tuning strategy motivated by trust-region the-
ory, which injects noise sampled from either a nor-
mal or uniform distribution into the pre-trained rep-
resentations. R-Drop (Wu et al., 2021) minimizes
the bidirectional KL-divergence to force the output
distributions of two sub-nets sampled by dropout
to be consistent with each other. Child-TuningD
(Xu et al., 2021) selects the task-relevant parame-
ters as the sub-net based on the Fisher information
and only updates the sub-net during fine-tuning.
DPS (Zhang et al., 2022) is a dynamic sub-net op-
timization algorithm based on Child-TuningD. It
estimates Fisher information with multiple mini-
batches of data and selects the sub-net adaptively
during fine-tuning.

For reference, we also show other prior fine-
tuning techniques in our main experimental results,
such as Weight Decay (DauméIII, 2007), Top-K
Tuning (Houlsby et al., 2019) and RecAdam (Chen
et al., 2020).

4.3 Experiments Setup
We conduct our experiments based on the Hugging-
Face transformers library 2 (Wolf et al., 2020) and
follow the default hyper-parameters and settings
unless noted otherwise. We report the averaged
results over 10 random seeds. Other detailed exper-
imental setups are presented in Appendix B.

4.4 Results on GLUE
Comparison with Prior Methods We compare
Bi-Drop with various prior fine-tuning methods
based on BERTlarge and report the mean (and max)
scores on GLUE benchmark in Table 2, following
Lee et al. (2020) and Xu et al. (2021). The re-
sults indicate that Bi-Drop yields the best average
performance across all tasks, showing its effec-
tiveness. Moreover, the average of the maximum
scores attained by Bi-Drop is superior to that of
other methods, providing further evidence of the
effectiveness of Bi-Drop. We also conducted the
same experiment on Robertalarge, and the details
can be found in Appendix E.

Comparison with Vanilla Fine-tuning We show
the experimental results of six widely used large-
scale PLMs on the GLUE Benchmark in Table 3.
The results show that Bi-Drop outperforms vanilla
fine-tuning consistently and significantly across all
tasks performed on various PLMs. For instance,
Bi-Drop achieves an improvement of up to 1.58 av-
erage score on BERTbase and 1.35 average score on
Robertabase. The results highlight the universal ef-
fectiveness of Bi-Drop in enhancing the fine-tuning
performance of PLMs. Additionally, because Bi-
Drop forward-propagate twice, we present an ad-
ditional study of the baseline with doubled batch

2https://github.com/huggingface/transformers
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Method BERTbase Robertabase

CoLA MRPC RTE STS-B Avg CoLA MRPC RTE STS-B Avg

Vanilla 57.67 90.38 69.57 89.35 76.74 59.45 91.94 76.28 90.60 79.57
Bi-Drop 60.76 91.01 71.73 89.78 78.32 61.28 92.40 78.99 91.00 80.92

Method BERTlarge Robertalarge

CoLA MRPC RTE STS-B Avg CoLA MRPC RTE STS-B Avg

Vanilla 63.76 90.41 70.97 89.70 78.71 66.01 92.56 84.51 92.05 83.78
Bi-Drop 64.94 91.79 73.79 90.50 80.26 68.03 92.95 86.10 92.36 84.86

Method DeBERTalarge ELECTRAlarge

CoLA MRPC RTE STS-B Avg CoLA MRPC RTE STS-B Avg

Vanilla 65.18 92.32 85.60 91.64 83.69 70.02 92.94 88.37 91.91 85.81
Bi-Drop 66.91 92.88 86.72 92.33 84.71 71.29 93.68 88.98 92.61 86.64

Table 3: Comparison between Bi-Drop and vanilla fine-tuning applied to six widely-used large-scale PLMs. We
report the mean results of 10 random seeds. Average scores on all tasks are underlined. The best results are bold. It
shows that Bi-Drop yields consistent improvements across all tasks among different PLMs.

