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Abstract

The use of visually-rich documents (VRDs) in
various fields has created a demand for Doc-
ument AI models that can read and compre-
hend documents like humans, which requires
the overcoming of technical, linguistic, and
cognitive barriers. Unfortunately, the lack of
appropriate datasets has significantly hindered
advancements in the field. To address this is-
sue, we introduce DOCTRACK, a VRD dataset
really aligned with human eye-movement in-
formation using eye-tracking technology. This
dataset can be used to investigate the chal-
lenges mentioned above. Additionally, we
explore the impact of human reading order
on document understanding tasks and exam-
ine what would happen if a machine reads in
the same order as a human. Our results sug-
gest that although Document AI models have
made significant progress, they still have a
long way to go before they can read VRDs
as accurately, continuously, and flexibly as hu-
mans do. These findings have potential impli-
cations for future research and development of
Document AI models. The data is available at
https://github.com/hint-lab/doctrack.

1 Introduction

With the continuous development of information
technology, our access to information is becoming
increasingly diverse. Among the various formats,
the proportion of visual information in daily doc-
uments such as tables, graphs, diagrams, etc., is
on the rise (Ceci et al., 2007; Jaume et al., 2019).
Therefore, effectively utilizing such visual infor-
mation has become a hot research topic in the NLP
research community and introduces a new chal-
lenge of understanding Visually-Rich Documents
(VRDs) (Liu et al., 2019; Yu et al., 2021), which
are documents that contain substantial visual com-
ponents.
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OCR Output Order

Human Reading Order

Figure 1: Case comparison of the default serialized in-
put order output by the OCR engine with the real hu-
man reading order. It clearly reveals the significant dif-
ferences in processing behavior between machines and
humans. The red numbers indicate the ordinal numbers
in the reading sequence. For best visibility, it is recom-
mended to zoom in on the results.

Identifying and understanding VRDs is a time-
consuming and laborious task due to their diver-
sity and complexity (Wang et al., 2021a). Tex-
tual information alone is insufficient for extracting
key information from diverse document types, ne-
cessitating a multimodal approach that considers
the consistency and correlation of multiple modal-
ities, including text, visual, and layout, through
joint modeling. Examples of modern document
AI models for VRD understanding include the
LayoutLM series models (Xu et al., 2020, 2021;
Huang et al., 2022) and StructText series models
(Li et al., 2021; Yu et al., 2023a).

While these models can obtain fine-grained
multimodal document representations and achieve
promising results in downstream VRD (VRD) un-
derstanding tasks, they lack the ability to gener-
ate a serialized input order from a given document
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that fits into the Transformer architecture. As a re-
sult, they typically utilize simple rules, such as left-
to-right or top-to-bottom, or directly use the input
order generated by the OCR tool in the previous
step (Lee et al., 2021) to serialize inputs. However,
these input orders are quite different from the read-
ing order that humans are used to (See Figure 1 for
an example). The different input orders can sig-
nificantly affect the performance of document AI
models on the downstream document understand-
ing tasks, which is often overlooked.

To address this issue, Wang et al. (2021b) con-
struct the ReadingBank dataset containing the lo-
cal priority order using the order of the XML
source code of Word documents. However, it re-
mains questionable whether this reading order is
consistent with the actual human reading order and
whether it is actually beneficial for machine com-
prehension tasks. Therefore, state-of-the-art Docu-
ment AI models lack a deep understanding of spa-
tial relationships and document structure, resulting
in limited performance when dealing with VRDs,
e.g., forms and infographics.

To this end, we propose DOCTRACK, a
benchmark dataset containing various types of
real-world documents aligned with human eye-
movement information. Specifically, we propose
a preordering pipeline to integrate human reading
order within modern document AI models. The
integration process occurs during inputting docu-
ment contents after OCR parsing but before feed-
ing them into the downstream task. We also ex-
plore different approaches to generate human-like
reading orders, including default OCR tools, Z-
pattern, simple rules, and AI models that utilize
multimodal information. Our objective is to evalu-
ate the impact of different reading orders on down-
stream document comprehension tasks and iden-
tify the most effective reading order for existing
multimodal document AI models. This provides
insight into the similarities and differences be-
tween human and machine reading patterns.

