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Abstract

Large language models (LLMs) have recently
shown great advances in a variety of tasks,
including natural language understanding and
generation. However, their use in high-stakes
decision-making scenarios is still limited due
to the potential for errors. Selective prediction
is a technique that can be used to improve the
reliability of the LLMs by allowing them to ab-
stain from making predictions when they are
unsure of the answer. In this work, we pro-
pose a novel framework for adaptation with
self-evaluation to improve the selective predic-
tion performance of LLMs. Our framework is
based on the idea of using parameter-efficient
tuning to adapt the LLM to the specific task
at hand while improving its ability to perform
self-evaluation. We evaluate our method on
a variety of question-answering (QA) datasets
and show that it outperforms state-of-the-art
selective prediction methods. For example, on
the CoQA benchmark, our method improves
the AUACC from 91.23% to 92.63% and im-
proves the AUROC from 74.61% to 80.25%.

1 Introduction

Large Language Models (LLMs) have recently
demonstrated impressive capabilities in many natu-
ral language understanding, reasoning and genera-
tion tasks, such as question answering (Jiang et al.,
2021; Singhal et al., 2023), summarization (Tang
et al., 2023; Zhang et al., 2023b), semantic classifi-
cation, and code generation (Poesia et al., 2022;
Zhang et al., 2023a). As LLMs improve their
remarkable performance, they are being increas-
ingly considered to replace humans to perform
high-stakes tasks. For example, LLMs can be used
for medical QA to assist patients (Singhal et al.,
2022). However, LLMs are not guaranteed to be
accurate for all queries, so it is important to un-
derstand which queries they are reliable for. This
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Figure 1: A safety-critical question from the TriviaQA
dataset: “Which vitamin helps regulate blood clotting?” The
OPT-2.7B model incorrectly answers “Vitamin C”, when the
correct answer is “Vitamin K”. Without selective prediction,
LLMs will directly output the wrong answer which in this
case could lead users to take the wrong medicine, and thus
causing potential harm. With selective prediction, LLMs will
output a low selection score along with the wrong answer and
can further output “I don’t know!” to warn users not to trust it
or verify it using other sources.

information can be used to direct human oversight
to the queries with the lowest selection score. Se-
lective prediction (Geifman and El-Yaniv, 2017),
broadly refers to the deployment scenario for AI
models where humans are involved to maintain
overall accuracy by reviewing AI-generated, low-
confidence outputs. In this scenario, both human
and AI performance are considered together to min-
imize human involvement cost. LLMs should be
used in the real-world with enhanced selective pre-
diction performance. They should be able to assess
the accuracy of their predictions and refrain from
making wrong predictions. If an LLM detects that
an answer might be wrong for a question, it should
be able to generate an answer with the sentiment
of "I don’t know!" (as shown in Fig. 1) or defer
the answer to a human for manual inspection. This
will help to ensure that LLMs are used in a reliably,
especially for high-stakes applications.

Selective prediction for LLMs is challenging be-
cause LLMs are just trained to predict the next to-
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ken given a context but are not guaranteed to always
predict the correct next token. Also, since LLMs
generate an output sequence in an auto-regressive
way, they don’t directly produce a confidence score
for the output sequence. Thus, obtaining selection
scores from LLMs for their output sequences is not
straightforward. Although there is some research
on selective prediction for LLMs, these studies
have their own shortcomings. Kadavath et al. pro-
pose to use heuristic prompts (e.g., adding prompts
like “Is the proposed answer True or False?”) to
trigger self-evaluation of LLMs. However, those
prompts may only work for the LLM used in Kada-
vath et al. (2022) and may not generalize to other
types of LLMs (e.g., OPT and GPT2 models eval-
uated in our work). Some approaches proposed
using semantic entropy (Kuhn et al., 2023) or self-
consistency (Wang et al., 2022) as a measure of
uncertainty for selection score. However, they usu-
ally require generating multiple output sequences
to obtain the uncertainty measure for an input se-
quence, which introduces high computational cost
and latency at test time. Fine-tuning LLMs on
training data from the target question answering
task using the standard LLM training loss can im-
prove selective prediction performance. This is
because fine-tuning can improve the accuracy of
the predictions and maximize the likelihood of the
ground-truth answer for a given question. However,
maximizing the likelihood of the ground-truth an-
swer is not the same as minimizing the likelihood
of the wrong answers, since LLMs generate output
sequences in an auto-regressive way. Even after
fine-tuning, some wrong answers may still have
high likelihood and be generated by the LLM at
test time. Therefore, distinguishing correct and in-
correct answers based on likelihood scores alone is
a challenging task.

To address these challenges of self-evaluation
and uncertainty estimation, we propose a novel
framework – Adaptation with Self-Evaluation to
Improve Selective Prediction in LLMs (ASPIRE).
Unlike previous methods that rely on hand-crafted
heuristics or multiple output sequences, our frame-
work learns to self-evaluate from target-task data.
We do this by training LLMs on a subset of the
training data from the question-answering tasks.
This allows the LLMs to learn to distinguish be-
tween correct and incorrect answers on their own.
We then define a selection score that combines the
likelihood of the generated answer with the learned

self-eval score (see Eq. (11)) to make selective pre-
dictions. This makes our method much less com-
putationally expensive than solutions that require
generating multiple output sequences to obtain the
uncertainty measure. Thus, the proposed method
is useful for practical applications where high se-
lective prediction performance and low inference
costs are desired, after deploying the LLM. In such
applications, practitioners prefer collecting some
training data to fine-tune smaller LLMs to achieve
high selective prediction performance rather than
directly deploying very large pre-trained LLMs
with limited selective prediction performance for
specific tasks.

We conduct extensive experiments to evaluate
our proposed framework, ASPIRE. We show that
ASPIRE achieves the state-of-the-art selective pre-
diction performance on three question answering
datasets: CoQA, TriviaQA and SQuAD, using OPT
and GPT-2 models. We also provide empirical anal-
ysis to delve deeper into our proposed technique.

2 Related Work

Selective Prediction for LLMs. Recently, LLMs
(e.g., GPT-4 (OpenAI, 2023) and PaLM (Chowd-
hery et al., 2022)) have achieved great success in
solving various kinds of Natural Language Gener-
ation (NLG) tasks. However, LLMs are still not
very reliable and may generate wrong outputs when
solving NLG tasks. Due to this, selective predic-
tion (or sometimes called selective generation (Ren
et al., 2022)) is critical for safely deploying LLMs
in the real-world. Different from selective predic-
tion for classification tasks (e.g., Natural Language
Inference (NLI) tasks) (Xin et al., 2021), selec-
tive prediction for LLMs in solving NLG tasks
is fundamentally different since the prediction is
done auto-regressively over many steps and the
possible answer set has an infinite size. Recently,
several work propose some uncertainty measures
for LLMs, which can be used for selective predic-
tion (Si et al., 2022; Kadavath et al., 2022; Varshney
et al., 2022; Ren et al., 2022; Kuhn et al., 2023).
Some recent work studies selective prediction for
solving question answering tasks where questions
are ambiguous (Cole et al., 2023; Yin et al., 2023).
Varshney and Baral (2023) propose a selective pre-
diction method that at inference time leverages an
auxiliary model which is trained to distinguish the
correct predictions of the QA model from the in-
correct ones. Different from previous work, our
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work proposes to improve selective prediction per-
formance of LLMs in solving question answering
tasks by learning self-evaluation during fine-tuning.
Parameter Efficient Fine-tuning. Fine-tuning
pretrained LLMs on downstream datasets can bring
huge performance gains when compared to us-
ing the pretrained LLMs out-of-the-box (e.g., k-
shot inference). However, as LLMs get larger and
larger, full fine-tuning becomes very expensive in
terms of computational cost and memory require-
ments. In addition, massive models might not be
data efficient and overfitting issues might be ob-
served, yielding suboptimal generalization. To ad-
dress these issues, Parameter-Efficient Fine-tuning
(PEFT) approaches have been proposed. PEFT ap-
proaches only fine-tune a small number of (extra)
model parameters while freezing most parameters
of the pretrained LLMs, thereby greatly decreas-
ing the computational and storage costs. It has
also been shown that PEFT approaches are better
than fine-tuning in the low-data regimes and gen-
eralize better to out-of-domain scenarios. Existing
PEFT approaches include LoRA (Hu et al., 2021),
Prefix Tuning (Liu et al., 2021a), Soft Prompt Tun-
ing (Lester et al., 2021) and P-Tuning (Liu et al.,
2021b). In this work, we use Soft Prompt Tun-
ing to learn self-evaluation to improve selective
prediction performance of LLMs.

3 Problem Setup

Suppose we have a pre-trained LLM f for an ar-
bitrary generative modeling task such as question
answering. The output can be represented as a se-
quence of tokens from the vocabulary V . Let V∗
be the space of sequences of tokens. Suppose the
logits of f on v ∈ V given x ∈ V∗ is f̄(v | x). The
likelihood of the next token following x being v is
defined as:

f(v | x) :=
exp (f̄(v | x))∑

v′∈V exp (f̄(v′ | x))
, (1)

whereas the likelihood of generating ŷ ∈ V∗ given
x is defined as:

f(ŷ | x) := Π
|ŷ|
i=1f(ŷi | x, ŷ[i−1]), (2)

where ŷ = (ŷ1, . . . , ŷ|ŷ|), |ŷ| is the length of ŷ,
ŷ[i−1] = (ŷ1, . . . , ŷi−1) for i > 0 and ŷ[0] = ∅.
This likelihood can be very small when |ŷ| is very
large. To address this issue, we define the normal-
ized likelihood as:

fnorm(ŷ | x) := f(ŷ | x)
1
|ŷ| (3)

We use f to generate the output sequence for the
given input x by solving the following objective:

ŷ∗ = argmax
ŷ

log f(ŷ | x) (4)

It is impossible to solve this objective exactly since
the output sequences can be arbitrarily long. How-
ever, we can employ some decoding strategy like
greedy decoding or beam search to solve it.

