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Abstract

Large-scale pre-training is widely used in re-
cent document understanding tasks. During de-
ployment, one may expect that models should
trigger a conservative fallback policy when en-
countering out-of-distribution (OOD) samples,
which highlights the importance of OOD detec-
tion. However, most existing OOD detection
methods focus on single-modal inputs such as
images or texts. While documents are multi-
modal in nature, it is underexplored if and how
multi-modal information in documents can be
exploited for OOD detection. In this work, we
first provide a systematic and in-depth analysis
on OOD detection for document understanding
models. We study the effects of model modal-
ity, pre-training, and fine-tuning across various
types of OOD inputs. In particular, we find
that spatial information is critical for document
OOD detection. To better exploit spatial in-
formation, we propose a spatial-aware adapter,
which serves as a parameter-efficient add-on
module to adapt transformer-based language
models to the document domain. Extensive ex-
periments show that adding the spatial-aware
adapter significantly improves the OOD detec-
tion performance compared to directly using
the language model and achieves superior per-
formance compared to competitive baselines.

1 Introduction

The recent success of large-scale pre-training has
propelled the widespread deployment of deep learn-
ing models in the document domain, where model
predictions are used to help humans make decisions
in various applications such as tax form processing
and medical reports analysis. However, models
are typically pre-trained on data collected from
the web but deployed in an environment with dis-
tributional shifts (Cui et al., 2021). For instance,
the outbreak of COVID-19 has led to continually
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Figure 1: Illustration of OOD detection for document
classification. The pre-training and fine-tuning pipelines
are shown on the top left and bottom left, respectively.
Right: During inference time, an OOD score can be
derived based on logits g(x) or feature embeddings z :=
h(x). A document input x is identified as OOD if its
OOD score is below some threshold γ.

changing data distributions in machine-assisted
medical document analysis systems (Velavan and
Meyer, 2020). This motivates the need for reli-
able document understanding models against out-
of-distribution (OOD) inputs.

The goal of OOD detection is to categorize in-
distribution (ID) samples into one of the known
categories and detect inputs that do not belong to
any known classes at test time (Bendale and Boult,
2016). A plethora of OOD detection methods has
been proposed for single-modal (image or text) in-
puts (Ge et al., 2017; Nalisnick et al., 2019; Oza
and Patel, 2019; Tack et al., 2020; Hsu et al., 2020;
Arora et al., 2021; Zhou et al., 2021; Xiao et al.,
2020; Xu et al., 2021a; Li et al., 2021b; Shen et al.,
2021; Jin et al., 2022; Zhou et al., 2022; Ming et al.,
2022b,c; Podolskiy et al., 2021; Ren et al., 2023).
Recent works (Fort et al., 2021; Esmaeilpour et al.,
2022; Ming et al., 2022a; Ming and Li, 2023; Bitter-
wolf et al., 2023) also demonstrate promising OOD
detection performance based on large-scale mod-
els pre-trained on text-image pairs, as pre-training
enables models to learn powerful and transferable
feature representations (Radford et al., 2021). How-
ever, it remains largely unexplored if existing find-
ings in the OOD detection literature for images or
texts can be naturally extended to the document
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domain.
Multiple unique challenges exist for document

OOD detection. Unlike natural images, texts, or
image-text pairs, no captions can describe a docu-
ment and images in documents rarely contain nat-
ural objects. Moreover, the spatial relationship of
text blocks further differentiates multimodal learn-
ing in documents from multimodal learning in the
vision-language domain (Lu et al., 2019; Li et al.,
2020). In addition, while recent pre-training meth-
ods have demonstrated remarkable performance
in downstream document understanding tasks (Xu
et al., 2020, 2021b; Li et al., 2021a; Gu et al., 2022;
Hong et al., 2022; Huang et al., 2022; Li et al.,
2022; Wang et al., 2022a), existing pre-training
datasets for documents are limited and lack di-
versity. This is in sharp contrast to common pre-
training datasets for natural images. It remains un-
derexplored whether existing OOD detection meth-
ods are reliable in the document domain and how
pre-training impacts OOD reliability.

In this work, we first present a comprehensive
study to better understand OOD detection in the
document domain through the following questions:
(1) What is the role of document pre-training? How
do pre-training datasets and tasks affect OOD detec-
tion performance? (2) Are existing OOD detection
methods developed for natural images and texts
transferrable to documents? (3) How does modal-
ity (textual, visual, and especially spatial informa-
tion) affect OOD performance? In particular, we
find that spatial information is critical for improv-
ing OOD reliability. Moreover, we propose a new
spatial-aware adapter, a small learned module that
can be inserted within a pre-trained language model
such as RoBERTa (Liu et al., 2019). Our module
is computationally efficient and significantly im-
proves both ID classification and OOD detection
performance (Sec. 5.2). Our contributions are sum-
marized as follows:

• We provide an extensive and in-depth study to in-
vestigate the impacts of pre-training, fine-tuning,
model-modality, and OOD scoring functions on
a broad spectrum of document OOD detection
tasks. Our codebase will be open-sourced to fa-
cilitate future research.

• We present unique insights on document OOD
detection. For example, we observe that distance-
based OOD scores are consistently advantageous
over logit-based scores, which is underexplored

in the recent OOD detection literature on vision-
language pre-trained models.

• We further propose a spatial-aware adapter mod-
ule for transformer-based language models, fa-
cilitating easy adaptation of pre-trained language
models to the document domain. Extensive ex-
periments confirm the effectiveness of our mod-
ule across diverse types of OOD data.

2 Preliminaries and Related Works

2.1 Document Models and Pre-Training

Large-scale pre-trained models gradually gain pop-
ularity in the document domain due to their success
in producing generic representations from large-
scale unlabeled corpora in vision and natural lan-
guage processing (NLP) tasks (Devlin et al., 2018;
Lu et al., 2019; Su et al., 2019; Schiappa et al.,
2022). As documents contain both visual and tex-
tual information distributed spatially in semantic
regions, document-specific models and pre-training
objectives are often necessary, which are distinct
from vision or language domains.

We summarize common model structures for
document pre-training in Fig. 2a. Specifically, Lay-
outLM (Xu et al., 2020) takes a sequence of Op-
tical Character Recognition (OCR) (Smith, 2007)
words and word bounding boxes as inputs. It ex-
tends BERT to learn contextualized word repre-
sentations for document images through multitask
learning. LayoutLMv2 (Xu et al., 2021b) improves
on the prior work with new pre-training tasks to
model the interaction among texts, layouts, and im-
ages. DocFormer (Appalaraju et al., 2021) adopts
a CNN model to extract image grid features, fusing
the spatial information as an inductive bias for the
self-attention module. LayoutLMv3 (Huang et al.,
2022) further enhances visual and spatial character-
istics with masked image modeling and word-patch
alignment tasks. Another line of work focuses on
various granularities of documents, such as region-
level text/image blocks. Examples of such models
include SelfDoc (Li et al., 2021a), UDoc (Gu et al.,
2021), and MGDoc (Wang et al., 2022b), which are
pre-trained with a cross-modal encoder to capture
the relationship between visual and textual features.
These models incorporate spatial information by
fusing position embeddings at the output layer of
their encoders, instead of the input layer. Addi-
tionally, OCR-free models (Kim et al., 2022; Tang
et al., 2023) tackle document understanding as a se-
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quence generation problem, unifying multiple tasks
through an image-to-sequence generation network.

While these pre-trained models demonstrate
promising performance on downstream applica-
tions, their robustness to different types of OOD
data, the influence of pre-training and fine-tuning,
and the value of different modalities (e.g. spatial,
textual, and visual) for document OOD detection
remain largely unexplored.