In summary, this paper makes three contribu-
tions:

1. We construct a benchmark dataset, namely
DOCTRACK, aligned with human eye move-
ment information. To our knowledge, DOC-
TRACK is the first human-annotated bench-
mark dataset for the purpose of research on
VRD reading order generation.

2. We investigate different human-like reading

order generation methods, which refer to
techniques for generating machine reading or-
ders that mimic human reading patterns in
VRDs. We explore various techniques for
generating these reading orders and propose
a practical preordering pipeline that leverages
these generated reading orders to improve
document understanding tasks.

3. We conduct both intrinsic and extrinsic eval-
uations to analyze the performance of the
human-like reading order generation model
and measure its impact on downstream tasks.
The observations suggest that human reading
order may not be suitable for reading VRDs.

2 Human Reading Order

The human reading order plays a significant role
in the comprehension of VRDs. Human reading
order refers to the direction and sequential order
in which people scan documents as they read the
texts. Generally, people read left-to-right or top-to-
bottom to comprehend the text and obtain informa-
tion. This order is also related to the way the text
is written in most languages and scripts, includ-
ing English and Modern Chinese. However, other
reading order patterns exist. For example, tradi-
tional Chinese and Japanese are usually written
vertically from right to left, while Arabic is written
horizontally from right to left (Rayner, 1998). As
a result, people naturally scan their eyes in this or-
der while reading (Henderson and Ferreira, 1993).

Although the reading order of text generally
follows a relatively fixed pattern, VRDs usually
present information in a mixture of modalities
(e.g., text, images, graphics, etc.) with a com-
plex two-dimensional layout and semantic struc-
ture. Readers typically choose the appropriate
reading order by considering the spatial structure
of text content, image information, and the typo-
graphic position of the document in combination.
This natural temporal processing can help readers
better understand the content and intent of the doc-
ument and establish connections between different
modalities. For example, when presented with a
diagram, readers typically first visually analyze it
as a whole to get a general idea of what it describes.
From there, they usually focus on the most obvi-
ous data or labels first, and then gradually scan the
rest of the data and labels to gain a more complete
understanding of the information presented.
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3 Eye Tracking in NLP

3.1 Basic Notions

Eye tracking is an important technique for study-
ing eye movements during human reading. Hu-
man reading is a complex cognitive activity, and
eye movement trajectories can visualize the read-
ing process and are important for understanding
how humans acquire and comprehend knowledge.
Intuitively, different visual tasks result in varying
scan (i.e., eye movement) patterns. Studying these
patterns can help us understand the mechanisms of
human cognitive processing. Numerous research
in neuroscience has established a strong associa-
tion between eye-tracking data and language com-
prehension activity in human brains (Henderson
and Ferreira, 1993). The eye movement trajectory
is typically described as an irregular curve, mainly
composed of two alternating eye movement ac-
tions: saccade and fixation. A saccade is when
our eyes rapidly jump from one word to the next
in the text, representing the shift of attention. Fixa-
tion refers to the situation we sometimes focus on
a word and remains stationary during the visual
task for a period of time. In addition, the scan pat-
tern and speed of the eye movement trajectory can
be affected by various factors, such as font size,
line spacing, contrast, etc. of the text.