To evaluate if the generated output ŷ is correct
or not, we need a set of reference outputs S and an
evaluation metric M : V∗ × V∗ → [0, 1] that can
evaluate the similarity of the generated output ŷ
compared to the reference output yr ∈ S. With a
threshold γ, we can determine the correctness of
the generated output – if maxyr∈SM(ŷ,yr) > γ,
then the generated output is correct; otherwise, the
generated output is wrong. We discuss the specific
choices of M and γ in Section 6.

In selective prediction, we need a rejection op-
tion, which is denoted by ⊥. Given a training
dataset Dtr = {(xi,yi)}ntr

i=1 randomly sampled
from a target task distribution, we aim to build a
selective predictor fs : V∗ → V∗ ∪ {⊥} that can
achieve strong selective prediction performance on
the test dataset Dte = {(xi, Si)}nte

i=1, where Si is
the set of reference outputs for the input xi. The
selective predictor fs is composed of a predictor
f̂ : V∗ → V∗ and a selection scoring function
g : V∗ → R. With f̂ and g, the selective predictor
fs is proposed as:

fs(x; τ) =

{
f̂(x) if g(x) ≥ τ,
⊥ if g(x) < τ

, (5)

where τ is a threshold. The accuracy of the se-
lective predictor is defined as the fraction of the
accepted inputs where the predictions are correct.
The coverage of the selective predictor is defined as
the fraction of the inputs that are accepted. We can
tune the threshold τ to achieve a certain coverage
and there would be an accuracy-coverage trade-off.

We use the area under the accuracy-coverage
curve (AUACC) metric to measure selective pre-
diction performance and use the area under the
receiver operator characteristic curve (AUROC)
metric to measure the quality of the selection score
estimation. AUACC is the common metric used for
evaluating selective prediction performance (Xin
et al., 2021; Yoshikawa and Okazaki, 2023). AU-
ROC is equivalent to the probability that a ran-
domly chosen correct output sequence has a higher
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selection score than a randomly chosen incorrect
output sequence. AUROC is used in (Kuhn et al.,
2023) for evaluating uncertainty estimation meth-
ods.

4 ASPIRE Framework

We propose that LLMs should have the self-
evaluation ability such that they should be able
to distinguish whether their proposed answers for
a given question are correct or not. Although
some previous work (Kadavath et al., 2022) show
that LLMs have good self-evaluation ability with
specially designed prompts, those prompts may
not transfer to different kinds of LLMs (as shown
by our experiments and in Kuhn et al. (2023))
and hand-crafting prompts for different kinds of
LLMs can be expensive. A more effective approach
is to collect some training data to employ self-
evaluation. Towards this end, we propose a novel
framework – Adaptation with Self-Evaluation to
Improve Selective Prediction in LLMs (ASPIRE).
Fig. 2 illustrates the proposed framework and the
details are explained next.

Given a training dataset for a generative task, we
can fine-tune the pre-trained LLM on the train-
ing data to improve its prediction performance.
Towards this end, parameter efficient tuning tech-
niques (e.g., soft prompt tuning (Lester et al., 2021)
and LoRA (Hu et al., 2021)) might be employed
to adapt the pre-trained LLM on the task, given
their effectiveness in obtaining strong generaliza-
tion with small amount of target task data. Specif-
ically, the model parameters θ of the LLM are
frozen and adaptable parameters θp are added for
fine-tuning. Only θp are updated to solve the fol-
lowing training objective:

min
θp

E(x,y)∼DtrL(x,y; θ, θp), (6)

where L is the LLM training loss (e.g. cross-
entropy). Such fine-tuning can improve selective
prediction performance because it not only im-
proves the prediction accuracy, but also enhances
the likelihood of correct output sequences.

To further improve selective prediction perfor-
mance, we propose to fine-tune the LLM to learn
self-evaluation. We first use the LLM with the
learned θp to generate different answers for each
example (x,y) ∈ Dtr. Suppose the decoding algo-
rithm used to generate output sequences for each
input x is A. A would produce a list of generated

output sequences:

A(f, θp,x) = [ŷ1, . . . , ŷk], (7)

where k is the number of output sequences gen-
erated. We aim to generate output sequences that
have high likelihood (i.e., f(ŷj | x; θp) is high).
We use the metric M defined in Section 3 to deter-
mine if the generated output ŷj is correct or not.
If M(ŷj ,y) > γ̂, we label ŷj as a correct output
for x; otherwise, we label ŷj as a wrong output for
x. Here, the threshold γ̂ might be different from
the threshold γ used for evaluation. We choose a
sufficiently large value of γ̂ (e.g., γ̂ = 0.9) so that
the generated wrong outputs wouldn’t be labeled as
correct outputs. In Appendix H, we provide more
details and analyses on selection of γ̂.

After sampling high-likelihood outputs for each
query, we add adaptable parameters θs and only
tune θs for learning self-evaluation. Since the out-
put sequence generation only depends on θ and θp,
freezing θ and the learned θp can avoid changing
the prediction behaviors of the LLM when learning
self-evaluation. Let zc and zw be a pair of tokens
that represent the words “correct” and “wrong” re-
spectively. We can then optimize θs using the fol-
lowing training objective:

min
θs

E(x,y)∼Dtr Lc + Lw

Lc = Eŷ∼Sc(x,y) − log f(zc|x, ŷ; θp, θs)

Lw = Eŷ∼Sw(x,y) − log f(zw|x, ŷ; θp, θs)

(8)

where Sc(x,y) is a set of correct outputs con-
taining the reference output y and kc correct out-
puts with highest likelihood from A(f, θp,x), and
Sw(x,y) is a set of wrong outputs containing
kw wrong outputs with highest likelihood from
A(f, θp,x). If A(f, θp,x) has less than kc correct
outputs (or has less than kw wrong outputs), we
include all its correct outputs (or all its wrong out-
puts) in Sc (or Sw). We ensure that Sw contains at
least one wrong output. If A(f, θp,x) doesn’t con-
tain wrong outputs, we add a default wrong output
(e.g., the empty string) to Sw.

After training θp and θs, we obtain the prediction
for the query x via solving the following objective:

ŷ∗ = argmax
ŷ

log f(ŷ | x; θp). (9)

We use the beam search decoding method towards
this. We define the likelihood of the output ŷ∗
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Figure 2: In the proposed framework ASPIRE, we first perform task specific tuning to train adaptable parameters θp while
freezing the LLM. Then we use the LLM with the learned θp to generate different answers for each training question to create
a dataset for self-evaluation learning. Finally, we train the adaptable parameters θs to learn self-evaluation using the created
dataset while freezing the LLM and the learned θp.

being correct for the query x as:

P (zc | x, ŷ∗) =

exp (f̄(zc | x, ŷ∗; θp, θs))∑
z∈{zc,zw} exp (f̄(z | x, ŷ∗; θp, θs))

(10)

This score P (zc | x, ŷ∗) is referred as the learned
self-eval score. Overall, the selection scoring func-
tion is proposed as:

g(x) = (1− α) · log fnorm(ŷ∗ | x; θp) (11)

+ α · logP (zc | x, ŷ∗).

where α ∈ [0, 1] is a hyper-parameter.

5 Implementation via Soft Prompt
Tuning

In the proposed framework, θp and θs can be
trained using parameter efficient tuning approaches.
In our work, we focus on Soft Prompt Tuning, as il-
lustrated in Fig. 3. The driving force behind this ap-
proach lies in the recognition that if we can develop
prompts that effectively stimulate self-evaluation,
it should be possible to discover these prompts
through soft prompt tuning in conjunction with tar-
geted training objectives.

We first briefly introduce the soft prompt tun-
ing method proposed by Lester et al. (2021). We
consider LLMs based on the Transformer archi-
tecture (Vaswani et al., 2017). Given a query
x = (x1, . . . , xmq), Transformers first embed the
tokens, forming a matrix X ∈ Rmq×de , where de
is the dimension of the embedding space. The soft-
prompts are represented as parameters θ̃ ∈ Rl×de ,

where l is the length of the prompt. The prompt is
then concatenated to the embedded input forming
a single matrix [θ̃;X] ∈ R(mq+l)×de , which then
flows through the transformer as normal.

In the proposed framework, we need to train
two portions of the prompts θp ∈ Rl×de and θs ∈
Rl×de . Utilizing soft prompt tuning, the training
objective (6) is proposed as:

min
θp

E(x,y)∼Dtr
1

|y|

|y|∑

j=1

− log f(yj |[θp;X;Y[j−1]]),

(12)

where X is the embedding of x and Y[j−1] is the
embedding of y[j−1]. On the other hand, the train-
ing objective (8) is proposed as:

min
θs

E(x,y)∼Dtr Lc + Lw

Lc = Eŷ∼Sc(x,y) − log f(zc|[θp;X; Ŷ ; θs])

Lw = Eŷ∼Sw(x,y) − log f(zw|[θp;X; Ŷ ; θs])

(13)

where Ŷ is the embedding of ŷ. The inference
objective (9) in the framework becomes:

ŷ∗ = argmax
ŷ

log f(ŷ | [θp;X]) (14)

The learned self-eval score P (zc | x, ŷ∗) becomes:

P (zc | x, ŷ∗) =

exp (f̄(zc | [θp;X; Ŷ ∗; θs]))∑
z∈{zc,zw} exp (f̄(z | [θp;X; Ŷ ∗; θs]))

(15)
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Figure 3: Implementation of the proposed framework via soft prompt tuning. θp and θs are learnable soft prompt embeddings.
Qembed and Aembed are input embeddings for the question and answer respectively. We first generate the answer and the
likelihood of the answer, and then compute the learned self-eval score. We can cache the states when generating the answer and
reuse those states when computing the learned self-eval score to save computational costs.

where Ŷ ∗ is the embedding of ŷ∗.
To generate the output sequence and obtain the

selection score for a given input sequence, we em-
ploy two stages: first, we obtain the generated out-
put and the likelihood for the generated output and
then, we obtain the learned self-eval score. Since
the query of the second stage is constructed by ap-
pending some additional tokens to the query of the
first stage, the second stage can reuse the states in
the first stage instead of recomputing them to save
some computational cost (see Fig. 3).