2.2 Out-of-Distribution Detection

OOD detection has been extensively studied for
open-world multi-class classification with natural
image and text inputs, where the goal is to derive
an OOD score that separates OOD from ID sam-
ples. A plethora of methods are proposed for deep
neural networks, where the OOD scoring function
is typically derived based on logits (without soft-
max scaling) (Hendrycks et al., 2022), softmax
outputs (Liang et al., 2018; Hsu et al., 2020; Huang
and Li, 2021; Sun et al., 2021), gradients (Huang
et al., 2021), and feature embeddings (Tack et al.,
2020; Fort et al., 2021; Ming et al., 2023). De-
spite their impressive performance on natural im-
ages and texts, it is underexplored if the results are
transferrable to the document domain. A recent
work (Larson et al., 2022) studied OOD detection
for documents but only explored a limited num-
ber of models and OOD detection methods. The
impacts of pre-training, fine-tuning, and spatial in-
formation remain unknown. In this work, we aim to
provide a comprehensive and finer-grained analysis
to shed light on the key factors for OOD robustness
in the document domain.

Notations. Following prior works on OOD de-
tection with large-scale pre-trained models (Ming
et al., 2022a; Ming and Li, 2023), the task of OOD
detection is defined with respect to the downstream
dataset, instead of the pre-training data which is
often hard to characterize. In document classifica-
tion, we use X in and Y in = {1, . . . ,K} to denote
the input and label space, respectively. Let Din =
{(xin

i , y
in
i )}Ni=1 be the ID dataset, where x ∈ X in,

and yin ∈ Y in. Let Dout = {(xout
i , youti )}Mi=1 de-

note an OOD test set where yout ∈ Yout, and
Yout ∩ Y in = ∅. We express the neural network
model f := g ◦ h as a composition of a feature ex-
tractor h : X → Rd and a classifier g : Rd → RK ,
which maps the feature embedding of an input to
K real-valued numbers known as logits. During
inference time, given an input x, OOD detection

can be formulated as:

Gγ(x;h, g) =

{
ID S(x;h, g) ≥ γ

OOD S(x;h, g) < γ
,

where S(·) is a scoring function that measures
OOD uncertainty. In practice, the threshold qγ
is often chosen so that a high fraction of ID data
(e.g., 95%) is above the threshold.

OOD detection scores. We focus on two major
categories of computationally efficient OOD detec-
tion methods1: logit-based methods derive OOD
scores from the logit layer of the model, while
distance-based methods directly leverage feature
embeddings, as shown in Fig. 1. We describe a few
popular methods for each category as follows.

• Logit-based: Maximum Softmax Probability
(MSP) score (Hendrycks and Gimpel, 2017)
SMSP = maxi∈[K] e

fi(x)/
∑K

j=1 e
fj(x) natu-

rally arises as a classic baseline as models of-
ten output lower softmax probabilities for OOD
data; Energy score (Liu et al., 2020): SEnergy =
log

∑
i∈[K] e

fi(x) utilizes the Helmholtz free en-
ergy of the data and theoretically aligns with the
logarithm of the ID density; the simple MaxLogit
score (Hendrycks et al., 2022): SMaxlogit =
maxi∈[K] fi(x) has demonstrated promising per-
formance on large-scale natural image datasets.
We select the above scores due to their simplicity
and computational efficiency. In addition, recent
studies demonstrate that such simple scores are
particularly effective with large-scale pre-trained
models in vision (Fort et al., 2021) and vision-
language domains (Ming et al., 2022a; Bitterwolf
et al., 2023). We complement previous studies
and investigate their effectiveness for documents.

• Distance-based: Distance-based methods di-
rectly leverage feature embeddings z = h(x)
based on the idea that OOD inputs are rela-
tively far away from ID clusters in the feature
space, compared to ID inputs. Distance-based
methods can be characterized as parametric and
non-parametric. Parametric methods such as
Mahalanobis score (Lee et al., 2018; Sehwag
et al., 2021) assume ID embeddings follow class-
conditional Gaussian distributions and use the
Mahalanobis distance as the distance metric. On
the other hand, non-parametric methods such as
KNN+ (Sun et al., 2022) use cosine similarity as
the distance metric.

1We also investigate gradient-based methods such as Grad-
Norm (Huang et al., 2021) in Appendix C.
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Figure 2: (Left) Illustration of models for document pre-training and classification, with our proposed spatial-aware
models in green blocks. Modality information is also shown atop each architecture. (Right) Evaluating fine-tuning
performance for document classification of pre-trained models. Models are grouped into several categories (from
left to right): language-only, vision-only, and multi-modal. For comparison, the performance of corresponding
models in other groups is shown in gray. The average accuracy for each model is indicated in the parenthesis.

Evaluation metrics. To evaluate OOD detection
performance, we adopt the following commonly
used metrics: the Area Under the Receiver Operat-
ing Characteristic (AUROC), False Positive Rate
at 95% Recall (FPR95), and the multi-class classi-
fication accuracy (ID Acc).

3 Experimental Setup

Models. Fig. 2a summarizes common structures
for document pre-training and classification mod-
els2. While documents typically come in the form
of images (Harley et al., 2015), an OCR system can
be used to extract words and their coordinates from
the input image. Therefore, models can use single-
modal or multi-modal information. We categorize
these models according to the input modalities into
the following groups: (1) models using only visual
features, (2) models using solely textual features,
(3) models incorporating both visual and textual
features, and (4) models integrating additional spa-
tial (especially layout) information. Further details
can be found in Appendix A.

• Vision-only: Document classification can be
viewed as a standard image classification prob-
lem. We consider ResNet-50 (He et al., 2016)
and ViT (Fort et al., 2021) as exemplar document
image classification models. We adopt two com-
mon pre-training settings: (1) only pre-trained
on ImageNet (Deng et al., 2009) and (2) fur-
ther pre-trained on IIT-CDIP (Lewis et al., 2006)
with masked image modeling (MIM)3. After pre-
training, we append a classifier for fine-tuning.

2Apart from document classification, in the Appendix B,
we also investigate OOD detection for two entity-level tasks:
document entity recognition and document object detection.

3Note that the document classification dataset we used in

• Text-only: Alternatively, we can view document
classification as text classification since docu-
ments often contain text blocks. To this end,
we use RoBERTa (Liu et al., 2019) and Long-
former (Beltagy et al., 2020) as the backbones.
RoBERTa can handle up to 512 input tokens
while Longformer can handle up to 4,096 input
tokens. We pre-train the language models with
masked language modeling (MLM) on IIT-CDIP
extracted text corpus.

• Text+Layout: Layout information plays a cru-
cial role in the document domain, as shown in
Fig. 3. To investigate the effect of layout informa-
tion, we adopt LayoutLM as the backbone. We
will show that spatial-aware models demonstrate
promising OOD detection performance. How-
ever, such specialized models can be computa-
tionally expensive. Therefore, we propose a new
spatial-aware adapter, a small learned module
that can be inserted within a pre-trained language
model such as RoBERTa and transforms it into
a spatial-aware model, which is computationally
efficient and competitive for both ID classifica-
tion and OOD detection (Sec. 5.2).

• Vision+Text+Layout: For comprehensiveness,
we consider LayoutLMv3 and UDoc, which are
large and computationally intensive. Both mod-
els are pre-trained on the full IIT-CDIP for fair-
ness. These models utilize different input granu-
larities and modalities, including textual, visual,
and spatial information for document tasks.

this paper, RVL-CDIP (Harley et al., 2015), is a subset of
IIT-CDIP. Hence, unless otherwise specified, the IIT-CDIP
pre-training data used in this paper excludes RVL-CDIP.
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Constructing ID and OOD datasets. We con-
struct ID datasets from RVL-CDIP (Harley et al.,
2015), where 12 out of 16 classes are selected as
ID classes. Dataset details are in Appendix A. We
consider two OOD scenarios: in-domain and out-
domain, based on the content (e.g., words, back-
ground) and layout characteristics.

• In-domain OOD: To determine the OOD cat-
egories, we analyzed the performance of re-
cent document classification models on the RVL-
CDIP test set. Fig. 2b shows the per-category
test accuracy of various models. Naturally, for
the classes the models perform poorly on, we
may expect the models to detect such inputs as
OOD instead of assigning a specific ID class with
low confidence. We observe that the 4 categories
(letter, form, scientific report, and presentation)
result in the worst performance across most of the
models with different modalities. We use these as
OOD categories and construct the OOD datasets
accordingly. The ID dataset is constructed from
the remaining 12 categories, which we refer to as
in-domain OOD datasets, as they are also sourced
from RVL-CDIP.