3.2 Applications

In cognitive-motivated natural language process-
ing (NLP), several studies have investigated the
impact of eye-tracking data on NLP tasks, for
example, designing machine learning models for
NLP tasks such as part-of-speech tagging (Bar-
rett et al., 2016), term extraction (Yaneva et al.,
2017), and syntactic parsing (Kim, 2009). Later,
researchers combine eye-tracking data with word
embeddings in neural models to improve NLP
tasks, including sentiment analysis (Mishra et al.,
2017) and named entity recognition (NER) (Hol-
lenstein and Zhang, 2019) or revising neural atten-
tion (Barrett et al., 2018; Sood et al., 2020; Tak-
maz et al., 2020). Recent studies (Bhattacharya
et al., 2020; Ren and Xiong, 2021; Ding et al.,
2022; Khurana et al., 2023) attempt to align text
features and cognitive signals to identify their dif-
ferences and commonalities.

4 Dataset

4.1 Data Collection

Our work aims to evaluate how reading order im-
pacts the comprehension of VRDs. To achieve
this, we randomly select documents mainly from
three available datasets: FUNSD (Jaume et al.,
2019), SeaBill (Zhang et al., 2022), and Info-
graphic (Mathew et al., 2022). These datasets
are widely used and provide diverse examples
of complex structured and graphic documents for
our analysis. We reuse all document images in

# WEAK STRUCTURED INFOGRAPH TOTAL

Pattern norm-z local priori cross&visual -

Tr
ai

n doc 149 160 100 409
ent 7,441 10,024 12,650 30,115
tok 22,512 16,055 24,364 62,931

Te
st

doc 50 50 30 130
ent 2,332 3,430 3,794 9,556
tok 8,973 7,022 7,308 23,123

Table 1: Data statistics in the DOCTRACK dataset cate-
gorized by the type of VRDs. We also give the primary
scan patterns in each subset.

the FUNSD dataset (Jaume et al., 2019). Given
that these documents are less structured than the
other datasets and the eye movement tracks pri-
marily to conform to the normal-Z reading order
pattern, we rename this sub-dataset as “WEAK.”
We have selected a number of structured tabu-
lar documents from the SEABILL dataset that
contains detailed information related to the ship-
ment of goods. This information includes the
name of the consignor and consignee, the type and
quantity of the shipment, etc. The subset com-
prises 160 training samples and 50 testing sam-
ples, totaling 13,454 semantic entities, denoted
as “STRUCTURED.” We also select 100 training
samples and 30 test samples from the Infographic
dataset (Mathew et al., 2022). This subset contains
a large number of graphic components, it is more
diverse and complicated than the other two sub-
sets, called “INFOGRAPH.” Table 1 shows details
of the dataset and statistics.

4.2 Analysis of Eye Movement Patterns

We observe mainly four types of reading patterns
among these documents. Figure 2 illustrates hu-
man reading behaviors when reading the docu-
ments from the DOCTRACK dataset.
Normal-Z. The normal-Z order, also called
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(a) (b) (c) (d)

(e) (f)

Figure 2: Scatterplots showing eye movement patterns while humans are reading can be organized in various ways:
(a) normal-Z order; (b) local priority order; (c, d, e) cross-modal interaction order; (f) visual instruction order. Note
that these eye movement data have not yet been aligned with the OCR output. The full version of the images can
be found in Appendix A.2.

“zigzag pattern,” refers to the typical eye move-
ment pattern that occurs when people read pure
text or weakly structured documents. This zigzag
pattern is an efficient way for the human visual sys-
tem to process and understand text. Specifically,
our eyes move from left to right along a line of
text and then jump back to the beginning of the
next line during reading, creating a zigzag scan
trajectory of eye movements. Figure 2(a) shows
the diagram of eye movement sequences during
human reading, which often resembles the shape
of the letter “Z”.
Local priority. Local-priority eye-movement pat-
terns are a common cognitive strategy that humans
use when dealing with the hierarchical layout
structure of forms or tables. Usually, as shown in
Figure 2(b), by prioritizing local information, we
focus on the content inside a tabular cell first and
then shift our attention to other elements around
the cell while looking up in the tabular or a form
document. This facilitates quick reading and re-
trieval of informative text to obtain the needed in-
formation.
Cross-modal interaction. When people read in-
fographics that contain pies, charts, or other types