Lastly, we note that the computational complex-
ity of the proposed method at test time is O(lmax)
with lmax being the maximum length of the gen-
erated output sequence. In Appendix F, we pro-
vide a more detailed analysis of the computational
complexity of different methods. The predictive
entropy and semantic entropy methods have a com-
plexity of O(m · lmax) where m is the number of
output sequences sampled for uncertainty estima-
tion, which is much larger than that of our method.

6 Experiments

Our experimental evaluation is focused on the fol-
lowing questions:
(Q1) Could a learning-based system using self-
evaluation improve selective prediction in LLMs
compared to other post-hoc selective prediction
alternatives?
(A1) By learning self-evaluation, we can signifi-
cantly improve selective prediction performance

across different datasets and LLMs (see Table 1).
(Q2) What kinds of decoding algorithms could be
used as A for the proposed framework ASPIRE?
(A2) Using decoding algorithms that can sample
different high-likelihood answers as A (e.g., beam
search) is important for ASPIRE to achieve good
selective prediction performance (see Table 4).
(Q3) What is the effect of the number of training
samples for the proposed method ASPIRE?
(A3) More training samples lead to enhanced per-
formance and with ∼2k samples, ASPIRE can out-
perform the baselines without soft prompt tuning
significantly on different datasets (see Table 5).

6.1 Setup

Dataset. We focus on the free-form question
answering tasks on the datasets CoQA (Reddy
et al., 2019), TriviaQA (Joshi et al., 2017) and
SQuAD (Rajpurkar et al., 2016). For CoQA and
SQuAD, since each question is asked based on a
context paragraph, we evaluate the LLMs in the
zero-shot setting. For TriviaQA, since the LLMs
have limited accuracy under the zero-shot setting,
we evaluate the LLMs in 5-shot setting. For each
dataset, we use a subset of the original training set
containing 50K examples for adapting LLMs by
default. The details of the datasets are given in
Appendix B.
LLMs. We use OPT (Zhang et al., 2022) and
GPT-2 (Radford et al., 2019) models of various
sizes. For OPT, we consider OPT-350M, OPT-1.3B,
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Model Method
CoQA TriviaQA SQuAD

AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-trained
GPT2-XL

Perplexity 55.93 62.05 22.60 72.88 7.68 51.90
Predictive Entropy 60.76 67.53 24.83 76.20 10.04 57.21
Semantic Entropy 63.03 70.50 24.37 75.33 10.38 59.17
Self-eval 46.67 50.83 9.30 42.75 7.32 49.56
P(True) 46.98 51.17 10.62 44.54 10.69 60.87

Adapted
GPT2-XL
with θp

Perplexity 83.27 72.79 36.49 79.92 88.73 75.08
Predictive Entropy 83.49 73.44 37.31 82.21 88.25 74.16
Semantic Entropy 84.40 75.16 36.68 81.40 88.62 75.26
Self-eval 69.91 51.90 14.39 43.33 74.26 49.13
P(True) 70.63 52.83 13.59 40.59 74.34 49.09
ASPIRE (ours) 85.65 78.32 38.06 83.23 89.86 78.35

Pre-trained
OPT-2.7B

Perplexity 75.26 70.16 40.93 78.86 40.82 57.20
Predictive Entropy 75.29 69.16 41.20 78.92 47.18 62.85
Semantic Entropy 76.31 70.96 40.72 78.06 51.53 68.40
Self-eval 62.32 52.26 25.88 59.04 41.78 59.05
P(True) 62.16 51.80 24.88 56.89 34.77 49.42

Pre-trained
OPT-30B

Self-eval 71.99 51.10 36.92 48.90 46.24 57.26
P(True) 71.59 51.31 36.20 45.63 43.93 54.26

Adapted
OPT-2.7B
with θp

Perplexity 90.80 74.23 53.56 81.74 92.86 75.72
Predictive Entropy 90.63 72.87 53.91 82.19 92.96 75.58
Semantic Entropy 91.23 74.61 53.58 81.55 93.21 76.53
Self-eval 81.30 50.76 32.98 56.03 86.34 56.99
P(True) 81.14 51.01 33.48 56.27 82.59 49.48
ASPIRE (ours) 92.63 80.25 55.06 84.44 94.73 82.60

Table 1: Results of evaluating different methods to compute the selection score when the model’s predictions are
fixed. All numbers are percentages. Bold numbers are superior results.

OPT-2.7B and OPT-30B. For GPT-2, we consider
GPT2-Medium, GPT2-Large and GPT2-XL. The
details of these models are given in Appendix C.
Baselines. For selective prediction, we need to
get a predicted output sequence ŷ∗ and a selection
score g(x) for each input sequence x given a model
f . The model f can be a pre-trained LLM or an
adapted LLM with θp trained using the training
objective (12). We use the beam-search decoding
to obtain the predicted output sequence ŷ∗ and
consider the following baselines to compute the
selection score g(x): (1) Perplexity; (2) Predictive
Entropy; (3) Semantic Entropy (Kuhn et al., 2023);
(4) Self-eval; (5) P(True) (Kadavath et al., 2022).
More details can be found in Appendix D.
Evaluation metrics. We use the Rouge-L (Lin
and Och, 2004) as the evaluation metricM to evalu-
ate the similarity of the generated answer to the ref-
erence answers following Kuhn et al. (2023). For
the threshold γ that is used to determine the correct-
ness of the generated answer, we consider relatively
larger values of γ since we focus on safety-critical
applications where accepting a wrong answer is
more costly compared to rejecting a correct answer

that is different from the reference answers (refer
to Appendix G for the justifications of the choices
of γ). Unless specified, we use γ = 0.7 as default.

Training hyper-parameters. We have two stages
of training: the first stage is to train the soft prompt
θp using the training objective (12) and the sec-
ond stage is to train the soft prompt θs using the
training objective (13). For both stages, we train
the soft prompts for 10 epochs using AdamW opti-
mizer with a batch size of 8, a learning rate of 0.01
and cosine learning rate scheduling. More training
details can be found in Appendix E.

ASPIRE setup. We use the beam search as the
decoding algorithmA. We set the number of beams
equal to k and use the k highest scoring beams as
the answer listA(f, θp,x). We set l = 50, γ̂ = 0.9,
k = 10, kc = 2, kw = 10 and α = 0.25 by default.
We choose these hyper-parameters based on the
performance on the validation set from TriviaQA
using the OPT-2.7B model. We then use the same
hyper-parameters across all datasets and models.
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Model Method
CoQA TriviaQA SQuAD

AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Adapted
OPT-2.7B
with θp

ASPIRE (α = 0.0) 90.80 74.23 53.56 81.74 92.86 75.72
ASPIRE (α = 0.25) 92.63 80.25 55.06 84.44 94.73 82.60
ASPIRE (α = 0.5) 92.56 80.18 54.61 84.33 94.59 82.16
ASPIRE (α = 0.75) 92.05 78.37 52.71 81.52 94.28 80.98
ASPIRE (α = 1.0) 91.33 76.08 48.84 76.39 93.77 79.48

Table 2: Results of studying the effect of the hyper-parameter α in the proposed selection score (Eq. (11)). All
numbers are percentages. Bold numbers are superior results.

Model
CoQA TriviaQA SQuAD
Acc ↑ Acc ↑ Acc ↑

Pre-trained GPT2-XL 46.27 11.80 7.41
Adapted GPT2-XL with θp 69.18 17.45 75.44
Pre-trained OPT-2.7B 60.68 21.38 35.95
Pre-trained OPT-30B 71.06 39.36 41.41
Adapted OPT-2.7B with θp 80.45 29.21 83.27

Table 3: Results of evaluating the accuracy of different
LLMs. All numbers are percentages.

6.2 Results

We first evaluate the accuracy of different LLMs.
The results in Table 3 show that after training θp
via soft prompt tuning, the accuracy of LLMs is
improved significantly. On the CoQA and SQuAD
datasets, the adapted OPT-2.7B can even outper-
form the pre-trained OPT-30B, which demonstrates
that it is possible to adapt a smaller LLM to achieve
better accuracy than a much larger LLM. We then
evaluate different methods to compute the selection
score when the model’s predictions are fixed. The
results in Table 1 show that the proposed method
ASPIRE significantly outperforms the baselines in
terms of the AUACC and AUROC metrics across
different datasets and LLMs. The results also show
that after prompt tuning, the AUACC of different
methods is significantly improved as the accuracy
gets better and the perplexity becomes more mean-
ingful in separating correct and wrong answers.
Additionally, the results show that the proposed
ASPIRE with the adapted OPT-2.7B model can
significantly outperform the Self-eval and P(True)
baselines with the pre-trained OPT-30B model in
selective prediction performance. Note that on the
TriviaQA dataset, although the pre-trained OPT-
30B model has better accuracy than the adapted
OPT-2.7B model, the Self-eval and P(True) base-
lines with the pre-trained OPT-30B model have
much worse selective prediction performance com-
pared to the proposed ASPIRE with the adapted

OPT-2.7B model. These demonstrate that the self-
evaluation approaches are not effective for high ca-
pacity LLMs, and applying the proposed ASPIRE
to smaller LLMs can lead to better selective predic-
tion performance compared to those self-evaluation
approaches with much larger LLMs. Additional re-
sults in Appendix I show that ASPIRE significantly
outperforms the baselines across OPT and GPT2
models of different sizes for different values of the
Rouge threshold γ.