• Out-domain OOD: In the open-world setting,
test inputs can have significantly different color
schemes and layouts compared to ID samples.
To mimic such scenarios, we use two public
datasets as out-domain OOD test sets: NJU-
Fudan Paper-Poster Dataset (Qiang et al., 2019)
and CORD (Park et al., 2019). NJU-Fudan Paper-
Poster Dataset contains scientific posters in dig-
ital PDF format4. CORD is a receipt under-
standing dataset with significantly different in-
puts compared to RVL-CDIP. As shown in Fig. 3,
receipt images can be challenging and require
models to handle not only textual but also visual
and spatial information.

We further support our domain selection using
OTDD (Alvarez-Melis and Fusi, 2020), a flexible
geometric method for comparing probability dis-
tributions, which enables us to compare any two
datasets regardless of their label sets. We observe a
clear gap between in-domain and out-domain data,
which aligns with our data selection. Further de-
tails can be found in Appendix A.1.

4Extracted using https://github.com/pymupdf/PyMuPDF

4 Analyzing OOD Reliability for
Documents

4.1 OOD Detection Without Fine-Tuning
In this section, we begin by examining the influ-
ence of pre-training datasets on zero-shot OOD
detection. For each model, we adopt the same pre-
training objective while adjusting the amount of
pre-training data. Specifically, we increase the data
diversity by appending 10, 20, 40, and 100% of ran-
domly sampled data from IIT-CDIP dataset (around
11M) and pre-train each model. After pre-training,
we measure the OOD detection performance with
KNN+ score based on feature embeddings.

We observe that: (1) for out-domain OOD data
(Fig. 4a, right), increasing the amount of pre-
training data can significantly improve the zero-
shot OOD detection performance (w.o. fine-tuning)
for models across different modalities. Our hypoth-
esis is that pre-training with diverse data is bene-
ficial for coarse-grained OOD detection, such as
inputs from different domains (e.g., color schemes).
(2) For in-domain OOD inputs, even increasing
the amount of pre-training data by over 40% pro-
vides negligible improvements (Fig. 4a, left). This
suggests the necessity of fine-tuning for improving
in-domain OOD detection performance (Fig. 6).

We further explore a more restricted setting for
zero-shot OOD detection where potential OOD cat-
egories are removed from the pre-training dataset
IIT-CDIP. First, we use LayoutLM fine-tuned on
RVL-CDIP to predict labels for all documents in
IIT-CDIP. Fig. 4b summarizes the distribution of
the predicted classes on IIT-CDIP. Next, we remove
the “OOD” categories from IIT-CDIP and pre-
train two models (RoBERTa and LayoutLM) with
10, 20, 40, and 100% of randomly sampled data
from the filtered IIT-CDIP (dubbed III-CDIP−),
respectively. The zero-shot OOD performance
for in-domain and out-domain OOD is shown in
Fig. 4c5. For RoBERTa, we observe similar trends
as in Fig. 4a, where increasing the amount of pre-
training data improves zero-shot OOD detection
performance for out-domain data. However, the
zero-shot performance of LayoutLM benefits from
a larger pre-training dataset. In particular, given
the same amount of pre-training data, LayoutLM
consistently outperforms RoBERTa for both in-
domain and out-domain OOD detection, which
suggests that spatial information can be essential

5Note that we do not show 0% in Fig. 4c since we pre-train
LayoutLM from scratch.
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Figure 3: (Top) Examples of ID inputs sampled from RVL-CDIP (top). (Bottom) In-domain OOD from RVL-CDIP,
and out-domain OOD from Scientific Poster and Receipts.
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Figure 4: The impact of pre-training data on zero-shot OOD detection performance. IIT-CDIP− denotes the filtered
pre-training data after removing the “OOD" categories.

for boosting the OOD reliability in the document
domain. Motivated by the above observations, we
dive deeper and analyze spatial-aware models next.

While pre-trained models exhibit the capability
to differentiate data from various domains as a re-
sult of being trained on a diverse range of data. We
observe that achieving more precise separation for
in-domain OOD inputs remains difficult. Given
this observation, we further analyze the impacts
of fine-tuning for OOD detection with fixed pre-
training datasets in the next section. By combining
pre-trained models with a simple classifier and fine-
tuning on RVL-CDIP (ID), we find that fine-tuning
is advantageous in enhancing the OOD detection
performance for both types of OOD samples.

4.2 The Impact of Fine-Tuning on Document
OOD Detection

Recent document models are often pre-trained on
a large-scale dataset and adapted to the target task
via fine-tuning. To better understand the role of
fine-tuning, we explore the following questions: 1)
How does fine-tuning impact OOD reliability for
in-domain and out-domain OOD inputs? 2) How
does model modality impact the performance?

We consider a wide range of models pre-
trained on pure-text/image data (e.g., ImageNet
and Wikipedia) described in Appendix A.3. During
fine-tuning, we combine pre-trained models with a
simple classifier and fine-tune on RVL-CDIP (ID).
For models before and after fine-tuning, we extract
the final feature embeddings and use a distance-
based method KNN+ (Sun et al., 2022) for OOD
detection. The results are shown in Fig. 6. We
observe the following trends. First, fine-tuning
largely improves OOD detection performance for
both in-domain and out-domain OOD data. The
same trend holds broadly across models with dif-
ferent modalities. Second, the improvement of
fine-tuning is less significant for out-domain OOD
data. For example, on Receipt (out-domain OOD),
the AUROC for pre-trained ViT model is 97.13,
whereas fine-tuning only improves by 0.79%. This
suggests that pre-trained models do have the po-
tential to separate data from different domains due
to the diversity of data used for pre-training, while
it remains hard for pre-trained models to perform
finer-grained separation for in-domain OOD inputs.
Therefore, fine-tuning is beneficial for improving
OOD detection performance for both types of OOD
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Figure 5: Comparison between representative feature-based scores and logit-based scores for spatial-aware and
non-spatial-aware models. Spatial-aware models are colored in blue.
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Figure 6: OOD detection performance for pre-trained models w. and w.o. fine-tuning. We use a distance-based
method KNN+ as the OOD scoring function. Fine-tuning significantly improves performance for both in and
out-domain OOD data.

samples. To further validate our conclusion, we
consider two additional in-domain OOD settings
for our analysis: (1) selecting the classes the model
performs well on, as in-domain OOD categories;
(2) randomly selecting classes as OOD categories
(Appendix A.2). We find that fine-tuning improves
OOD detection for both settings, further verifying
our observations.

Next, we take a closer look at the impact of
model modality on out-domain OOD detection. As
shown in Fig. 6 (mid and right), both vision and
text-based models demonstrate strong reliability
against scientific posters (OOD). However, vision-
based models display stronger performance than
text-based models for Receipts (OOD). This can be
explained by the fact that ViT was first pre-trained
on ImageNet while scientific posters and receipts
contain diverse visual information such as colors
and edges for vision models to utilize (see Fig. 3).
On the other hand, although fine-tuning text-based
models largely improves the detection performance
compared to pre-trained counterparts, utilizing only
textual information can be inherently limited for
out-domain OOD detection.

5 The Importance of Spatial-Awareness

In previous sections, we mainly focus on main-
stream text-based and vision-based models for in-
and out-domain OOD detection. Next, we consider

models tailored to document processing, which
we refer to as spatial-aware models, such as Lay-
outLMv3 and UDoc. Given fine-tuned models,
we compare the performance of logit-based and
distance-based OOD scores.
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Figure 7: Illustration of our spatial-aware adapter for
language models. We present 2 adapter designs (marked
in green box): (1) insert the adapter into the word em-
bedding layer during pre-training and fine-tuning; (2)
insert the adapter into the output layer for fine-tuning
only. For the first design, we freeze the word embedding
layer and learn the adapter and transformer layers.