of data graphs, they typically show interactive ra-
dial eye movements. During reading, the eyes fol-
low a radial path between the graph and the asso-
ciated text. For example, when people read a pie
chart, they usually focus first on the pie portion
of the chart and then scan along its perimeter to
find the corresponding text. This back-and-forth
movement results in a cross-modal interaction pat-
tern. The unique shape and layout structure of pie
charts contributes to this pattern because the graph-
ical portion often contains the most important in-
formation that people attend to first. In contrast,
the text label section provides detailed information
that people need to scan step by step in order to un-
derstand. Therefore, eye tracking presents a radial
pattern in these types of infographics.
Visual instruction. When reading flowcharts, an
eye movement pattern characterized by backtrack-
ing often develops, as readers must understand and
compare different texts in the boxes. Flowcharts
commonly contain a great deal of information and
detail presented in a hierarchical, logical manner.
Readers typically focus first on the chart’s over-
all structure and theme, then progress gradually to
each detail. When encountering text that requires
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Figure 3: The statistics of four types of reading pat-
terns.

contextual referencing, readers may re-read earlier
sections to aid in better understanding the informa-
tion’s meaning. This self-correcting, backtracking
eye movement pattern reflects the information pro-
cessing of the reader and can help with better com-
prehension and memory retention of the informa-
tion. Figure 3 shows the statistics of the four types
of reading patterns found in DOCTRACK.

4.3 Eye-tracking Experiments

To conduct eye-tracking experiments, we ran-
domly divide the dataset into five parts and recruit
five participants.1 All participants are instructed
to read the data on an HP 24-inch 1080P display.
We record the participants’ eye trajectories while
they are reading using Tobii TX300 and Tobii Stu-
dio. These devices can record the visual move-
ment trajectory of each subject and convert it into
digital data. Data extracted from the eye tracker
includes fixation points, fixation time, frequency,
eye saccade distance, and pupil size. These mea-
surements can help researchers gain insights into
participants’ internal cognitive processes.

The high sampling frequency of an eye tracker
may result in an unsmooth trajectory with
recorded gaze points. In addition, gaze points dur-
ing eye movements may deviate or miss due to pe-
ripheral vision (see Appendix A.1). To improve
the accuracy of the eye tracker when recording the
reading trajectory, we do as follows:

1. In the case of missing gaze points (case 1),
if the gaze point hits the periphery of the
known OCR bounding box within a certain
Euclidean distance, we use the ordinal num-
ber of the peripheral gaze point as the reading
sequence index of the current bounding box.

2. In the case of missing gaze points (case 2),
we use the ordinal number from the surround-

1All participants are graduate or undergraduate students.

ing adjacent reading sequence or the ordinal
number between two gaze points.

3. We delete gaze points that are repeatedly re-
turned to the eye multiple times and keep
only the ordinal numbers of the first eye mo-
ment.

By adopting the above corrections, we ensure the
accuracy of the recorded reading trajectory.

4.4 Annotation Agreement
In our final experimental setup, we assign two out
of the five participants to label the same subset of
data. Subsequently, for each document file, we
compare the labeling results from these two partic-
ipants. We then conduct a voting process among
the five participants to select the most appropriate
labelingdocument-levelthat aligns with everyone’s
expectations. This chosen labeling is ultimately
considered as the final data.