Datasets SNLI MNLI

Vanilla CTD R-Drop DPS Bi-Drop Vanilla CTD R-Drop DPS Bi-Drop

MNLI 64.53 64.16 64.51 64.70 66.88 75.78 76.27 76.85 75.48 76.63
MNLI–m 66.11 66.30 66.59 67.29 68.49 77.31 77.30 77.93 77.45 77.98
SNLI 83.37 83.53 83.59 82.95 83.62 70.87 70.76 71.48 71.56 71.63
SICK 52.59 53.73 53.59 55.89 54.28 53.27 55.35 54.21 54.81 54.93

Avg 61.08 61.40 61.56 62.63 63.22 67.15 67.80 67.87 67.94 68.18
∆avg – ↑ 0.32 ↑ 0.48 ↑ 1.55 ↑ 2.14 – ↑ 0.65 ↑ 0.72 ↑ 0.79 ↑ 1.03

Table 4: Evaluation for out-of-domain generalization.The models are trained on MNLI/SNLI and tested on
out-of-domain data. Average scores are computed excluding in-domain results (underlined). The best results are
bold. Bi-Drop can better maintain the out-of-domain generalization ability of the model.

size in Appendix D.

4.5 Out-of-Domain Generalization

We further evaluate the generalization ability of
Bi-Drop on a widely used experimental setting in
prior research (Aghajanyan et al., 2021; Xu et al.,
2021; Zhang et al., 2022): out-of-domain gener-
alization. In detail, we finetune BERTlarge with
different strategies on 5k subsampled MNLI and
SNLI datasets respectively, and directly evaluate
the fine-tuned model on other NLI datasets. The ex-
perimental results in Table 4 illustrate that Bi-Drop
outperforms vanilla fine-tuning and prior methods
across various datasets. Specifically, compared
with other fine-tuning methods on SNLI, Bi-Drop
demonstrates consistent and substantial improve-
ment, with an average score increase of 2.14. In
particular, Bi-Drop achieves an improvement of
2.35 on MNLI task and 2.38 on MNLI-m task. For
models trained on MNLI, Bi-Drop also consistently
outperforms prior methods, with an average im-
provement of 1.03 score. The experimental results

indicate that Bi-Drop encourages the model to learn
deeper and more generic semantic features and al-
leviate superficial biases of specific tasks, which
improves the model’s generalization ability.

4.6 Task Generalization

We also evaluate the generalization ability of fine-
tuned models following the experimental setting
of Aghajanyan et al. (2021) and Xu et al. (2021),
which freezes the representations of the model fine-
tuned on one task and only trains the linear clas-
sifier on the other task. Specifically, we finetune
BERTlarge among one task selected among MRPC,
CoLA, and RTE and then transfer the model to
the other two tasks. Figure 3 shows that Bi-Drop
consistently outperforms vanilla fine-tuning when
the fine-tuned model is transferred to other tasks.
In particular, Bi-Drop improves by 3.50 and 3.28,
when models trained on MRPC and RTE respec-
tively are evaluated on CoLA. The results fur-
ther verify the conclusion that Bi-Drop helps mod-
els learn more generalizable representations, com-
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Figure 3: Evaluation for task generalization. The model is fine-tuned on a specific task among MRPC, CoLA,
RTE and transferred to the other two tasks. Bi-Drop can be more generalizable.
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Figure 4: Results of Bi-Drop across four experimental settings. Each method includes a violin plot for 10 random
runs. Compared with other methods, the shorter and thicker violin plot of Bi-Drop proves its better stability.

pared with the vanilla fine-tuning approach.

5 Analysis

5.1 Stability to Random Seeds

We further investigate the stability properties of
fine-tuned models. Figure 4 shows the output dis-
tributions of models with four experimental settings
and across 10 random seeds. The results demon-
strate that Bi-Drop outperforms other strategies in
terms of average performance, and also exhibits
greater stability by achieving more consistent re-
sults across 10 random seeds with lower variance.

5.2 Robustness Analysis

Recent research has brought to light that the vanilla
fine-tuning approach is prone to deception and vul-
nerability in many aspects. In this study, we assess
the robustness of Bi-Drop by designing evaluation
tasks that focus on two common scenarios, aiming
to examine its ability to withstand various forms of
perturbations while maintaining its robustness.

Robustness to Label Noise Due to the inherent
limitations of human annotation, widely-used large-
scale datasets inevitably contain a certain amount
of incorrect labels (Vasudevan et al., 2022). To

investigate the robustness of Bi-Drop to label noise,
we conduct simple simulation experiments on RTE,
MRPC, and CoLA by randomly corrupting a pre-
determined fraction of labels with erroneous val-
ues. We evaluate the robustness of various fine-
tuning methods trained on noisy data. The results
shown in the left panel of Table 5 demonstrate that
Bi-Drop achieves consistent superiority to other
fine-tuning methods on noisy data. Furthermore,
we conducted a comparison of model performance
degradation across varying noise ratios. We calcu-
lated the degradation and presented it in brackets,
as compared with Table 2. It indicates that Bi-
Drop has the smallest performance drop compared
with other fine-tuning methods. These results col-
lectively demonstrate that Bi-Drop is more robust
to label noise than prior methods.