5.1 Analysis of Spatial-Aware Models

We summarize key comparisons in Fig. 5, where
we use MSP and Energy as exemplar logit-based
scores and KNN+ as the distance-based score. Full
results are in Appendix C. We can see that the
simple KNN-based score (KNN+) consistently out-
performs logit-based scores for both in-domain and
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out-domain OOD data across different models with
different modalities. This is in contrast with re-
cent works that investigate large-scale pre-trained
models in the vision-language domain, where logit-
based scores demonstrate strong OOD detection
performance (Fort et al., 2021). As documents
are distinct from natural image-text pairs, observa-
tions in the vision-language domain do not seam-
lessly translate to the document domain. Moreover,
spatial-aware models demonstrate stronger OOD
detection performance for both in and out-domain
OOD. For example, with the best scoring function
(KNN+), LayoutLMv3 improves the average AU-
ROC by 7.09% for out-domain OOD and 7.54%
for in-domain OOD data compared to RoBERTa.
This further highlights the value of spatial informa-
tion for improving OOD robustness for documents.

Despite the impressive improvements brought by
spatial-aware models, acquiring a large-scale pre-
training dataset that includes spatial information
remains challenging. In contrast, there is a growing
abundance of pre-trained language models that are
based on textual data. This motivates us to explore
the possibility of leveraging these pre-trained lan-
guage models by training an adapter on a small
dataset containing document-specific information.
By adopting this approach, we can effectively uti-
lize existing models while minimizing the time and
cost required for training.

5.2 Towards Effective Spatial-Aware Adapter

During our investigation into the effects of model
modality, pre-training, and fine-tuning on various
types of OOD inputs, we find that spatial/layout
information plays a critical role in the document do-
main. However, existing pre-training models such
as LayoutLM series, SelfDoc, and UDoc do not
fully leverage the benefits of well-pre-trained lan-
guage models. This raises the question of whether a
large-scale language model, such as RoBERTa, can
be adapted to detect OOD documents effectively.
In this section, we demonstrate that incorporating
an adapter module that accounts for spatial informa-
tion with transformer-based pre-trained models can
achieve strong performance with minimal changes
to the code. To the best of our knowledge, this is the
first study to apply the adapter idea to documents.

Spatial-aware adapter. Given a pre-trained lan-
guage model such as RoBERTa, we propose an
adapter that utilizes spatial information. We con-
sider two potential designs: 1) the adapter is ap-
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Figure 8: Comparison of OOD detection performance
of Spatial-RoBERTa and RoBERTa. All models are ini-
tialized with public pre-trained checkpoints trained on
purely textual data and further pre-trained on IIT-CDIP.
The only difference is that Spatial-RoBERTa has an ad-
ditional spatial-ware adapter and takes word bounding
boxes as additional inputs.

pended to the word embedding layer, denoted as
Spatial-RoBERTa (pre), which requires both pre-
training and fine-tuning. This architecture is il-
lustrated in the top row of Fig. 7. 2) The adapter
is appended to the final layer of the text encoder,
denoted as Spatial-BoBERTa (post), which only
requires fine-tuning as the model can utilize the
pre-trained textual encoder, as shown in the bottom
row of Fig. 7.

For Spatial-RoBERTa (pre), we freeze the word
embedding layer during pre-training for several
considerations: 1) word embeddings learned from
large-scale corpus already cover most of those
words from documents; 2) pre-training on docu-
ments without strong language dependency may
not help improve word embeddings. For exam-
ple, in semi-structured documents (e.g., forms, re-
ceipts), language dependencies are not as strong
as in text-rich documents (e.g., letters, resumes),
which may degenerate the learned word represen-
tations. In practice, each word has a normalized
bounding box (x0, y0, x1, y1), where (x0, y0) /
(x1, y1) corresponds to the position of the upper
left / lower right in the bounding box. To encode
positional information, we employ four position
embedding layers, where each layer= encodes one
coordinate (e.g., x0) and produces a corresponding
position embedding. The special tokens ([CLS],
[SEP], and [PAD]) are attached with an empty
bounding box (0, 0, 0, 0). As depicted in the top
row of Fig. 7, the spatial-aware word embeddings
are formed by adding position embeddings to their
corresponding word embeddings.

For Spatial-RoBERTa (post), position embed-
dings are added through late fusion in the final hid-
den states during fine-tuning without affecting the
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Figure 9: Correlation between ID accuracy and OOD detection performance. For most models, ID accuracy is
positively correlated with OOD detection performance. Language models with spatial-aware adapters (highlighted
in blue) achieve significantly higher ID accuracy and stronger OOD robustness (in AUROC) compared to language
models without adapters. Here, (+) represents further pre-training on the IIT-CDIP dataset.

pre-trained encoder. Our experiments demonstrate
that introducing spatial-aware adapters during pre-
training yields better results than only adding posi-
tion embeddings during fine-tuning. For additional
details6, please refer to Appendix C. In the follow-
ing, we focus on analyzing Spatial-RoBERTa (pre)
and comparing both ID and OOD performance with
that of the pure-text pre-trained RoBERTa.

Spatial-RoBERTa significantly outperforms
RoBERTa. To verify the effectiveness of Spatial-
RoBERTa, we compare the OOD detection perfor-
mance of pre-trained and fine-tuned models. The
results are shown in Fig. 8, where OOD perfor-
mance is based on KNN+ (K=10). Full results can
be seen in Table 6. Spatial-RoBERTa significantly
improves the OOD detection performance, espe-
cially after fine-tuning. For example, compared
to RoBERTa (base), Spatial-RoBERTa (base) im-
proves AUROC significantly by 4.24% averaged
over four in-domain OOD datasets. This further
confirms the importance of spatial information for
OOD detection in the document domain.

Spatial-RoBERTa is competitive for both ID
classification and OOD detection. Beyond
OOD detection performance, we also examine the
multi-class ID classification accuracy and plot the
two metrics for all models with different modali-
ties in Fig. 9. We can clearly observe a positive
correlation between ID accuracy and OOD detec-
tion performance (measured by AUROC) for both
in-domain and out-domain OOD data. Moreover,
spatial-aware models display superior ID accuracy
and OOD robustness compared to text-only and

6Spatial-RoBERTaBase (pre) incorporates position infor-
mation during both pre-training and fine-tuning, while Spatial-
RoBERTaBase (post) only inserts the adapter into the output
layer for fine-tuning.

vision-only models. Overall, Spatial-RoBERTa
greatly improves upon RoBERTa and matches the
performance of models with more complex and spe-
cialized architectures such as LayoutLM. Specif-
ically, Spatial-RoBERTaLarge achieves 97.37 ID
accuracy, which is even higher than LayoutLM
(97.28) and UDoc (97.36).

To summarize, our spatial-aware adapter effec-
tively adapts pre-trained transformer-based text
models to the document domain, improving both
ID and OOD performance. In addition, by freezing
the original word embeddings during pre-training,
the models (Spatial-RoBERTaBase and Spatial-
RoBERTaLarge) are parameter-efficient and thus
reduce the training cost.

6 Conclusions

In this work, we provide a comprehensive and in-
depth study on the impacts of pre-training, fine-
tuning, model-modality, and OOD scores on a
broad variety of document OOD detection tasks.
We present novel insights on document OOD detec-
tion, which are under-explored or in contrast with
OOD detection works based on vision-language
models. In particular, we highlight that spatial
information is critical for OOD detection in docu-
ments. We further propose a spatial-aware adapter
as an add-on module to transformer-based models.
Our module adapts pre-trained language models to
the document domain. Extensive experiments on
a broad range of datasets verify the effectiveness
of our design. We hope our work will inspire fu-
ture research toward improving OOD robustness
for reliable document understanding.
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7 Limitations

In this work, our main focus is on OOD detection
for document understanding, with a specific em-
phasis on the context of document classification.
As OOD detection based on document pre-trained
models remains largely underexplored, we believe
establishing an in-depth and extensive study of
OOD detection for document classification would
be a valuable stepping stone towards more complex
tasks. Apart from document classification, in the
Appendix B, we also investigate OOD detection for
two entity-level tasks: document entity recognition
and document object detection. We leave a more
comprehensive treatment for future works.
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A Dataset and Model Details

A.1 Datasets

The full RVL-CDIP dataset consists of
320K/40K/40K training/validation/testing
images under 16 categories. We select 12 of
them as the ID (In-domain) data. We employ the
Google OCR engine7 to extract the text and layout
information, which provides tokens, text blocks
and the corresponding bounding boxes.