6.3 Empirical Analyses

The effect of α. We study the effect of the
hyper-parameter α in the proposed selection score
(Eq. (11)). The results in Table 2 show that setting
α = 0.25 leads to the best performance since it
combines the normalized likelihood and the learned
self-eval score in a good way. Only using the nor-
malized likelihood (i.e., α = 0) or only using the
learned self-eval score (i.e., α = 1) leads to much
worse performance. In practice, the value of α can
be chosen based on the performance on the valida-
tion data. In Appendix J, we give results for other
models and discuss how we choose α.
The choices of A. We compare two decoding
algorithms – beam search and multinomial sam-
pling that can be used as A for answer sampling.
For beam search, we use the k highest scoring
beams as the answer list. For multinomial sam-
pling, we consider temperature (denoted as T ) in
the set {0.1, 1.0, 2.0}. The results in Table 4 show
that using multinomial sampling with T = 2.0 or
T = 0.1 leads to worse performance compared
to other decoding algorithms. If we set a high
temperature (T = 2.0) for multinomial sampling,
then we sample some random answers that might
not have high-likelihood. If we set a low temper-
ature (T = 0.1) for multinomial sampling, then
we repeatedly sample the same high-likelihood an-
swers. Thus, the results suggest that sampling dif-
ferent high-likelihood answers is important for our
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Model Decoding Algorithm
CoQA TriviaQA SQuAD

AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Adapted
GPT2-XL
with θp

Multinomial (T=0.1) 83.82 74.22 36.40 80.67 89.75 77.56
Multinomial (T=1.0) 84.96 76.15 37.03 81.41 90.12 78.71
Multinomial (T=2.0) 83.06 72.96 36.34 80.14 89.41 76.98
Beam search 85.65 78.32 38.06 83.23 89.86 78.35

Adapted
OPT-2.7B
with θp

Multinomial (T=0.1) 92.04 77.96 55.09 84.28 94.24 80.52
Multinomial (T=1.0) 92.60 79.86 55.15 84.29 94.57 82.08
Multinomial (T=2.0) 92.02 77.91 53.80 82.40 94.15 80.42
Beam search 92.63 80.25 55.06 84.44 94.73 82.60

Table 4: Results of comparing different decoding algorithms for answer sampling in the proposed method. We
denote the temperature as T . All numbers are percentages. Bold numbers are superior results.

Model Method
CoQA TriviaQA SQuAD

AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑
Pre-trained
OPT-2.7B

Predictive Entropy 75.29 69.16 41.20 78.92 47.18 62.85
Semantic Entropy 76.31 70.96 40.72 78.06 51.53 68.40

Adapted
OPT-2.7B
with θp

ASPIRE (size=1k) 80.87 67.01 45.70 78.98 85.42 71.42
ASPIRE (size=2k) 85.71 73.72 46.64 79.24 88.27 75.74
ASPIRE (size=5k) 87.83 74.58 49.77 82.06 90.09 77.09
ASPIRE (size=10k) 90.46 78.29 51.88 83.13 92.48 79.46
ASPIRE (size=50k) 92.63 80.25 55.06 84.44 94.73 82.60

Table 5: Results of studying the effect of training set size for the proposed ASPIRE. All numbers are percentages.

method to achieve high accuracy and coverage in
selective prediction. The results also show that us-
ing beam search leads to similar performance as
using multinomial sampling with T = 1. So we
can use either one in practice.
Training sample efficiency. We perform experi-
ments to study the effect of the number of training
samples for ASPIRE. We fix the number of training
steps to be 50K while varying the size of the train-
ing dataset. The results in Table 5 show that more
training samples lead to performance improvement
and with 2K training samples, ASPIRE can out-
perform the baselines without soft prompt tuning
by a large margin across different datasets. This
underlines that our method, ASPIRE, can signif-
icantly improve selective prediction performance
even with limited number of training samples.

7 Conclusion

In this paper, we proposed a novel framework for
adaptation with self-evaluation to improve selective
prediction in LLMs. We implemented the frame-
work via soft prompt tuning and demonstrated
its superior performance over existing methods
through extensive experiments. In future work,
one could explore implementing our framework
via other parameter efficient tuning approaches and

applying our method to larger LLMs.

Limitations

Higher capacity LLMs are known to often yield
superior capabilities. Our work does not include
fine-tuning experimental results with the largest
and the strongest LLMs in the literature (we have
fine-tuning results with LLMs up to 2.7B parame-
ters), due to our computational constraints. How-
ever, the proposed framework can be applied to
LLMs of any size and similar improvements are
expected. We leave the adoption of our methods to
larger-scale LLMs to future work.

Ethics Statement

LLMs are widely used in various applications
nowadays. However, they can generate wrong or
misleading answers to questions, which can cause
serious consequences in some safety critical ap-
plications. The framework proposed in our work
can be used to improve selective prediction per-
formance of LLMs and make their deployments
more reliable. However, it is noted that the ob-
tained selective prediction performances are still
not perfect.
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A Hardware and Software

We run all experiments using the HuggingFace
API on 40GB NVIDIA A100 GPUs in the De-
bian GNU/Linux 10 system. We use the OPT and
GPT2 models via the HuggingFace transformers li-
brary which can be easily adapted for reproducibil-
ity. We modify the Trainer class provided by
the HuggingFace API for soft prompt tuning. We
use the generate() function of the HuggingFace
API to generate answers. Unless specified, we use
the default parameters of the generate() function.
When generating the answer set A(f, θp,x), we
set max_new_tokens=50 while in other cases, we
always set max_new_tokens=256. The parameters
for different decoding strategies are provided be-
low:

• Beam search decoding: we set num_beams>1
and do_sample=False. If we want to get
num_beams highest scoring beams, we will set
num_return_sequences=num_beams. We
will specify num_beams when using beam
search decoding.

• Multinomial sampling decoding: we set
num_beams=1 and do_sample=True. We will
specify temperature when using multino-
mial sampling decoding.

B Datasets

We use three question answering datasets:
CoQA (Reddy et al., 2019), TriviaQA (Joshi et al.,
2017) and SQuAD (Rajpurkar et al., 2016) for ex-
periments. The details about these datasets are
given below.

B.1 CoQA
CoQA is a large-scale dataset for Conversational
Question Answering systems. The goal of the
CoQA challenge is to measure the ability of ma-
chines to understand a text passage and answer a
series of interconnected questions that appear in a
conversation. CoQA contains 127,000+ questions
with answers collected from 8,000+ conversations.
The training set contains 108,647 question queries
while the test set contains 7,983 question queries.
We use the following template to construct question
queries:
[The provided context paragraph]
[additional question-answer pairs]
Q: [Provided question]
A:

where additional question-answer pairs are preced-
ing turns of the conversation about the paragraph
consisting of questions and reference answers.

B.2 TriviaQA

TriviaQA is a reading comprehension dataset
containing over 650K question-answer-evidence
triples. TriviaQA includes 95K question-answer
pairs authored by trivia enthusiasts and indepen-
dently gathered evidence documents, six per ques-
tion on average, that provide high quality distant
supervision for answering the questions. We focus
on TriviaQA as a closed-book QA task (in which
the model must answer a question without access to
a supporting paragraph). The training set contains
138,384 question queries while the test set contains
17,944 question queries. We split the original test
set into a new test set containing 8,000 question
queries and a validation set containing 9,944 ques-
tion queries. We use the new test set for evaluation
and use the validation set for hyper-parameter se-
lection. We consider the following template with a
5-shot prompt to construct question queries:

Q: In which decade did Billboard magazine
first publish and American hit chart? A:
30s. Q: What is Bruce Willis' real first
name? A: Walter. Q: Which city does David
Soul come from? A: Chicago. Q: Which
William wrote the novel Lord Of The Flies?
A: Golding. Q: Where in England was Dame
Judi Dench born? A: York. Q: [Provided
question] A:

B.3 SQuAD

Stanford Question Answering Dataset (SQuAD)
is a reading comprehension dataset, consisting of
questions posed by crowd-workers on a set of
Wikipedia articles, where the answer to every ques-
tion is a segment of text, or span, from the cor-
responding reading passage. We use the SQuAD
1.1 version, containing 100,000+ question-answer
pairs on 500+ articles. The training set contains
86,821 question queries while the test set contains
5,928 question queries. We use the following tem-
plate to construct question queries:

[The provided context paragraph]
Q: [Provided question]
A:
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C LLMs

We perform experiments with OPT (Zhang et al.,
2022) and GPT-2 (Radford et al., 2019) models,
which are based on Transformer architecture. For
Transformer architecture, there is a limit on the
lengths of the sequences we can pass the models.
The OPT models can handle sequences of up to
2,048 tokens while the GPT-2 models can handle
sequences of up to 1,024 tokens. If the sequence
length of an input is larger than the maximum se-
quence length that is allowed, we force the model
to output an empty sequence with a −∞ selection
score.