Robustness to Data Imbalance Minority class
refers to the class that owns insufficient instances in
the training set. In this section, we strive to explore
the robustness of diverse fine-tuning approaches for
the minority class by carrying out experiments on
synthetic RTE, MRPC, and CoLA datasets. The ex-
perimental results are illustrated in the right panel
of Table 5, which shows that Bi-Drop significantly
outperforms other fine-tuning methods. Bi-Drop
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Method CoLA MRPC RTE Avg

Noise Ratio: 5%

vanilla 61.39 90.24 69.78 73.80 (↓ 1.25)
CTD 61.66 90.39 71.47 74.51 (↓ 1.77)
R-Drop 62.33 91.21 73.16 75.57 (↓ 1.00)
Bi-Drop 62.29 91.85 73.57 75.90 (↓ 0.94)

Noise Ratio: 10%

vanilla 59.35 89.78 68.51 72.55 (↓ 2.50)
CTD 61.56 89.88 69.78 73.72 (↓ 2.56)
R-Drop 61.12 91.10 71.36 74.53 (↓ 2.04)
Bi-Drop 61.65 91.12 71.96 74.91 (↓ 1.93)

Noise Ratio: 15%

vanilla 58.96 88.10 68.14 71.73 (↓ 3.32)
CTD 59.99 88.10 68.88 72.32 (↓ 3.96)
R-Drop 60.80 89.26 69.55 73.20 (↓ 3.36)
Bi-Drop 60.08 89.73 70.88 73.56 (↓ 3.28)

Method CoLA MRPC RTE Avg

Reduction Ratio: 70%

Vanilla 81.12 78.88 27.71 62.57 ( – )
CTD 83.10 79.50 28.14 63.58 (↑ 1.01)
R-Drop 81.37 76.46 32.61 63.48 (↑ 0.91)
Bi-Drop 81.88 80.17 37.66 66.57 (↑ 4.00)

Reduction Ratio: 60%

Vanilla 83.30 83.98 39.32 68.87 ( – )
CTD 85.78 84.55 37.65 69.33 (↑ 0.46)
R-Drop 83.55 85.07 43.51 70.71 (↑ 1.84)
Bi-Drop 84.33 85.35 49.62 73.10 (↑ 4.23)

Reduction Ratio: 50%

Vanilla 86.07 87.40 45.27 72.91 ( – )
CTD 87.98 87.64 50.78 75.47 (↑ 2.56)
R-Drop 86.04 88.89 55.73 76.89 (↑ 3.98)
Bi-Drop 86.73 89.61 58.27 78.20 (↑ 5.29)

Table 5: Left: Robustness to label noise. The noise ratio is the percentage of training instances whose labels are
transferred to incorrect labels. Right: Robustness to data imbalance. We reduce the number of instances labeled
1 by 70%/60%/50% in the training set and test the accuracy of instances labeled 1 (as the minority class) in the
validation set. Bi-Drop can maintain more robust representations compared with other fine-tuning methods.

Datasets 0.5K 1K

Vanilla CTD DPS Bi-Drop Vanilla CTD DPS Bi-Drop

CoLA 36.23 40.77 41.87 44.78 48.92 51.63 52.89 54.76
MRPC 81.33 81.95 83.29 83.18 83.90 84.62 85.03 85.44
RTE 58.87 59.27 59.16 60.04 62.17 63.85 64.92 66.96
STS-B 82.60 82.79 83.41 85.19 85.91 86.92 87.26 87.53
SST-2 86.11 88.19 89.08 89.38 89.95 89.88 90.44 90.41
QNLI 78.76 79.32 79.27 80.48 82.49 83.65 83.86 84.35
QQP 71.88 73.43 74.22 74.61 77.65 78.57 78.79 79.01
MNLI 46.44 45.74 47.63 50.79 56.55 60.96 59.47 61.25

Avg 67.78 68.93 69.74 71.06 73.44 75.01 75.33 76.21
∆avg – ↑ 1.15 ↑ 1.96 ↑ 3.28 – ↑ 1.57 ↑ 1.89 ↑ 2.77

Table 6: Comparison between Bi-Drop and prior sub-net optimization strategies with varying low-resource scenarios
(0.5K, 1K). We report the results of 10 random seeds and the best results are bold. Bi-Drop performs better than
other methods in low-resource scenarios.

achieves up to 4.00, 4.23, and 5.29 average score
improvements on 30%, 40%, and 50% reduction
ratios respectively, outperforming other fine-tuning
methods at lower reduction ratios and showcasing
its robustness towards the minority class.