A.2 Quantifying OOD Dataset Construction

The distance between datasets can be measured
via Optimal Transport Dataset Distance (OTDD)8.
We visualize the OTDD distance between ID and
the OOD (both in-domain and out-domain) data in
Fig. 10a, where we highlight the in-domain OOD
data in blue and the out-domain OOD data in green.
Specifically, we randomly sample 1000 images
from each dataset and calculate the average dis-
tance between pairs of datasets. We can see a sig-
nificant gap between the OTDD of in-domain OOD
data and out-domain OOD data. To make the anal-
ysis more thorough, we consider two additional
in-domain OOD settings: (1) select the classes the
model performs well as OOD data; (2) randomly
select classes as OOD data. The results are shown
in Fig. 10b and Fig. 10c. We can see that the dis-
tance between ID and in-domain OOD is similar to
the original scheme (Fig. 10a). This suggests that
most in-domain OOD categories are not far from
ID data.

While this paper represents an initial endeavor,
we hope that our work will serve as a stepping
stone towards constructing more comprehensive
and diverse OOD benchmarks in the document do-
main, akin to those available in the NLP and natural
image domain.

A.3 Models and Training Details

All models reported in Fig. 2b, except UDoc, are
initialized with pre-trained weights from Hugging-
face9 and fine-tuned on the full RVL-CDIP training
set. During fine-tuning, we train these models on
RVL-CDIP with the cross-entropy loss. The mod-
els were optimized with Adam optimizer (Kingma
and Ba, 2014) for 30 epochs with a batch size of 50
and a learning rate of 2× 10−5 on 8 A100 GPUs.

7https://cloud.google.com/vision/docs/ocr
8https://github.com/microsoft/otdd
9https://huggingface.co/models

The following are the hyperparameters of the mod-
els used in our paper:

Text-only:

• BERT and RoBERTa: We adopt
RoBERTaBase (12 layers) and BERTBase (12
layers) as backbones and set the maximum
sequence length to 512. For RoBERTa,
the classifier consists of two linear layers
followed by a tanh activation function.

• LongformerBase: We also employ
LongformerBase (12 layers) as the backbone
and set the maximum sequence length to
4,096.

Vision-only:

• ResNet50: We adopt ResNet50 pre-trained on
ImageNet-1k as the backbone. We fine-tune
the model at a resolution of 224×224.

• ViT: We consider ViTBase (vit-base-patch16-
224, pre-trained on ImageNet-21k) as the
backbon and fine-tune at a resolution of
224×224.

• SwinB: We also use the Swin Transformer
(swin-base-patch4-window7-224-in22k, pre-
trained on ImageNet-21k) as the backbone
and fine-tune the model at a resolution of
224×224.

Text+Layout:

• LayoutLMv1: This model employs the Lay-
outLM (layoutlm-base-uncased, 12 layers,
pre-trained on IIT-CDIP) as the backbone. We
set the maximum sequence length to 512.

• Spatial-RoBERTaBase (Pre): This model
combines our spatial-aware adapter to the pre-
trained RoBERTaBase model. The adapter is
applied to the word embedding layer. We
freeze the pre-trained word embeddings and
optimize the spatial-aware adapter and trans-
formers.

• Spatial-RoBERTaBase (Post): Instead of in-
serting the spatial-aware adapter in the input
layer, this model integrates the spatial-aware
adapter at the output layer of the transformer.
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Figure 10: Visualization of optimal transport dataset distance for ID and OOD (in-domain and out-domain) datasets.
We highlight the in-domain OOD data in blue and the out-domain OOD data in green.

(a) RoBERTaBase (10%) (b) RoBERTaBase (20%) (c) RoBERTaBase (40%) (d) RoBERTaBase (100%)

(e) ViTBase (10%) (f) ViTBase (20%) (g) ViTBase (40%) (h) ViTBase (100%)

Figure 11: Feature visualization for pre-trained (with different numbers of pre-training data) and fine-tuned models.
We show both in-domain (RVL-CDIP) and out-domain (CORD) OOD datasets.
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Figure 12: MSP, Energy, KNN, and Maha score histogram distributions of ID (blue) and OOD (green) inputs
derived from fine-tuned ResNet-50, RoBERTa, and LayoutLMv3. The KNN scores calculated from both vision
and language models naturally form smooth distributions. In contrast, MSP and Maha scores for both in- and
out-of-distribution data concentrate on high values. Overall our experiments show that using feature space makes
the scores more distinguishable between and out-of-distributions and, as a result, enables more effective OOD
detection.

Object Detection 
Faster RCNN, etc.

Visual 
Encoder

 
Layout+Vision

BBoxes

Entity Recognition
Layout+Vision+Language

Visual 
Encoder

Words+BBoxes

Textual 
Encoder

BBoxes

 
Layout+Language

Words+BBoxes

Detection HeadMultimodal Encoder

Recognition Head

Proposal
Generation

Visual 
Encoder

Recognition Head

Textual 
Encoder

Recognition Head

Figure 13: The network architectures in green blocks
are our proposed models. We also show the modality
information on top of each architecture.

Vision+Text+Layout:

• LaytouLMv3: We use LayoutLMv3
(layoutlmv3-base, 12 layers, pre-trained on
IIT-CDIP) as the backbone.

• UDoc: We use a slight variant of UDoc with
the only difference in the sentence encoder,
where we adopt a smaller version of the pre-
trained sentence encoder (all-MiniLM-L6-v2,
6 layers) instead of the larger sentence encoder
(bert-base-nli-mean-tokens, 12 layers).

B Beyond Document Classification

In the main paper, we mainly focus on document
classification to provide a thorough and in-depth
analysis. In this section, we go beyond document
classification and explore OOD detection for two
entity-level tasks in documents: document entity
recognition and document object detection. It is
natural to detect and recognize basic units in docu-
ments such as text, tables, and figures. Document
entity recognition aims to predict the label for each
semantic entity with given bounding boxes. Docu-
ment object detection is an object detection task for
document images. Specifically, we denote the input
as x, the bounding box coordinates associated with
object instances in the image as b ∈ R4, and use
the model with parameters θ to model the bounding
box regression pθ(b|x) and the label classification
pθ(y|x, b). Given a test input x̂, the OOD detection
scoring function for entity detection and recogni-
tion can be unified as S(x̂, b̂), where b̂ denotes the
object instance predicted by the object detector. In
particular, for document entity recognition, since
the bounding boxes are provided, the OOD score
can be simplified as S(x̂, b̄), where b̄ is the given
object instance.
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Document Object Detection. For document ob-
ject detection, we use PubLayNet as the ID dataset
and construct the OOD dataset from IIIT-AR-13K.
Unlike PubLayNet, where the documents are sci-
entific articles, IIIT-AR-13K is a dataset for graph-
ical object detection in business documents (e.g.,
annual reports), thus there exists an obvious do-
main gap. We select natural images as the OOD
entity and filter images that contain the OOD en-
tity. Two object detection models are considered in
this paper: (1) Vanilla Faster-RCNN with ResNet-
50 visual backbone, and (2) Faster-RCNN with
VOS (Du et al., 2022), a recent unknown-aware
learning framework to improve OOD detection per-
formance for natural images. Following the origi-
nal paper, we use 1,000 samples for each ID class
to estimate the class-conditional Gaussian statistics.
The models are trained for 180k iterations with a
base learning rate of 0.01 and a batch size of 8
using the Detectron2 framework (Wu et al., 2019).
The performance of the models is measured using
the mean average precision (MAP) @ intersection
over union (IOU) [0.50:0.95] of bounding boxes.