D Baselines

For selective prediction, we need to get a predicted
output sequence ŷ∗ and a selection score g(x) for
each input sequence x given a model f . The model
f can be a pre-trained LLM or an LLM adapted
with prompt tuning using training objective (12).
We use the beam-search decoding, with the number
of beams being equal to 5, to obtain the predicted
output sequence ŷ∗. We consider the following
baselines to compute the selection score g(x):
Perplexity. Perplexity is defined as the exponenti-
ated average negative log-likelihood of a sequence.
The perplexity of the generated output sequence ŷ∗

is computed as:

perp(ŷ∗ | x; f) = fnorm(ŷ∗ | x)−1 (16)

Predictive Entropy. Predictive entropy is a
widely used measure of uncertainty. We use the
multinomial sampling with a temperature of 0.5 to
obtain an answer list [ŷ1, . . . , ŷm] for each input
sequence x. The predictive entropy is computed
as:

pe(x; f) =

m∑

j=1

1

m
log fnorm(ŷj |x) (17)

We set m = 10. This is the same as the length-
normalised predictive entropy baseline in Kuhn
et al. (2023).
Semantic Entropy. Semantic entropy is an
entropy-based uncertainty measure which uses a bi-
directional entailment algorithm for marginalising
over semantically-equivalent samples (Kuhn et al.,
2023). We follow the settings in Kuhn et al. (2023).
Specifically, we use the multinomial sampling with
a temperature of 0.5 to obtain an answer list of
size 10 for each input sequence for uncertainty

estimation. We use the Deberta-large model (He
et al., 2020) that is fine-tuned on the NLI data set,
MNLI (Williams et al., 2017) for the bidirectional
entailment clustering algorithm.
Self-eval. Self-eval is a simple baseline that ob-
tains a selection score from the LLM by asking
whether the proposed answer ŷ∗ is correct or not.
Suppose zs is a series of tokens representing the
self-evaluation trigger string “The answer is ”. Sup-
pose zc and zw are the tokens that represent the
words “correct” and “wrong” respectively. Re-
call that the logits of the model f on v given x
is f̄(v | x). Then, the self-eval score is computed
as:

P (zc | x, ŷ∗) =
exp (f̄(zc | x, ŷ∗, zs))∑

z∈{zc,zw} exp (f̄(z | x, ŷ∗, zs))
(18)

P(True). P(True) proposed by Kadavath et al.
(2022) is a way to estimate the probability that a
model’s generation is correct by “asking” the model
if its answer is correct. It samples m answers and
constructs a new natural language question using
these possible answers as context before asking
whether the proposed answer ŷ∗ is correct and mea-
sures the probability of the completion being True.
We set m = 4 and use the multinomial sampling
with a temperature of 1.0 to sample the answers.
The format of the prompt is:

Question: Who was the third president of
the United States?
Here are some brainstormed ideas:
James Monroe
Thomas Jefferson
John Adams
Benjamin Harrison
George Washington
Possible Answer: James Monroe
Is the possible answer: (A) True (B) False.
The possible answer is:

where the “brainstormed answers” are from the set
of sampled answers and P(True) (i.e., the likeli-
hood of the next token being True) is taken as the
uncertainty measure.

E Training Details

We have two stage training: the first stage is to
train the soft prompt θp using the training objec-
tive (12) and the second stage is to train the soft
prompt θs using the training objective (13). For
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both stages, we train the soft prompt for 10 epochs
using AdamW optimizer with a batch size of 8, a
learning rate of 0.01 and cosine learning rate sched-
ule. We remove those data points (x,y) where
|x|+ |y| > 700 from the training set Dtr to reduce
GPU memory usage during training. Here, |x| is
the length of the sequence x. This only removes a
very small portion of data points from the training
set for each dataset (remove 4.02% training data
points in CoQA, 0% training data points in Trivi-
aQA and 0.04% training data points in SQuAD).
During training θp or θs, we always use 20% train-
ing data as validation data for selecting the best
model among all checkpoints after each training
epoch. Training θp, we select the best model based
on the loss on the validation data. When training
θs, we select the best model based on the AUROC
on the validation data.

F Computational Complexity Analysis

The proposed method ASPIRE needs to train two
soft prompts θp and θs. The complexity of training
θp using the training objective (12) is the same as
the complexity of the standard soft prompt tuning.
When training θs using the training objective (13),
the number of training steps is the same as that
of training θp. In each training step of training θs,
we compute gradients for one correct output and
two wrong outputs while in each training step of
training θp, we compute gradients for one reference
output. Thus, the complexity of training θs is the
same as that of training θp. Therefore, the complex-
ity of the proposed method ASPIRE in the training
time is the same as that of the standard soft prompt
tuning.

We analyze the computational complexity of dif-
ferent methods at test time in terms of the number
of forward passes for the LLM. Since the LLM
generates the output sequence in an auto-regressive
way, the number of forward passes needed depends
on the length of the generated output sequence.
Suppose the maximum length of the generated out-
put sequence is lmax. To generate an output se-
quence given an input sequence, we need one for-
ward pass to encode the input sequence and at most
lmax forward passes to obtain the output sequence.
Thus, for generating the output sequence, the maxi-
mum number of forward passes is 1 + lmax and the
complexity is O(lmax). For the perplexity method,
the computational complexity is O(lmax) since we
only need additional one forward pass to obtain the

perplexity score. For the predictive entropy method,
the computational complexity is O(m · lmax) since
we need to additionally generate m answers and
compute the likelihood of those m answers. For
the semantic entropy method, we omit the compu-
tational complexity of the bidirectional entailment
clustering algorithm since its computational cost
is much smaller than that of the generation of the
LLM as stated in Kuhn et al. (2023). Thus, the
computational complexity for semantic entropy is
O(m · lmax). For the self-eval method, the compu-
tational complexity is O(lmax) since we only need
one additional forward pass to obtain the self-eval
score. For the P(True) method, the computational
complexity is O(m · lmax) since we need to ad-
ditionally generate m answers and need one for-
ward pass to compute the P(True) score. For the
proposed method ASPIRE, the computational com-
plexity is O(lmax) since we only need additional
one forward pass to obtain the learned self-eval
score. Table 6 summarizes the computational com-
plexity of different methods at test time.

Method Complexity
Perplexity O(lmax)
Predictive Entropy O(m · lmax)
Semantic Entropy O(m · lmax)
Self-eval O(lmax)
P(True) O(m · lmax)
ASPIRE (ours) O(lmax)

Table 6: Computational complexity of different meth-
ods in the test time.

G Rouge Threshold for Evaluation

We use the Rouge-L (Lin and Och, 2004) metric
to evaluate if the predicted answer is correct or
not. The Rouge-L metric produces a score in [0, 1].
We need a threshold γ to determine whether the
predicted answer is correct or not. If the Rouge-L
score is larger than the threshold γ, then the pre-
dicted answer is correct; otherwise, the predicted
answer is wrong. The choice of γ depends on the
applications. Low values of γ may lead to label-
ing some wrong answers as correct answers while
large values of γ may lead to labeling some correct
answers as wrong answers. If we regard the wrong
answer as the positive class, then we can use the
precision and recall metrics to evaluate the choice
of γ. To compute the precision and recall metrics,
we need ground-truth labels for determining the
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correctness of predicted answers, which requires
manual labeling. If the Rouge-L score is equal to
0 (or 1), then it is mostly sure that the predicted
answer is wrong (or correct). Thus, we only need
to label those samples whose Rouge-L scores are in
(0, 1). To compare different values of γ, we com-
pute the precision and recall metrics after manually
label 200 samples whose Rouge-L scores are in the
range of (0, 1). The results in Table 7 show that
larger values of γ lead to higher recall but lower
precision, while the lower values of γ lead to higher
precision but lower recall. We propose this work
for safety-critical applications where accepting a
wrong answer is more costly compared to rejecting
a correct answer that is different from the refer-
ence answers. Thus, we prefer high recall than
high precision. In our experiments, we evaluate
different methods under the Rouge-L metric with
γ ∈ {0.7, 0.8, 0, 9} to ensure that the recall is at
least 90%.

H Rouge Threshold for the Proposed
Framework

In the proposed framework ASPIRE, we need the
Rouge threshold γ̂ to determine if the generated
answer is correct or not. We want to set a large
enough value of γ̂ so that the generated wrong
answers won’t be labeled as correct answers. To
determine the value of γ̂, we manually label the cor-
rectness of the 10 generated answers for 50 training
examples from each dataset (we have three datasets
CoQA, TriviaQA and SQuAD). The answers are
generated using the OPT-2.7B model. We find that
if we set γ̂ = 0.9, then no wrong answers would be
labeled as correct answers. Thus, we set γ̂ = 0.9
for the proposed framework.

I Complete Results

In this section, we present the complete results for
OPT and GPT2 models of different sizes and dif-
ferent Rouge threshold γ. We first evaluate the
accuracy of different LLMs. The results are in Ta-
ble 8 (set γ = 0.7), Table 9 (set γ = 0.8) and
Table 10 (set γ = 0.9). The results show that after
training θp via soft prompt tuning, the accuracy of
LLMs is improved significantly. We then evaluate
different approaches to compute the selection score
when the model’s predictions are fixed. The results
are in Table 11 (use GPT2 models and set γ = 0.7),
Table 12 (use GPT2 models and set γ = 0.8), Ta-
ble 13 (use GPT2 models and set γ = 0.9), Ta-

ble 14 (use OPT models and set γ = 0.7), Ta-
ble 15 (use OPT models and set γ = 0.8) and
Table 16 (use OPT models and set γ = 0.9). The
results show that the proposed method ASPIRE
significantly outperforms the baselines in terms of
AUACC and AUROC across different datasets and
LLMs for different values of the Rouge threshold
γ.

J The Effect of the Hyper-parameter α

We study the effect of the hyper-parameter α in
the proposed selection score (Eq. (11)) for our
method. The results in Table 17 show that set-
ting α = 0.25 leads to the best performance across
different datasets and different models. Only us-
ing the normalized likelihood (i.e., α = 0) or only
using the learned self-eval score (i.e., α = 1) con-
sistently leads to much worse performance. We
choose α for our method based on the performance
on the validation data from the TriviaQA dataset
using the OPT-2.7B model. We then use the same
α value for different datasets and different models.
We consider α ∈ {0.0, 0.25, 0.5, 0.75, 1.0} when
tuning it. Based on the validation results, we set
α = 0.25 by default.