5 Reading Order Integration

5.1 Rule-based Heuristic Methods
Multi-modal information extraction methods rely
on accurate sequence detection of documents.
However, inconsistencies in OCR engines can lead
to variances in reading order. To address this issue,
Li et al. (2022) introduce position offset threshold
to standardize reading order and deal with OCR’s
instabilities. The text boxes are sorted from top
to bottom, and if the distance between two boxes
in the Y direction is smaller than the threshold,
then their order is determined based on their X
direction order. Besides, Gu et al. (2022) sort
the bounding box according to the two coordi-
nates of the Y -axis, and then performs the X-axis
search and the right-down search with Y +X com-
bined consideration. By changing the order of to-
ken input into the model, both approaches achieve
good results. The proposed rule-based sorting ap-
proaches conform to the basic cognition of hu-
mans when reading, resulting in accurate informa-
tion extraction. Therefore, leveraging the reading
order generated by rule-based sorting approaches
can significantly improve the accuracy of multi-
modal information extraction.

5.2 Modal-based Preordering Methods
5.2.1 Proposed Pipeline
To follow human reading behaviors, we use
a process called “preordering” (reordering-as-
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Figure 4: The proposed preordering pipeline for utiliz-
ing human-like reading orders in VRD understanding
tasks.

preprocessing), a term borrowed from the domain
of statistical machine translation (Xia and Mc-
Cord, 2004; Collins et al., 2005; Neubig et al.,
2012; Nakagawa, 2015). This process involved
reorganizing the inputs in the order they would
be read by a human. By this, we make it easier
for the reader to understand the procedure of
aligning the multimodal sequential input features
with human reading order and thus enabling us to
evaluate the impact of reading order on the VRD
understanding tasks.

5.2.2 Atomic Comparison Models
We obtain the basic features of different modali-
ties of documents through different encoders and
imitate human reading order according to these
features. Therefore, we propose four different
models for reading order generation. Each model
uses information from single or multiple modal-
ities simultaneously: Box, Text, Text+Box, and
Text+Box+Image.

Each model takes into account different factors
that influence how humans prioritize and read el-
ements in VRDs, including the position of the el-
ement, the text within the element, and the visual
region associated with it. By utilizing these mod-
els, we can more accurately evaluate the impact
of reading order on human comprehension of such
documents.

p = f(bi : bj) =

{
0, if r[bi] < r[bj ]

1, if r[bi] > r[bj ]
(1)

where bi and bj denote the i-th and j-th bounding
boxes, respectively, r[bi] refers to the index ID of
the bounding box bi in the predicted reading se-
quence, and r[bi] < r[bj ] indicates that bi appears
before bj in the reading order sequence.
Box. In this model, we use only two-dimensional

Transformer/BERT/
LayoutLM…

…

text

position

image

𝑏!"# 𝑏! 𝑏!$#

Classifier

…
𝑏!"# 𝑏! 𝑏!"#𝑏!$# 𝑏! 𝑏!$#

…

co
nc
at

[ 1 , 0, 0] …

𝑟[𝑏!"#] > 	𝑟[𝑏!]

Figure 5: Atomic reading order comparison model for
neighboring bounding boxes. The symbol “>” indi-
cates that the former bounding box might be read by
humans after the latter.

positions to learn the order of each bounding box.
Specifically, at first, the given bounding box coor-
dinates (xup, yup, xdown, ydown) (representing the
top-left and bottom-right coordinates) generated
by the OCR tool are used to compute the cen-
troid coordinates (xi, yi) of each bounding box.
We combine all the bounding box centroid coor-
dinates in pairs, then feed the centroid coordinates
of the two combined bounding boxes directly into
a multi-layer Transformer network. This enables
us to predict the spatial relationship between the
two bounding boxes, i.e., which one should come
before or after in the human reading order.

bi : bj = Transformer(xi, yi, xj , yj) (2)

Text. We use BERT to encode the texts, and since
each bounding box contains one or more tokens,
we take the latent representation at the first token
position as the embedding for a bounding box.

bi : bj = BERT(ti, tj) (3)

Text+Box. To jointly encode the text and 2D-
positions inputs, we use LayoutLM. Similar to the
operation in the Text section, we take the first
latent representation as the input to the classifier.
The final model can be formulated as follows:

bi : bj = LayoutLM(ti, tj ;xi, yi, xj , yj) (4)