Document Entity Recognition. For entity recog-
nition, we construct ID and OOD datasets from
FUNSD. Each semantic entity includes a list of
words, a label, and a bounding box. The stan-
dard label set for this dataset contains four cate-
gories: question, answer, header, and other. In
this paper, we select entities labeled as other or
header as OOD data, and the entities belonging to
the other three categories as ID. Instead of treat-
ing entity recognition as a named-entity recog-
nition problem, we follow UDoc and solve this
problem at the semantic region level. We replace
the sentence encoder in UDoc with a smaller sen-
tence encoder (all-MiniLM-L6-v210) from Hug-
gingface (Wolf et al., 2019). We also have the
following model variants to verify the effective-
ness of the combination of modalities: textual-only,
visual-only, textual+spatial, visual+spatial, and vi-
sual+textual+spatial.

We provide details on datasets and models as
follows.

B.1 Datasets
The original FUNSD (Jaume et al., 2019) dataset
contains 149 training and 50 testing images. For
document entity recognition, we treat entities with
the category other/header as OOD entities. After

10https://huggingface.co/sentence-transformers

the split, if we consider other as OOD, we have
a total of 8,330 ID and 1,019 OOD entities. Oth-
erwise, if we consider header as OOD, we have
8,981 ID and 368 OOD entities in total.

For document object detection, we consider
PubLayNet (Zhong et al., 2019), which contains
336K/11K training/validation images with 6 cate-
gories (text, title, list, fig., and table). The original
IIIT-AR-13K (Mondal et al., 2020) contains (table,
fig., natural image, logo, and signature). In this pa-
per, considering the overlap between IIIT-AR-13K
and PubLayNet, we select those images containing
natural images as the OOD test set. After filter-
ing, we obtain 2,880 OOD entities across 1,837
document images.

We consider three ID datasets in this experi-
ment. (1) PubLayNet: This is the original Pub-
LayNet dataset. We treat all the entities in train-
ing/validation images as ID entities. (2) Consider-
ing the domain shift between ID data (PubLayNet)
and OOD data (IIIT-AR-13K). We combine the
PubLayNet training data with the images from IIIT-
AR-13K with overlapping annotations (table and
figure) and train the object detection model.

B.2 Models

Fig. 13 illustrates the entity recognition models
used in this paper. We consider the entities on re-
gions instead of tokens, as regions provide richer
semantic information. As for the pre-trained model,
we adopt UDoc (trained on IIT-CDIP) since it mod-
els inputs at the regional level. Based on the UDoc
framework, we develop the following models.

Vision/Vision+Layout:

• ResNet-50: This model is composed of the
ResNet-50 from pre-trained UDoc. It adopts
the RoI pooling followed by a classifier to
extract the entity features.

• ResNet-50+Position: This model also adapts
UDoc’s pre-trained ResNet-50 for further im-
provement. It makes the RoI features spatially
aware by adding position embeddings, which
are mapped from the bounding boxes via a
linear mapping layer.

Text/Text+Layout:

• Sentence BERT: This model adopts the lan-
guage branch of UDoc and appends the classi-
fier to the output of the sentence encoder.
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Figure 14: Ablation on document entity recognition and object detection. Numbers are reported in FPR95.

• Sentence BERT+Position: This model is
close to the above model but adds position
embeddings to the sentence embeddings.

Vision+Text+Layout:

• ResNet-50+sentence BERT: This model fol-
lows the same framework as UDoc, but re-
places the sentence encoder in their original
design with a more miniature sentence en-
coder (all-MiniLM-L6-v2).

• SwinT+Sentence BERT: This model re-
places the ResNet-50 visual backbone with
a pre-trained tiny Swin Transformer (swin-
tiny-patch4-window7-224) adopted from the
Huggingface.

All the models are fine-tuned with the cross-entropy
loss for 100 epochs, using a learning rate of 10−5

and a batch size of 8 on an A100 GPU.

B.3 Summary of Observations
We provide a summary of observations here and
hope to inspire future works on a thorough investi-
gation of OOD detection for entity-level tasks. To
identify entity types, models should not only under-
stand the words but also utilize spatial and visual
information.

For document entity recognition, the compar-
ison of distance-based and logit-based OOD de-
tection methods with different models are shown
in Fig. 14a. More details are shown in Table 2.
We see that models can better predict the entity
type and also achieve better OOD robustness with
the help of spatial information. Considering the
weak language dependency between entities, it is
not surprising that vision-based models achieve
better performance than text-based models. In par-
ticular, UDoc with ResNet-50 achieves the best
performance on two OOD test sets, illustrating that
visual information plays a major role in increasing
the discrimination of entities with similar seman-
tics. For document object detection, we summarize
our findings in Fig. 14b and describe them in more

detail in Table 1. We can see that the OOD detec-
tion performance is further improved by introduc-
ing document images from IIIT-AR-13K with the
same ID annotations as training data.

To provide more intuitions, in Fig. 15, we visual-
ize the document entity recognition OOD detection
results. In Fig. 16, we visualize the prediction on
sample OOD images, using object detection mod-
els trained without VOS (top) and with VOS (bot-
tom), respectively. We can see that vanilla Faster
RCNN trained on PubLayNet produces false posi-
tives when applied to the OOD document images
from IIIT-AR-13K. Table 1 shows that introduc-
ing the unknown-aware learning method optimized
for both ID and OOD can reduce the FPR95 while
preserving the mAP on the ID data. This experi-
ment indicates that incorporating uncertainty esti-
mation into the entity detection training procedure
can improve the reliability of the document object
detection system.

C Detailed Experimental Results

• Table 2 corresponds to the results shown in
Fig. 15 and Fig. 14a.

• Table 1 corresponds to the results shown in
Fig. 16 and Fig. 14b.

• Table 3 and Table 7 correspond to the results
shown in Fig. 4a.

• Table 4 and Table 5 correspond to the results
shown in Fig. 4c.

• Table 6 corresponds to the results shown in Fig. 8
and Fig. 9.

• Table 9 and Table 8 correspond to the results
shown in Fig. 6 and Fig. 9.

• Table 10 and Table 11 correspond to the analysis
for Sec. 4 and Sec. 4.2.

• Table 12 corresponds to the results shown in
Fig. 9.

5
4989



Figure 15: Visualization of detected OOD entities on the form images. The top part shows the entities in blue are
entities annotated as other. The bottom part shows the detected OOD entities (green). We also show failure cases on
the right part.

(b) I I IT-AR-13K (OOD)(a) PubLayNet (ID)

Figure 16: Visualization of detected objects on the OOD images (from IIIT-AR-13K) by a vanilla Faster-RCNN
(top) and Faster-RCNN with VOS (bottom) is shown. Objects in blue boxes are detected and classified as one of the
ID classes. The detected OOD objects (green) reduce false positives among detected objects. We also visualize
detected objects on the ID images. There is a clear difference between PubLayNet and IIIT-AR-13K – entities and
annotations of natural images rarely exist in PubLayNet.

Table 1: Comparison with different training and detection methods.

Models ID Dataset OOD Score IIIT-AR-13K (Natural Image as OOD) PubLayNet (ID)
FPR95 AUROC AUPR mAP

Vanilla Faster-RCNN PubLayNet MSP 74.33 79.12 98.41 92.6Energy 55.96 83.55 98.73

Faster-RCNN with VOS PubLayNet MSP 63.65 79.37 98.57 92.2Energy 55.61 80.60 98.67

Faster-RCNN with VOS PubLayNet+IIIT-AR-13K(ID) MSP 56.57 82.94 98.59 92.4Energy 47.73 84.04 98.67
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Table 2: Comparison with different models on FUNSD OOD setting. All models are initialized with UDoc pre-
trained on IIT-CDIP and fine-tuned on FUNSD data with ID entities. All values are percentages. S-BERT deontes
Sentence BERT. A lower FPR95 or a higher AUROC value indicates better performance.