K Comparing with Self-Consistency

Self-consistency (Wang et al., 2022) can be used
to obtain confidence measures as proposed by Si
et al. (2022). We sample 10 times to obtain a
set of different answers for each question using
the multinomial sampling with a temperature of
0.5. Among all the generated answers, we take
the most frequent answer as the final prediction
and its frequency as the selection score. Since
self-consistency produces discrete selection scores
(in the above setting, the number of possible se-
lection scores is 10) and we use the composite
trapezoidal rule to compute AUACC, it is eas-
ier for self-consistency to achieve high AUACC
compared to those approaches that produce con-
tinuous selection scores. Note that the proposed
method produce continuous selection scores. Thus,
it might not be fair to compare the proposed method
with self-consistency. However, even though self-
consistency has more advantages in achieving high
AUACC, the proposed method ASPIRE still signif-
icantly outperforms self-consistency as shown in
Table 18. We also observe that Self-Consistency
might lead to worse accuracy meaning that the
LLM can be consistently wrong.
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γ
CoQA TriviaQA SQuAD

Precision ↑ Recall ↑ Precision ↑ Recall ↑ Precision ↑ Recall ↑
0.1 100.00 0.00 100.00 0.62 100.00 7.91
0.2 100.00 10.00 100.00 2.50 100.00 34.53
0.3 100.00 22.50 100.00 11.88 98.55 48.92
0.4 100.00 45.62 97.01 40.62 93.58 73.38
0.5 97.98 60.62 97.09 62.50 85.94 79.14
0.6 97.41 70.62 96.19 63.12 84.73 79.86
0.7 93.51 90.00 86.81 98.75 76.16 94.24
0.8 86.59 96.88 81.22 100.00 73.66 98.56
0.9 80.71 99.38 80.00 100.00 69.85 100.00

Table 7: Results of comparing different choices of the Rouge threshold γ. The wrong answer is regarded as the
positive class. We use the OPT-2.7B model. We manually label 200 samples with Rouge-L scores in the range of
(0, 1) in each dataset and then compute the precision and recall. All numbers are percentages.

Model
CoQA TriviaQA SQuAD
Acc ↑ Acc ↑ Acc ↑

Pre-trained GPT2-Medium 35.12 5.44 4.42
Adapted GPT2-Medium with θp 57.90 9.04 66.63
Pre-trained GPT2-Large 41.21 8.16 6.09
Adapted GPT2-Large with θp 63.89 12.50 71.34
Pre-trained GPT2-XL 46.27 11.80 7.41
Adapted GPT2-XL with θp 69.18 17.45 75.44
Pre-trained OPT-350M 28.76 4.35 13.65
Adapted OPT-350M with θp 59.46 8.25 64.74
Pre-trained OPT-1.3B 54.13 15.80 30.23
Adapted OPT-1.3B with θp 76.85 21.73 80.94
Pre-trained OPT-2.7B 60.68 21.38 35.95
Adapted OPT-2.7B with θp 80.45 29.21 83.27

Table 8: Results of evaluating the accuracy of different LLMs when the Rouge threshold γ = 0.7. All numbers are
percentages.

L Qualitative Evaluation

We present some concrete examples from the Triv-
iaQA dataset to show the advantages of the pro-
posed method qualitatively. We compare the pro-
posed method ASPIRE to the baseline Semantic
Entropy. The model for generating answers is the
adapted OPT-2.7B with learned θp. The examples
below show that some semantic entropy scores for
correct predictions are lower than some semantic
entropy scores for wrong predictions while the AS-
PIRE scores for correct predictions are consistently
higher than the ASPIRE scores for wrong predic-
tions. The ASPIRE scores are log likelihood scores
and can be converted to likelihood scores by taking
exponentiation with the base e.
Examples where predictions are correct

Question: Who is the most successful UK solo
artist in the USA?

Answer: Elton John.
Predicted answer: Elton John.
Semantic entropy score: -1.1031
ASPIRE score: -0.8163

Question: In which decade of the 20th century
was Anne Bancroft born?

Answer: 1930s.
Predicted answer: 1930s.
Semantic entropy score: -0.6167
ASPIRE score: -0.9026

Question: The Suez Canal connects the Mediter-
ranean Sea to which other Sea?

Answer: Red sea.
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Model
CoQA TriviaQA SQuAD
Acc ↑ Acc ↑ Acc ↑

Pre-trained GPT2-Medium 32.12 5.00 2.85
Adapted GPT2-Medium with θp 55.12 8.71 62.92
Pre-trained GPT2-Large 38.16 7.64 3.98
Adapted GPT2-Large with θp 61.04 12.14 67.56
Pre-trained GPT2-XL 42.67 11.10 5.21
Adapted GPT2-XL with θp 66.49 16.96 71.17
Pre-trained OPT-350M 27.38 4.25 11.15
Adapted OPT-350M with θp 57.02 8.05 61.29
Pre-trained OPT-1.3B 51.35 15.35 25.73
Adapted OPT-1.3B with θp 74.46 21.26 77.28
Pre-trained OPT-2.7B 57.72 20.71 30.94
Adapted OPT-2.7B with θp 77.97 28.55 80.04

Table 9: Results of evaluating the accuracy of different LLMs when the Rouge threshold γ = 0.8. All numbers are
percentages.

Model
CoQA TriviaQA SQuAD
Acc ↑ Acc ↑ Acc ↑

Pre-trained GPT2-Medium 30.49 4.88 1.99
Adapted GPT2-Medium with θp 53.11 8.53 60.51
Pre-trained GPT2-Large 36.20 7.41 3.00
Adapted GPT2-Large with θp 59.04 11.85 64.98
Pre-trained GPT2-XL 40.32 10.82 4.12
Adapted GPT2-XL with θp 64.59 16.70 68.83
Pre-trained OPT-350M 26.81 4.20 9.62
Adapted OPT-350M with θp 55.33 8.00 59.35
Pre-trained OPT-1.3B 49.78 15.24 22.79
Adapted OPT-1.3B with θp 72.78 21.07 74.97
Pre-trained OPT-2.7B 56.06 20.55 27.41
Adapted OPT-2.7B with θp 76.45 28.26 78.12

Table 10: Results of evaluating the accuracy of different LLMs when the Rouge threshold γ = 0.9. All numbers
are percentages.

Predicted answer: Red Sea.
Semantic entropy score: 2.2082
ASPIRE score: -0.2309

Question: Sun Yat Sen overthrew the emperor
in which country establishing a republic after 2000
years of imperial rule?

Answer: China.
Predicted answer: China.
Semantic entropy score: 2.0028
ASPIRE score: -0.4205

Examples where predictions are wrong
Question: Who was the director of the CIA from

1976-81?
Answer: George Bush.

Predicted answer: George H W Bush.
Semantic entropy score: 0.4547
ASPIRE score: -1.0397

Question: What Michelle Pfeiffer movie got a
boost from the Coolio song Gangsta’s Paradise?

Answer: Dangerous Minds.
Predicted answer: Scarface.
Semantic entropy score: 0.0647
ASPIRE score: -1.0531

Question: What was President Gerald Ford’s
middle name?

Answer: Rudolph.
Predicted answer: William.
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Model Method
CoQA TriviaQA SQuAD

AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-trained
GPT2-
Medium

Perplexity 38.92 55.77 7.67 60.52 4.58 55.35
Predictive Entropy 45.91 62.89 10.02 67.66 5.99 57.07
Semantic Entropy 48.35 66.30 10.28 68.54 6.18 57.36
Self-eval 36.16 51.14 6.26 56.74 3.70 43.44
P(True) 34.08 48.21 8.24 60.62 5.41 54.33

Adapted
GPT2-
Medium
with θp

Perplexity 72.03 67.89 18.02 72.17 81.91 72.38
Predictive Entropy 72.59 69.42 20.07 77.48 82.00 73.09
Semantic Entropy 73.95 71.54 19.86 77.62 82.35 73.66
Self-eval 57.94 50.43 9.94 54.68 64.79 46.99
P(True) 56.71 48.76 13.55 60.79 65.94 49.13
ASPIRE (ours) 76.32 75.30 20.65 79.41 84.15 77.59

Pre-trained
GPT2-
Large

Perplexity 48.57 59.82 13.74 66.51 6.39 53.96
Predictive Entropy 55.04 66.68 16.25 70.46 8.25 57.03
Semantic Entropy 57.13 69.57 16.02 70.06 8.81 59.24
Self-eval 42.24 51.72 9.78 54.74 5.07 46.79
P(True) 36.73 45.69 8.60 48.62 6.83 55.62

Adapted
GPT2-
Large with
θp

Perplexity 77.15 68.15 26.83 77.06 86.26 75.34
Predictive Entropy 77.45 69.76 27.83 80.02 86.32 75.65
Semantic Entropy 78.85 71.97 27.61 79.88 86.53 75.90
Self-eval 64.28 50.61 14.26 54.34 70.86 50.81
P(True) 58.97 45.55 12.38 47.61 70.73 50.09
ASPIRE (ours) 81.30 76.38 29.13 82.14 87.83 79.22

Pre-trained
GPT2-XL

Perplexity 55.93 62.05 22.60 72.88 7.68 51.90
Predictive Entropy 60.76 67.53 24.83 76.20 10.04 57.21
Semantic Entropy 63.03 70.50 24.37 75.33 10.38 59.17
Self-eval 46.67 50.83 9.30 42.75 7.32 49.56
P(True) 46.98 51.17 10.62 44.54 10.69 60.87

Adapted
GPT2-XL
with θp

Perplexity 83.27 72.79 36.49 79.92 88.73 75.08
Predictive Entropy 83.49 73.44 37.31 82.21 88.25 74.16
Semantic Entropy 84.40 75.16 36.68 81.40 88.62 75.26
Self-eval 69.91 51.90 14.39 43.33 74.26 49.13
P(True) 70.63 52.83 13.59 40.59 74.34 49.09
ASPIRE (ours) 85.65 78.32 38.06 83.23 89.86 78.35

Table 11: Results of evaluating different methods to compute the selection score when the model’s predictions are
fixed. We use the GPT2 models and set the Rouge threshold γ = 0.7. All numbers are percentages. Bold numbers
are superior results.

Semantic entropy score: -3.9773
ASPIRE score: -2.8203

Question: Kim Carnes’ nine weeks at No 1 with
Bette Davis Eyes was interrupted for one week by
which song?