Text+Box+Image. We use LayoutLMv2 to joint
encode the text, image and 2D-position within the
bounding boxes as follows:

bi : bj = LayoutLMv2(ti, tj ;xi, yi, xj , yj ; Ii, Ij)
(5)

where we consider the ROIs of document images,
denoted as Ii and Ij . We take the first latent en-
coding to represent each bounding box.
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Modality WEAK STRUCTURED INFOGRAPH OVERALL

τ ↑ ρ ↑ τ ↑ ρ ↑ τ ↑ ρ ↑ τ ↑ ρ ↑
BOX 0.4521 0.4731 0.7017 0.7411 0.6761 0.7413 0.5992 0.6366
TEXT 0.5369 0.5740 0.8965 0.9717 0.9046 0.9171 0.7589 0.8052
TEXT+BOX 0.5316 0.5749 0.9269 0.9766 0.9717 0.9977 0.7837 0.8256
TEXT+BOX+IMAGE 0.6293 0.6893 0.8930 0.9690 0.9575 0.9954 0.8052 0.8665

MISSING RATE 38.16% 12.98% 9.55% -

Table 2: Correlation coefficient scores of Kendall’s tau τ and Spearman’s rank ρ between resorted input sequences
generated by using different preordering methods and golden human eye movement orders. Bold indicates the best
and underline indicates the second best.

Algorithm 1 Model-based Sequenece Preordering
Input: the serialized input sequence [b1, . . . , bl]

that contains multimodal features ;
Output: the sorted input sequence r;

r← [b1, . . . , bl];
for i← 0 to l − 2 do

for j ← 0 to l − i− 2 do
p ← f(rj : rj+1); ▷ Calling
the atomic comparison model to
determine the precedence order.

if p < 0.5 then
swap rj with rj+1; ▷ Consistent
with Bubble sort.

return r; ▷ New sorted sequence.

5.2.3 Sequence Preordering Algorithm
We test four atomic comparison models within the
model-based sequence preordering algorithm as a
before-and-after judgment. The preordering algo-
rithm takes as input the atomic comparison models
outputs (0/1 sequence) to construct an adjacent ma-
trix. Thus, the preordering algorithm is a variant of
the commonly used Bubble Sort algorithm, which
outputs the sorted input sequence by rearranging
the bounding box positions in the sequence. Refer
to Algorithm 1 for more details.

6 Experiments and Analysis

To gain a deeper understanding of the differences
between human reading order and machine pro-
cessing order, we conduct both intrinsic and ex-
trinsic evaluations using the DOCTRACK dataset.
By comparing different modal fusions, the intrin-
sic evaluation allows us to assess the quality of
the reading order generation model, which in turn
helps us to understand the extent to which infor-
mation from each modality influences the reading
order built by humans. In order to determine ex-

actly what reading order is needed for a machine
document intelligence model, i.e., what input or-
der enhances machine document comprehension,
we make use of extrinsic evaluation to assess the
quality of temporal order on human-like reading
order generation.

6.1 Intrinsic Evaluation

Specifically, we compare machine-generated in-
put orders with ground truths, i.e., human read-
ing orders, to evaluate the model’s performance
in the intermediate task of reading order gener-
ation. We measure the correlation between the
machine-generated input order and the reading or-
der of human experts by calculating Spearman’s
rank and Kendall’s tau scores to assess the accu-
racy of the machine-generated reading order and
the interaction between different modalities and
different types of documents.

Table 2 shows the sequence correlation eval-
uation results of four different models on three
datasets. Among them, the average result of the
model based on Text+Box+Image is the best, and
the result based on the bounding box is the worst,
which also verifies multimodal features have an
important impact on document ranking. The re-
sults in the above table show that humans read
VRDs with weak table structure, and humans still
use visual features such as font background to help
model the temporal sequence, and visual features
are less important in the case of table structure,
and basic text and position are enough. However,
infographics with more images and visual features
require more powerful models that can capture
text, location, and visual features. For more de-
tails see Appendix A.3.