Test Method Other (OOD) ID Header (OOD) ID Test Method Other (OOD) ID Header (OOD) ID
F1 FPR95 AUROC F1 FPR95 AUROC F1 F1 FPR95 AUROC F1 FPR95 AUROC F1
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KNN100 97.94 77.08 84.24 61.62 KNN100 79.69 74.85 83.70 59.39
KNN200 97.84 77.15 94.29 59.74 KNN200 86.06 75.14 91.58 57.42
KNN400 97.15 76.09 94.84 57.53 KNN400 87.93 74.92 95.92 55.37
MSP 50.54 75.80 75.82 76.55 MSP 77.82 67.60 84.24 66.58
MaxLogit 52.40 73.70 73.64 76.72 MaxLogit 76.94 67.05 84.24 65.41
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KNN200 93.92 47.85 93.48 52.86 KNN200 96.57 41.85 89.67 59.08
KNN400 94.11 46.21 95.38 49.86 KNN400 97.25 40.83 90.22 54.03
MSP 93.62 54.91 94.29 52.14 MSP 88.42 61.11 90.76 59.58
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Energy 45.53 90.57 63.86 72.37 Energy 67.22 74.41 81.79 52.77
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Table 3: OOD detection performance for document classification with different number of pre-training data from
IIT-CDIP. ID (Acc) denotes the ID accuracy obtained by testing on ID test data. We report the KNN-based scores
for both pre-trained and fine-tuned models. Sci. Poster denotes the document images converted from NJU-Fudan
Paper-Poster Dataset. Receipt denotes the receipt images collected from the CORD receipt understanding dataset.
For in-domain OOD test data, we also report the averaged scores.

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Pre-train on 10% IIT-CDIP→ fine-tune on RVL-CDIP ID data

R
oB

E
R

Ta
B
a
se

(1
0%

)

90.59

MSP 92.75 69.24 92.21 66.93 94.65 65.40 92.00 70.09 92.90 67.92 96.51 66.93 99.10 52.90
MaxLogit 98.36 77.85 97.23 78.51 98.76 72.84 98.86 78.08 98.30 76.82 100.00 78.69 100.00 63.74
Energy 98.60 77.81 97.55 78.49 98.96 72.79 98.94 78.00 98.51 76.77 100.00 78.68 100.00 63.70
GradNorm 98.04 79.26 97.07 76.85 98.56 72.83 98.62 80.55 98.07 77.37 100.00 85.23 100.00 64.10
KNN10 63.21 88.18 65.81 88.05 73.02 84.63 67.74 88.92 67.45 87.44 69.77 88.49 90.50 84.44
KNN20 63.53 88.07 65.89 87.90 72.75 84.48 67.33 88.81 67.38 87.32 68.60 88.13 91.10 84.09
KNN50 64.17 87.89 66.97 87.77 73.34 84.23 67.21 88.60 67.92 87.12 72.09 87.47 91.60 83.59
KNN100 64.49 87.64 67.78 87.55 73.46 83.94 67.29 88.37 68.26 86.88 72.09 86.83 91.50 83.21

Pre-train on 10% IIT-CDIP (no fine-tune)

–

KNN10 88.07 66.94 92.13 66.62 94.13 61.90 94.40 54.57 92.18 62.51 67.44 87.04 62.10 84.94
KNN20 88.59 66.02 92.65 65.25 94.13 60.83 94.72 53.79 92.52 61.47 77.91 85.38 64.60 83.86
KNN50 89.75 64.40 93.53 63.12 94.37 58.98 95.17 52.33 93.20 59.71 83.72 82.97 69.20 82.29
KNN100 90.23 62.94 93.85 61.28 94.41 57.45 95.13 51.28 93.40 58.24 83.72 80.91 70.10 81.05

Pre-train on 20% IIT-CDIP→ fine-tune on RVL-CDIP ID data

R
oB

E
R

Ta
B
a
se

(2
0%

)

90.71

MSP 94.28 68.02 94.46 65.98 96.01 62.98 94.81 65.98 94.89 65.74 95.35 63.55 99.10 54.99
MaxLogit 97.36 77.82 97.19 79.16 98.40 72.64 98.34 77.68 97.82 76.82 100.00 77.36 99.60 66.63
Energy 98.04 77.80 97.43 79.15 98.76 72.61 98.58 77.64 98.20 76.80 100.00 77.32 99.60 66.61
GradNorm 97.36 80.68 96.83 76.04 98.44 73.29 97.89 81.37 97.63 77.85 100.00 86.18 99.50 67.49
KNN10 63.57 88.30 67.06 87.06 73.66 83.92 73.09 87.80 69.34 86.77 69.77 88.01 87.60 83.81
KNN20 63.85 88.20 67.46 86.90 73.94 83.78 72.93 87.70 69.54 86.64 69.77 87.63 88.30 83.53
KNN50 63.89 88.02 67.54 86.71 74.38 83.55 72.24 87.46 69.51 86.43 70.93 87.09 88.20 83.12
KNN100 64.85 87.81 67.62 86.45 74.90 83.25 72.65 87.24 70.00 86.19 72.09 86.65 88.30 82.89

Pre-train on 20% IIT-CDIP (no fine-tune)

–

KNN10 87.15 68.27 90.88 66.89 92.26 62.39 95.01 53.02 91.32 62.64 43.02 92.29 57.00 87.67
KNN20 87.31 67.35 92.04 65.54 91.54 61.40 94.97 52.33 91.46 61.66 47.67 91.18 62.60 86.61
KNN50 88.39 65.71 92.69 63.45 92.18 59.57 95.25 50.97 92.13 59.92 56.98 89.64 65.70 85.20
KNN100 88.83 64.20 93.13 61.61 92.22 57.99 95.45 49.95 92.41 58.44 58.14 88.36 66.90 84.17

Pre-train on 40% IIT-CDIP→ fine-tune on RVL-CDIP ID data

R
oB

E
R

Ta
B
a
se

(4
0%

)

90.76

MSP 92.67 70.09 93.93 65.69 95.05 63.19 95.50 65.54 94.29 66.13 95.35 63.63 95.40 64.97
MaxLogit 98.08 78.72 97.87 79.85 98.44 71.63 98.30 75.41 98.17 76.40 98.84 78.07 98.90 75.65
Energy 98.48 78.69 97.91 79.83 98.68 71.61 98.50 75.40 98.39 76.38 100.00 78.04 98.50 75.60
GradNorm 98.04 81.03 97.47 76.73 98.44 72.77 97.40 79.11 97.84 77.41 100.00 87.47 97.60 77.12
KNN10 60.57 88.79 68.86 86.36 75.26 83.55 73.90 87.12 69.65 86.46 67.44 89.90 72.70 89.49
KNN20 61.37 88.72 69.06 86.24 75.46 83.43 73.46 87.00 69.84 86.35 68.60 89.66 73.50 89.25
KNN50 62.21 88.52 69.18 86.08 75.66 83.21 73.42 86.71 70.12 86.13 70.93 89.20 74.70 88.89
KNN100 63.77 88.30 69.79 85.84 76.02 82.93 74.19 86.46 70.94 85.88 74.42 88.84 75.30 88.69

Pre-train on 40% IIT-CDIP (no fine-tune)

–

KNN10 85.71 69.08 90.84 68.68 90.46 62.52 94.76 51.76 90.44 63.01 25.58 95.83 57.30 88.60
KNN20 85.27 68.21 91.64 67.48 89.74 61.32 94.81 51.01 90.36 62.00 29.07 95.22 62.30 87.61
KNN50 86.19 66.60 92.21 65.54 90.30 59.35 94.93 49.60 90.91 60.27 41.86 94.32 66.80 86.25
KNN100 87.19 65.04 92.57 63.83 90.50 57.74 95.09 48.44 91.34 58.76 45.35 93.66 68.30 85.14

Pre-train on 100% IIT-CDIP→ fine-tune on RVL-CDIP ID data

R
oB

E
R

Ta
B
a
se

(1
00

%
)