5.3 Performance in Low-Resource Scenarios

As illustrated in Section 1 and 2, compared with
prior FI-based sub-net optimization methods that
have a strong dependence on the training data, Bi-
Drop proposes a step-wise sub-net selection strat-
egy, which chooses the optimized parameters with
the current mini-batch. In this section, we conduct
extensive experiments to analyze how this depen-
dency affects the performance of models. Con-
cretely, we adopt various fine-tuning methods on

BERTlarge with a limited amount of training data.
The results are illustrated in Table 6. As the data
amount decreases from 1.0K to 0.5K, the average
improvement score of Child-TuningD over vanilla
fine-tuning decreases from 1.57 to 1.15, while its
improved variant DPS maintains a relatively stable
improvement. But Bi-Drop improves the average
improvement score from 2.77 to 3.28. The results
indicate the superiority of Bi-Drop over prior meth-
ods in low-resource scenarios.

5.4 Ablation Study

To evaluate the effectiveness of our proposed fine-
tuning strategy, we conduct an ablation study in
Table 7. The results show that both our sub-net
selection strategy and gradient averaging strategy
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Method CoLA MRPC RTE STS-B Avg ∆

Bi-Drop (gavg + ESS) 64.94 91.79 73.79 90.59 80.26 +1.55
gavg + Perturbation Factor 64.71 91.67 73.21 90.36 79.99 +1.28
gavg + Scaling Factor 64.38 91.63 72.96 90.41 79.85 +1.14
gavg + RSS 64.24 90.96 71.73 90.25 79.30 +0.59
gavg 63.82 91.26 71.16 89.81 79.01 +0.30
Vanilla 63.76 90.41 70.97 89.70 78.71 0.00

Table 7: Ablation results. ESS represents our Effective Sub-net Selection strategy using both factors Perturbation
and Scaling. RSS stands for Random Sub-net Selection strategy. Both our sub-net selection strategy and gradient
averaging strategy are effective.

contribute to the performance improvement of Bi-
Drop.

6 Conclusion

In this work, we propose a new sub-net optimiza-
tion technique for large-scale PLMs, named Bi-
Drop, which leverages the gradients of multiple
sub-nets generated by dropout to select the up-
dated parameters. Extensive experiments on var-
ious downstream tasks demonstrate that Bi-Drop
achieves consistent and remarkable improvements
over vanilla fine-tuning and prior excellent ap-
proaches by a considerable margin, across various
model architectures. Further analysis indicates the
generalizability and robustness of Bi-Drop over
transferring, data imbalance and low-resource ex-
periments.

7 Limitations

We propose a novel and effective fine-tuning
method, Bi-Drop, which achieves a considerable
performance improvement in downstream tasks.
However, similar to some previous studies(Jiang
et al., 2020; Aghajanyan et al., 2021; Wu et al.,
2021), Bi-Drop requires multiple forward propaga-
tions, which makes its training time efficiency not
good enough compared with the vanilla fine-tuning
method.
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Appendix

A GLUE Benchmark Datasets

In this paper, we conduct experiments on datasets
in GLUE benchmark (Wang et al., 2019). The
statistical information of the GLUE benchmark is
shown in Table 8.

Dataset #Train #Dev Metrics

Single-sentence Tasks
CoLA 8.5k 1.0k Matthews Corr
SST-2 67k 872 Accuracy

Inference
RTE 2.5k 277 Accuracy
QNLI 105k 5.5k Accuracy
MNLI 393k 9.8k Accuracy

Similarity and Paraphrase
MRPC 3.7k 408 F1
STS-B 5.7k 1.5k Spearman Corr
QQP 364k 40k F1

Table 8: Statistics and metrics of eight datasets used in
this paper form GLUE benchmark.

B Experimental Details

In this paper, we fine-tune different large pre-
trained language models with Bi-Drop, including
BERTBASE

3, BERTLARGE
4, RoBERTaBASE

5,
RoBERTaLARGE

6, DeDERTaLARGE
7, and

ELECTRALARGE
8. The training epochs/steps,

batch size, and warmup steps are listed in Table 9.
For the glue dataset, our maximum length is

set as 128. We use grid search for learning rate
from {1e-5, 2e-5, . . . , 1e-4}. For Bi-Drop, we use
grid search for dropout rate from {0.05, 0.1}. The
number of forward passes is fixed to two(k = 2).
We conduct all the experiments on a single A40
GPU.