5182



PREORDER
MODALITY TYPE WEAK STRUCTURED INFOGRAPH

Text
Pos Img R/H/M P (%)↑ R (%)↑ F1 (%)↑ P (%)↑ R (%)↑ F1 (%)↑ ANLS (%)↑

B
E

R
T

EYE ! H 57.75 60.23 58.70 57.63 59.13 58.37 4.01
EYE++ ! ! H 60.52 60.77 60.47 60.75 60.83 60.79 4.65

DEFAULT-OCR ! R 56.69 62.11 60.33 58.99 60.01 59.51 3.82
Z-ORDER ! ! R 64.09 65.28 64.66 63.44 62.78 63.11 5.88
XYLAYOUT ! ! R 60.16 60.84 60.19 59.24 60.08 59.65 3.71

MODEL-B ! ! M 60.19 61.98 60.92 59.01 60.98 59.98 2.94
MODEL-T ! M 62.80 63.16 62.87 61.04 60.22 60.62 2.99
MODEL-T+B ! ! M 61.30 62.43 61.80 60.52 60.77 60.47 3.14
MODEL-T+B+I ! ! ! M 62.74 64.51 63.45 62.43 62.17 62.80 3.21

L
A

Y
O

U
T

L
M

V
2

EYE ! H 82.13 85.11 83.58 77.84 74.14 75.94 14.43
EYE++ ! ! H 87.38 83.82 85.41 77.44 74.39 75.88 15.69

DEFAULT-OCR ! R 86.94 80.95 83.44 78.56 73.02 75.69 12.50
Z-ORDER ! ! R 88.00 84.46 86.06 78.05 74.77 76.37 18.09
XYLAYOUT ! ! R 84.01 83.12 83.55 75.01 78.41 76.61 12.38

MODEL-B ! ! M 87.23 85.16 86.13 78.45 73.01 75.63 12.98
MODEL-T ! M 85.35 82.40 83.77 77.64 77.14 77.39 12.67
MODEL-T+B ! ! M 86.76 86.61 86.57 80.24 74.84 77.45 14.70
MODEL-T+B+I ! ! ! M 87.00 87.01 86.98 79.74 75.58 77.60 14.70

L
A

Y
O

U
T

L
M

V
3

EYE ! H 91.46 90.49 90.97 68.29 63.82 65.98 17.91
EYE++ ! ! H 91.47 91.19 91.33 69.22 65.57 67.35 18.64

DEFAULT-OCR ! R 90.96 92.00 91.48 72.96 66.71 69.70 18.22
Z-ORDER ! ! R 94.63 92.85 93.73 77.27 68.24 72.47 20.58
XYLAYOUT ! ! R 90.10 89.69 89.90 71.05 66.73 68.82 17.63

MODEL-B ! ! M 92.37 91.95 92.16 75.81 70.00 72.79 17.76
MODEL-T ! M 91.86 93.09 92.47 74.01 67.56 70.64 17.52
MODEL-T+B ! ! M 92.39 92.85 92.62 77.17 70.98 73.94 18.01
MODEL-T+B+I ! ! ! M 93.98 93.14 93.56 74.17 68.97 71.47 18.24

Table 3: Extrinsic evaluation on the DOCTRACK dataset. DEFAULT-OCR represents the original order, EYE and
EYE++ represent the original eye movement order and the smoothed eye movement order, Z-ORDER (Yu et al.,
2023b) and XYLAYOUT (Gu et al., 2022) are two orders generated by expert experience, MODEL-B, MODEL-
T, MODEL-T+B and MODEL-T+B+I represent atomic comparison models such as Box, Text, Text+Box, and
Text+Box+Image, respectively. R/H/M refers to the order generated by rules, humans, and models.