Answer: Stars on 45 medley.
Predicted answer: Bette Davis Eyes.
Semantic entropy score: -1.4973
ASPIRE score: -2.2803
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Model Method
CoQA TriviaQA SQuAD

AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-trained
GPT2-
Medium

Perplexity 35.24 54.28 7.03 59.54 2.82 53.29
Predictive Entropy 42.43 62.42 9.23 66.62 3.86 58.15
Semantic Entropy 45.53 66.84 9.52 67.83 4.02 58.53
Self-eval 32.97 51.13 5.95 57.98 2.06 40.62
P(True) 31.05 48.10 7.81 61.51 3.73 55.72

Adapted
GPT2-
Medium
with θp

Perplexity 69.36 67.21 17.42 71.77 79.26 72.25
Predictive Entropy 69.74 68.58 19.38 77.26 79.18 72.70
Semantic Entropy 71.35 71.10 19.22 77.55 79.61 73.53
Self-eval 55.04 50.31 9.75 55.26 61.43 47.61
P(True) 53.95 48.66 13.32 61.55 62.07 49.06
ASPIRE (ours) 73.97 75.05 20.12 79.59 82.02 78.02

Pre-trained
GPT2-
Large

Perplexity 44.95 58.70 13.06 66.47 4.06 51.95
Predictive Entropy 51.57 66.32 15.43 70.33 5.61 57.34
Semantic Entropy 54.39 70.24 15.25 70.08 6.25 61.09
Self-eval 39.66 52.36 9.21 54.62 3.15 45.40
P(True) 33.73 45.72 8.20 49.18 4.68 57.51

Adapted
GPT2-
Large with
θp

Perplexity 74.64 67.40 26.20 76.89 83.61 74.57
Predictive Entropy 74.96 69.07 27.22 80.01 83.57 74.67
Semantic Entropy 76.65 71.82 27.06 79.99 83.81 75.10
Self-eval 61.88 50.99 13.83 54.15 67.28 51.20
P(True) 56.35 45.90 11.95 47.55 67.13 50.52
ASPIRE (ours) 79.39 76.49 28.43 82.01 85.71 79.27

Pre-trained
GPT2-XL

Perplexity 52.07 61.15 21.54 72.72 5.30 49.81
Predictive Entropy 56.83 66.90 23.65 76.15 7.27 56.53
Semantic Entropy 59.74 70.83 23.23 75.38 7.59 58.85
Self-eval 43.34 51.14 8.81 42.76 5.45 51.47
P(True) 43.24 51.09 9.81 43.94 8.54 65.61

Adapted
GPT2-XL
with θp

Perplexity 81.05 71.85 35.61 79.69 86.08 74.71
Predictive Entropy 81.23 72.42 36.42 82.01 85.53 73.62
Semantic Entropy 82.38 74.62 35.84 81.31 85.93 74.84
Self-eval 67.35 51.89 14.05 43.45 70.30 49.21
P(True) 68.02 52.83 13.21 40.48 69.47 48.32
ASPIRE (ours) 83.91 78.09 37.26 83.18 87.76 78.82

Table 12: Results of evaluating different methods to compute the selection score when the model’s predictions are
fixed. We use the GPT2 models and set the Rouge threshold γ = 0.8. All numbers are percentages. Bold numbers
are superior results.

5208



Model Method
CoQA TriviaQA SQuAD

AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-trained
GPT2-
Medium

Perplexity 33.09 53.03 6.72 58.75 1.74 47.52
Predictive Entropy 40.52 62.05 8.90 66.11 2.61 56.43
Semantic Entropy 44.11 67.38 9.26 67.57 2.85 57.36
Self-eval 31.46 51.29 5.88 58.50 1.17 35.24
P(True) 29.24 47.97 7.73 62.30 2.78 58.35

Adapted
GPT2-
Medium
with θp

Perplexity 67.42 66.51 17.06 71.50 77.63 72.22
Predictive Entropy 67.89 68.15 19.06 77.30 77.49 72.55
Semantic Entropy 69.77 71.20 18.94 77.75 78.07 73.77
Self-eval 53.15 50.51 9.67 55.80 58.95 47.61
P(True) 51.95 48.59 13.21 62.06 59.55 48.95
ASPIRE (ours) 72.39 74.96 19.81 79.64 80.68 78.49

Pre-trained
GPT2-
Large

Perplexity 42.74 57.93 12.56 65.85 2.78 46.87
Predictive Entropy 49.68 66.44 14.89 69.76 3.94 54.80
Semantic Entropy 52.90 71.07 14.76 69.63 4.53 59.75
Self-eval 38.08 52.84 8.97 54.45 2.42 45.97
P(True) 31.71 45.48 8.06 49.66 3.84 60.48

Adapted
GPT2-
Large with
θp

Perplexity 72.97 66.96 25.67 76.60 81.77 74.01
Predictive Entropy 73.34 68.78 26.69 79.84 81.80 74.31
Semantic Entropy 75.24 71.99 26.59 79.96 82.29 75.36
Self-eval 60.35 51.58 13.44 53.82 64.89 51.42
P(True) 54.34 45.68 11.65 47.57 64.77 50.75
ASPIRE (ours) 78.08 76.61 27.97 81.99 84.24 79.37

Pre-trained
GPT2-XL

Perplexity 49.71 60.59 20.96 72.31 4.04 46.28
Predictive Entropy 54.74 67.05 23.10 75.93 5.78 55.59
Semantic Entropy 58.07 71.83 22.76 75.33 6.18 59.20
Self-eval 41.19 51.46 8.67 42.97 4.61 53.48
P(True) 40.37 50.77 9.46 43.58 7.30 69.47

Adapted
GPT2-XL
with θp

Perplexity 79.60 71.40 35.11 79.47 84.69 74.62
Predictive Entropy 79.86 72.25 35.93 81.85 84.23 73.81
Semantic Entropy 81.25 74.87 35.39 81.19 84.74 75.38
Self-eval 65.61 52.08 13.87 43.51 68.10 49.56
P(True) 65.90 52.61 12.95 40.31 67.37 48.74
ASPIRE (ours) 82.77 78.11 36.81 83.09 86.57 79.06

Table 13: Results of evaluating different methods to compute the selection score when the model’s predictions are
fixed. We use the GPT2 models and set the Rouge threshold γ = 0.9. All numbers are percentages. Bold numbers
are superior results.
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Model Method
CoQA TriviaQA SQuAD

AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-trained
OPT-350M

Perplexity 35.37 59.39 6.81 67.09 13.07 50.34
Predictive Entropy 36.55 60.31 7.20 65.04 17.86 59.33
Semantic Entropy 38.80 64.38 7.31 65.15 19.08 61.66
Self-eval 30.02 52.69 5.98 61.17 14.00 51.41
P(True) 28.70 50.60 5.29 55.69 17.76 59.55

Adapted
OPT-350M
with θp

Perplexity 74.50 70.21 18.13 75.86 80.64 73.76
Predictive Entropy 74.14 68.88 18.73 76.83 80.79 73.46
Semantic Entropy 74.94 70.14 18.46 76.91 81.10 73.98
Self-eval 60.86 51.67 10.29 57.89 65.48 50.70
P(True) 59.20 50.04 8.71 52.05 64.55 50.29
ASPIRE (ours) 75.55 72.37 19.00 78.54 82.59 77.18

Pre-trained
OPT-1.3B

Perplexity 69.51 69.32 29.78 74.77 32.43 54.65
Predictive Entropy 69.46 68.48 31.01 75.21 41.06 62.96
Semantic Entropy 70.42 70.46 30.63 74.74 43.33 66.30
Self-eval 56.38 52.86 15.06 49.96 30.74 51.50
P(True) 57.21 53.19 16.83 51.19 28.88 46.75

Adapted
OPT-1.3B
with θp

Perplexity 88.50 73.64 42.46 79.96 91.45 74.47
Predictive Entropy 88.24 72.38 43.03 80.46 91.46 74.38
Semantic Entropy 88.91 74.02 42.70 80.02 91.72 75.44
Self-eval 78.52 53.08 20.65 49.24 81.05 51.52
P(True) 79.07 52.76 22.20 50.34 81.58 50.77
ASPIRE (ours) 90.76 79.26 44.03 83.06 93.41 81.17

Pre-trained
OPT-2.7B

Perplexity 75.26 70.16 40.93 78.86 40.82 57.20
Predictive Entropy 75.29 69.16 41.20 78.92 47.18 62.85
Semantic Entropy 76.31 70.96 40.72 78.06 51.53 68.40
Self-eval 62.32 52.26 25.88 59.04 41.78 59.05
P(True) 62.16 51.80 24.88 56.89 34.77 49.42

Adapted
OPT-2.7B
with θp

Perplexity 90.80 74.23 53.56 81.74 92.86 75.72
Predictive Entropy 90.63 72.87 53.91 82.19 92.96 75.58
Semantic Entropy 91.23 74.61 53.58 81.55 93.21 76.53
Self-eval 81.30 50.76 32.98 56.03 86.34 56.99
P(True) 81.14 51.01 33.48 56.27 82.59 49.48
ASPIRE (ours) 92.63 80.25 55.06 84.44 94.73 82.60

Table 14: Results of evaluating different methods to compute the selection score when the model’s predictions are
fixed. We use the OPT models and set the Rouge threshold γ = 0.7. All numbers are percentages. Bold numbers
are superior results.
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Model Method
CoQA TriviaQA SQuAD

AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-trained
OPT-350M

Perplexity 33.50 58.50 6.64 66.73 10.50 49.05
Predictive Entropy 34.88 59.82 7.03 64.84 14.59 58.98
Semantic Entropy 37.51 64.67 7.17 65.20 15.74 61.85
Self-eval 28.73 52.91 5.93 61.83 11.33 50.71
P(True) 27.10 50.36 5.25 56.28 15.38 61.06

Adapted
OPT-350M
with θp

Perplexity 72.04 69.26 17.76 75.70 77.72 72.95
Predictive Entropy 71.77 68.12 18.30 76.51 77.91 72.76
Semantic Entropy 72.80 69.90 18.06 76.67 78.35 73.57
Self-eval 58.65 52.06 10.03 57.87 61.83 50.32
P(True) 56.82 50.17 8.58 52.27 61.13 50.18
ASPIRE (ours) 73.56 72.05 18.63 78.42 80.33 77.29