3https://huggingface.co/bert-base-uncased/
tree/main

4https://huggingface.co/bert-large-cased/tree/
main

5https://huggingface.co/roberta-base/tree/
main

6https://huggingface.co/roberta-large/tree/
main

7https://huggingface.co/microsoft/
deberta-large/tree/main

8https://huggingface.co/google/
electra-large-discriminator/tree/main

C Hyper-Parameter Analysis

Bi-Drop uses two dropout techniques. In order to
analyze the impact of the dropout rate on the ex-
perimental results, a simple analysis experiment
was done here. In order to make the comparison
fair, all the parameters except the dropout rate are
kept the same in the experiment. For simplicity,
the dropout values are the same twice. The ex-
perimental results are shown in 5. It can be seen
that different datasets have different preferences for
dropout values. CoLA and RTE achieve the best re-
sults when the dropout value is 0.05; while MRPC
achieves the best results when the dropout value is
0.1; STSB is insensitive to the dropout value until
the dropout value is less than 0.1.
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Figure 5: The effect of dropout rate on experimental
results

D Batch Size Doubled Training

We implement Bi-Drop by repeating the input data
twice and forward-propagating twice. This is sim-
ilar to doubling the batch size at each step. The
difference is that half of the data is the same as the
other half, and directly doubling the batch size, the
data in the same mini-batch is all different. So for
a fair comparison, we experimented with directly
doubling the batch size. So for a fair compari-
son, we experimented with directly doubling the
batch size. The experimental results are shown in
Table 10, results show that directly doubling the
batch size has basically no improvement, and Bi-
Drop is significantly better than directly doubling
the batch size.

E Comparison with Prior Methods on
Robertalarge

We compare Bi-Drop with various prior fine-tuning
methods based on BERTlarge and report the mean
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Model Dataset Batch Size Epochs/Steps Warmup Ratio/Steps

BERT all 16 3 epochs 10%

Roberta

CoLA 16 5336 steps 320 steps
RTE 16 2036 steps 122 steps

MRPC 16 2296 steps 137 steps
STS-B 16 3598 steps 214steps

ELECTRA

CoLA 32 3 epochs 10%
RTE 32 10 epochs 10%

MRPC 32 3 epochs 10%
STS-B 32 10 epochs 10%

DeBERTa

CoLA 32 6 epochs 100 steps
RTE 32 6 epochs 50 steps

MRPC 32 6 epochs 10 steps
STS-B 32 4 epochs 100 steps

Table 9: Hyperparameters settings for different pretrained models on variant tasks. These settings are reported in
their official repository for best practice.

Method CoLA MRPC RTE STS-B Avg

Vanilla 57.67 90.38 69.57 89.35 76.74
Vanilla(double bsz) 57.69 90.08 69.85 89.55 76.79
Bi-Drop 60.76 91.01 71.73 89.78 78.32

Table 10: Comparison of Bi-Drop and directly doubling the batch size. Bi-Drop is significantly better than directly
doubling the batch size.

(and max) scores on GLUE benchmark in Table 11,
following Lee et al. (2020) and Xu et al. (2021).
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Method CoLA MRPC RTE STS-B Avg ∆

Vanilla 66.01(68.03) 92.56(93.66) 84.51(86.28) 92.05(92.22) 83.78(85.05) 0.00

ChildTuningD 66.82(68.21) 92.67(93.58) 85.89(87.72) 92.36(92.53) 84.44(85.51) +0.66(0.46)
DPSmix 66.86(68.53) 92.51(93.89) 85.37(87.72) 92.47(92.73) 84.30(85.72) +0.52(0.67)
R-Drop 67.26(69.63) 92.47(93.62) 85.44(87.63) 92.42(92.58) 84.40(85.87) +0.62(0.82)

Bi-Drop 68.03(70.89) 92.95(94.66) 86.10(88.09) 92.36(92.58) 84.86(86.56) +1.08(1.51)

Table 11: Comparison between Bi-Drop with prior fine-tuning methods. We report the mean (max) results of 10
random seeds. The best results are bold. Note that since R3F is not applicable to regression, the result on STS-B
(marked with ∗) remains the same as vanilla. Bi-Drop achieves the best performance compared with other methods.
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