6.2 Extrinsic Evaluation

Semantic entity recognition. The purpose of
this study is to analyze the impact of reading or-
der on the VRD understanding using the Seman-
tic Entity Recognition (SER) task for the WEAK

and STRUCTURED subset of documents. Table 3
shows the results. We find that the impact of read-
ing order on the SER task varies depending on the
document AI model used. When using BERT, the
simple Z-order works best, and the effect of each
order is better than the effect of the original order.
In the multimodal LayoutLMv2 and LayoutLMv3
models, multimodal ordering works best, slightly
better than Z-order. These results suggest that
human reading order and machine ordering order
have a strong influence on the SER task, and dif-
ferent models have different degrees of sensitivity
to these orders.

DQA. Document Question Answering (DQA) is
a challenging task in VRD understanding that re-
quires machines to understand both the visual and
textual content of a document image and to an-
swer questions about it. Table 3 lists the Aver-
age Normalized Levenshtein Similarity (ANLS)
scores on the INFORGRAPH subset of text-only
baseline BERT, layout-aware multimodal base-
lines LayoutLMv2 and LayoutLMv3. We observe
that LayoutLMv2 and LayoutLMv3 models out-
perform text-only baselines (BERT) by a large
margin. While integrating human reading order
enhances the state-of-the-art document AI model
in downstream tasks, it does not always outper-
form the human-like reading order generated us-
ing a rule-based approach. This suggests that
true human reading order may not be necessary
to enhance existing machine document AI models.
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There are several possible reasons for this. First,
most of the datasets used by existing document AI
models are sorted by simple rules and therefore
are better suited for the orders generated by using
simple rules such as Z-pattern. Additionally, in-
dividual human reading orders may be very noisy
unless a large human eye-movement dataset is con-
structed by collecting a significant amount of hu-
man eye-movement data.

7 Conclusion

We investigate the impact of human reading order
on Document AI models for VRD understanding
tasks. We propose different methods to generate
human-like reading orders, along with a practical
preordering pipeline that can leverage the gener-
ated reading orders. Our observations suggest that
true human reading order may not always be suit-
able for reading VRDs. The dataset we construct
can help in designing better document AI models
and human reading robots in the future.

Limitations

In this work, we focus on the impact of human eye-
tracking order and machine reading ordering for
VRD understanding. Due to the complexity of eye
movement characteristics, when the participants
were doing eye movement experiments, they were
required to ignore the eye movements information,
such as the fixation time of each fixation point,
back gaze, and the number of fixations. There-
fore, our next step will be to explore the impact of
more eye movement gaze information on the inde-
pendent understanding of VRDs. In addition, due
to the high annotation cost, the annotation has not
been done by multiple annotators. Therefore, the
inner-agreement rate is not available for the cur-
rent dataset.
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A Appendix

A.1 Visualization of Human Reading Order
Figure 6 shows the missing gaze points during hu-
man reading and after smoothing.

A.2 Human Reading Patterns
Figure 7 shows four patterns of human reading or-
ders.

A.3 Missing Gaze Points Visualization
Figure 8 shows the sequence of model generation
and the sequence of human eye gaze.
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(a) missing gaze points

(b) fixed data visualization

Figure 6: Example of a document image with missing gaze points (-1) and fixed data in the WEAK subset.
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(a) normal-Z order (b) local priority order.

(c) cross-modal interaction (pie chart). (d) cross-modal interaction (bar chart).

(e) cross-modal interaction in (line chart). (f) visual instruction order.

Figure 7: A scatterplot showing four patterns of human eye movement while reading.
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(a) Sequence diagram of human eye movements
while reading

(b) Scatterplot of human eye movement when reading.

(c) Sequence diagram of reading order generated by
MODEL-B+T+I.

(d) Scatterplot of reading order generated by MODEL-
B+T+I.

Figure 8: Case comparison of human reading order and the reading order generated by MODEL-B+T+I.
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