Pre-trained
OPT-1.3B

Perplexity 66.09 67.76 29.01 74.46 27.67 53.61
Predictive Entropy 66.34 67.36 30.21 74.92 35.65 62.44
Semantic Entropy 67.64 70.02 29.91 74.61 38.00 66.50
Self-eval 53.87 53.23 14.73 50.12 26.42 51.63
P(True) 54.07 52.70 16.44 51.38 23.69 45.44

Adapted
OPT-1.3B
with θp

Perplexity 86.67 72.53 41.59 79.61 89.00 73.48
Predictive Entropy 86.41 71.33 42.18 80.15 89.02 73.35
Semantic Entropy 87.27 73.41 41.89 79.75 89.42 74.81
Self-eval 76.49 53.45 20.23 49.20 77.85 52.25
P(True) 76.79 52.52 21.65 50.25 77.86 50.71
ASPIRE (ours) 89.48 79.05 43.23 82.84 91.86 81.44

Pre-trained
OPT-2.7B

Perplexity 72.00 68.49 39.79 78.43 35.76 56.78
Predictive Entropy 72.23 67.89 40.05 78.49 41.18 61.98
Semantic Entropy 73.64 70.43 39.67 77.81 45.83 68.35
Self-eval 59.51 52.24 25.10 59.02 36.71 59.36
P(True) 58.81 51.26 24.13 56.80 29.13 48.41

Adapted
OPT-2.7B
with θp

Perplexity 89.10 73.16 52.64 81.56 91.04 74.96
Predictive Entropy 88.95 72.00 52.97 82.00 91.16 74.86
Semantic Entropy 89.80 74.53 52.71 81.47 91.46 75.91
Self-eval 79.12 51.00 32.28 56.03 83.28 56.52
P(True) 78.74 50.89 32.95 56.42 79.05 49.26
ASPIRE (ours) 91.49 80.12 54.15 84.28 93.37 82.33

Table 15: Results of evaluating different methods to compute the selection score when the model’s predictions are
fixed. We use the OPT models and set the Rouge threshold γ = 0.8. All numbers are percentages. Bold numbers
are superior results.
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Model Method
CoQA TriviaQA SQuAD

AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Pre-trained
OPT-350M

Perplexity 32.58 57.88 6.50 66.50 8.63 46.42
Predictive Entropy 34.13 59.61 6.91 64.62 12.56 58.33
Semantic Entropy 36.97 64.81 7.06 65.06 13.82 61.99
Self-eval 27.98 52.97 5.90 62.10 10.08 51.66
P(True) 26.41 50.23 5.21 56.37 14.01 62.76

Adapted
OPT-350M
with θp

Perplexity 70.07 68.20 17.67 75.63 76.12 72.40
Predictive Entropy 69.97 67.41 18.22 76.47 76.44 72.48
Semantic Entropy 71.38 69.93 17.98 76.65 77.11 73.81
Self-eval 57.05 52.30 9.96 57.81 59.96 50.56
P(True) 55.10 50.32 8.53 52.22 59.05 50.03
ASPIRE (ours) 71.94 71.41 18.54 78.39 79.12 77.38

Pre-trained
OPT-1.3B

Perplexity 64.03 66.70 28.77 74.31 24.05 51.41
Predictive Entropy 64.59 66.80 29.98 74.81 31.35 60.95
Semantic Entropy 66.29 70.03 29.72 74.56 34.05 66.05
Self-eval 52.35 53.37 14.64 50.14 24.12 52.63
P(True) 52.51 52.64 16.27 51.38 20.92 45.41

Adapted
OPT-1.3B
with θp

Perplexity 85.21 71.30 41.21 79.43 87.71 73.17
Predictive Entropy 85.05 70.44 41.81 80.00 87.81 73.34
Semantic Entropy 86.23 73.38 41.55 79.66 88.24 74.81
Self-eval 75.09 53.72 20.07 49.23 75.80 52.60
P(True) 75.16 52.38 21.44 50.22 75.83 51.10
ASPIRE (ours) 88.49 78.52 42.88 82.70 90.79 81.34

Pre-trained
OPT-2.7B

Perplexity 70.07 67.37 39.42 78.23 31.18 54.43
Predictive Entropy 70.44 67.03 39.69 78.34 36.14 60.36
Semantic Entropy 72.29 70.35 39.34 77.68 40.96 67.71
Self-eval 57.76 52.07 24.85 58.93 32.56 59.52
P(True) 57.06 50.98 23.96 56.74 25.64 48.02

Adapted
OPT-2.7B
with θp

Perplexity 88.06 72.44 52.12 81.33 90.01 74.59
Predictive Entropy 87.95 71.48 52.48 81.81 90.17 74.71
Semantic Entropy 88.96 74.50 52.28 81.35 90.47 75.75
Self-eval 77.71 51.04 31.90 55.89 81.27 56.36
P(True) 77.16 50.54 32.62 56.33 76.89 48.85
ASPIRE (ours) 90.76 79.94 53.68 84.10 92.52 82.04

Table 16: Results of evaluating different methods to compute the selection score when the model’s predictions are
fixed. We use the OPT models and set the Rouge threshold γ = 0.9. All numbers are percentages. Bold numbers
are superior results.
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Model Method
CoQA TriviaQA SQuAD

AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑ AUACC ↑ AUROC ↑

Adapted
GPT2-
Medium
with θp

ASPIRE (α = 0.0) 72.03 67.89 18.02 72.17 81.91 72.38
ASPIRE (α = 0.25) 76.32 75.30 20.65 79.41 84.15 77.59
ASPIRE (α = 0.5) 75.76 75.27 20.24 80.35 83.24 76.50
ASPIRE (α = 0.75) 73.26 71.99 18.01 77.00 81.76 73.98
ASPIRE (α = 1.0) 67.61 66.72 14.52 72.52 79.60 70.52

Adapted
GPT2-
Large with
θp

ASPIRE (α = 0.0) 77.15 68.15 26.83 77.06 86.26 75.34
ASPIRE (α = 0.25) 81.30 76.38 29.13 82.14 87.83 79.22
ASPIRE (α = 0.5) 80.87 76.39 28.49 82.41 86.97 77.66
ASPIRE (α = 0.75) 78.91 73.38 25.32 78.74 85.66 74.95
ASPIRE (α = 1.0) 74.22 68.01 19.77 72.75 83.99 71.74

Adapted
GPT2-XL
with θp

ASPIRE (α = 0.0) 83.27 72.79 36.49 79.92 88.73 75.08
ASPIRE (α = 0.25) 85.65 78.32 38.06 83.23 89.86 78.35
ASPIRE (α = 0.5) 85.15 78.02 37.22 82.80 88.82 76.12
ASPIRE (α = 0.75) 83.03 74.22 33.37 78.17 87.47 73.13
ASPIRE (α = 1.0) 77.66 66.38 25.49 70.09 85.88 69.89

Adapted
OPT-350M
with θp

ASPIRE (α = 0.0) 74.50 70.21 18.13 75.86 80.64 73.76
ASPIRE (α = 0.25) 75.55 72.37 19.00 78.54 82.59 77.18
ASPIRE (α = 0.5) 74.95 72.07 18.81 80.48 81.69 75.90
ASPIRE (α = 0.75) 72.55 68.45 16.21 78.76 80.16 73.27
ASPIRE (α = 1.0) 68.02 62.53 12.08 70.31 78.00 70.25

Adapted
OPT-1.3B
with θp

ASPIRE (α = 0.0) 88.50 73.64 42.46 79.96 91.45 74.47
ASPIRE (α = 0.25) 90.76 79.26 44.03 83.06 93.41 81.17
ASPIRE (α = 0.5) 90.64 79.04 43.70 83.40 93.27 80.91
ASPIRE (α = 0.75) 89.84 76.58 42.05 80.97 92.96 79.90
ASPIRE (α = 1.0) 88.66 73.53 38.65 76.34 92.48 78.57

Adapted
OPT-2.7B
with θp

ASPIRE (α = 0.0) 90.80 74.23 53.56 81.74 92.86 75.72
ASPIRE (α = 0.25) 92.63 80.25 55.06 84.44 94.73 82.60
ASPIRE (α = 0.5) 92.56 80.18 54.61 84.33 94.59 82.16
ASPIRE (α = 0.75) 92.05 78.37 52.71 81.52 94.28 80.98
ASPIRE (α = 1.0) 91.33 76.08 48.84 76.39 93.77 79.48

Table 17: Results of studying the effect of α. All numbers are percentages. Bold numbers are superior results.

Model Method
CoQA TriviaQA SQuAD

Acc ↑ AUACC ↑ Acc ↑ AUACC ↑ Acc ↑ AUACC ↑
Pre-trained OPT-350M Self-Consistency 24.54 37.83 3.41 7.93 5.75 15.59

Adapted OPT-350M with θp
Self-Consistency 59.03 74.09 7.41 18.40 63.87 79.99
ASPIRE (ours) 59.46 75.55 8.25 19.00 64.74 82.59

Pre-trained OPT-1.3B Self-Consistency 50.90 69.14 13.74 30.10 19.89 41.45

Adapted OPT-1.3B with θp
Self-Consistency 76.73 88.29 20.34 42.12 80.84 90.68
ASPIRE (ours) 76.85 90.76 21.73 44.03 80.94 93.41

Pre-trained OPT-2.7B Self-Consistency 57.60 75.27 19.57 39.88 23.73 47.78

Adapted OPT-2.7B with θp
Self-Consistency 80.41 90.61 27.59 52.20 83.11 92.34
ASPIRE (ours) 80.45 92.63 29.21 55.06 83.27 94.73

Table 18: Comparing with self-consistency. All numbers are percentages. Bold numbers are superior results.
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