91.00

MSP 93.23 68.88 94.54 65.83 96.65 63.11 94.12 68.28 94.64 66.53 98.84 62.52 95.10 71.25
MaxLogit 97.84 78.86 97.95 80.23 98.48 74.01 98.25 77.59 98.13 77.67 100.00 78.73 98.90 79.36
Energy 98.20 78.84 97.95 80.22 98.52 74.00 98.78 77.55 98.36 77.65 100.00 78.72 98.70 79.29
GradNorm 97.88 80.81 97.91 76.37 98.28 75.25 98.25 80.09 98.08 78.13 100.00 86.10 98.30 77.50
KNN10 62.57 88.26 68.90 86.96 72.39 84.73 70.37 88.23 68.56 87.04 72.09 89.97 65.90 90.51
KNN20 63.41 88.11 69.59 86.88 73.10 84.56 70.70 88.11 69.20 86.92 74.42 89.58 67.20 90.37
KNN50 63.85 87.87 69.79 86.79 73.90 84.30 71.14 87.87 69.67 86.71 76.74 88.95 67.90 90.22
KNN100 65.13 87.61 70.27 86.58 74.86 84.00 71.75 87.65 70.50 86.46 79.07 88.44 68.30 90.19

Pre-train on 100% IIT-CDIP (no fine-tune)

–

KNN10 84.43 70.20 90.20 68.54 90.98 63.18 94.72 52.16 90.08 63.52 27.91 94.10 46.00 91.37
KNN20 84.51 69.30 91.28 67.35 90.38 61.96 94.72 51.43 90.22 62.51 33.72 93.39 51.50 90.55
KNN50 85.67 67.75 91.92 65.35 90.82 59.79 94.89 49.77 90.82 60.66 39.53 92.28 56.70 89.32
KNN100 86.55 66.08 92.97 63.46 91.46 58.00 95.41 48.39 91.60 58.98 44.19 91.29 61.60 88.18
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Table 4: OOD detection performance for document classification with different number of pre-training data from
IIT-CDIP− (remove pseudo OOD categories).

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Pre-train on 10% IIT-CDIP−→ fine-tune on RVL-CDIP ID data

R
oB

E
R

Ta
B
a
se

(1
0%

)

90.62

MSP 90.07 69.00 89.92 68.86 92.58 64.16 91.07 66.78 90.91 67.20 96.51 54.47 96.70 59.63
MaxLogit 97.76 78.40 97.71 80.58 98.64 71.26 98.70 76.38 98.20 76.66 100.00 73.51 99.80 73.32
Energy 98.16 78.35 97.75 80.55 98.84 71.20 98.90 76.32 98.41 76.60 100.00 73.46 99.80 73.31
GradNorm 97.68 79.92 97.27 79.42 98.56 71.31 98.50 79.44 98.00 77.52 100.00 82.62 99.60 75.85
KNN10 65.85 87.89 66.69 88.12 75.98 82.82 74.55 86.85 70.77 86.42 87.21 85.16 83.90 87.91
KNN20 66.33 87.80 66.85 88.04 75.94 82.70 73.94 86.75 70.76 86.32 87.21 84.63 83.60 87.71
KNN50 66.77 87.66 67.30 88.00 76.02 82.49 73.66 86.52 70.94 86.17 88.37 83.73 83.90 87.34
KNN100 67.25 87.42 67.74 87.84 76.18 82.18 73.99 86.26 71.29 85.92 89.53 82.85 83.90 86.98

Pre-train on 10% IIT-CDIP− (no fine-tune)

–

KNN10 86.35 65.48 85.74 70.84 92.94 59.55 93.14 56.62 89.54 63.12 29.07 95.42 87.60 83.13
KNN20 86.87 64.48 87.14 69.68 93.30 58.41 93.30 55.91 90.15 62.12 37.21 94.75 88.00 81.44
KNN50 87.75 62.73 88.99 67.80 93.50 56.54 93.75 54.52 91.00 60.40 47.67 93.71 90.30 78.97
KNN100 88.43 61.17 89.59 66.05 93.62 54.91 93.99 53.40 91.41 58.88 48.84 93.09 91.50 77.00

Pre-train on 20% IIT-CDIP−→ fine-tune on RVL-CDIP ID data

R
oB

E
R

Ta
B
a
se

(2
0%

)

90.65

MSP 96.04 67.58 94.90 68.32 96.05 64.92 96.23 68.62 95.80 67.36 100.00 61.49 98.70 56.38
MaxLogit 97.96 76.92 97.59 80.68 98.48 72.31 98.74 77.72 98.19 76.91 100.00 75.91 99.50 69.21
Energy 98.16 76.89 98.23 80.65 98.88 72.26 99.07 77.67 98.58 76.87 100.00 75.89 99.50 69.18
GradNorm 97.84 78.23 97.31 78.57 98.00 71.44 98.46 80.03 97.90 77.07 100.00 85.80 99.00 69.54
KNN10 66.05 87.60 67.70 87.94 73.42 83.10 73.50 87.96 70.17 86.65 77.91 90.19 90.10 84.32
KNN20 66.17 87.50 68.38 87.83 73.90 82.93 73.66 87.82 70.53 86.52 77.91 89.84 89.80 84.13
KNN50 67.21 87.26 68.46 87.73 74.18 82.63 73.66 87.58 70.88 86.30 79.07 89.24 89.60 83.80
KNN100 68.78 86.98 69.14 87.53 75.50 82.30 74.27 87.36 71.92 86.04 82.56 88.68 89.80 83.59

Pre-train on 20% IIT-CDIP− (no fine-tune)

–

KNN10 85.63 66.10 85.17 70.34 92.58 60.29 93.43 56.85 89.20 63.40 30.23 95.72 83.20 83.84
KNN20 86.31 65.17 85.98 69.13 93.30 59.09 93.47 56.05 89.77 62.36 34.88 95.08 84.90 82.16
KNN50 87.31 63.50 87.63 67.11 93.38 57.17 94.16 54.60 90.62 60.60 44.19 94.07 87.50 79.74
KNN100 87.83 62.06 88.27 65.31 93.62 55.65 94.32 53.56 91.01 59.14 48.84 93.48 88.80 77.77

Pre-train on 40% IIT-CDIP−→ fine-tune on RVL-CDIP ID data

R
oB

E
R

Ta
B
a
se

(4
0%

)

90.72

MSP 93.84 68.86 93.69 67.62 95.41 63.91 94.20 65.25 94.28 66.41 96.51 63.32 98.90 54.02
MaxLogit 97.16 78.56 96.87 80.18 98.68 71.84 98.58 74.44 97.82 76.26 100.00 76.72 99.10 65.41
Energy 97.40 78.53 97.15 80.17 98.68 71.79 98.78 74.39 98.00 76.22 100.00 76.67 99.50 65.39
GradNorm 97.24 80.59 96.95 78.01 98.52 72.12 98.34 77.16 97.76 76.97 100.00 86.94 99.70 67.46
KNN10 66.89 87.91 68.58 86.90 77.61 82.31 76.58 85.39 72.41 85.63 75.58 89.45 86.40 84.23
KNN20 67.57 87.80 68.90 86.79 77.77 82.19 76.30 85.22 72.64 85.50 80.23 89.17 86.80 83.85
KNN50 67.97 87.58 69.67 86.67 78.01 81.98 76.66 84.85 73.08 85.27 80.23 88.63 87.20 83.21
KNN100 69.46 87.34 71.23 86.47 79.01 81.72 77.48 84.57 74.30 85.02 82.56 88.19 88.00 82.72

Pre-train on 40% IIT-CDIP− (no fine-tune)

–

KNN10 88.79 66.14 88.35 68.92 93.50 60.30 95.54 51.09 91.54 61.61 37.21 95.37 55.90 91.90
KNN20 89.59 65.07 89.80 67.61 93.89 59.10 95.58 50.17 92.21 60.49 46.51 94.41 61.50 91.00
KNN50 90.59 63.39 91.64 65.68 93.77 57.35 95.66 48.63 92.92 58.76 53.49 93.06 66.40 89.72
KNN100 91.19 61.79 92.37 63.90 93.66 55.78 95.62 47.42 93.21 57.22 65.12 91.99 68.30 88.72

Pre-train on 100% IIT-CDIP−→ fine-tune on RVL-CDIP ID data

R
oB

E
R

Ta
B
a
se

(1
00

%
)

90.74

MSP 94.12 68.24 94.29 66.18 95.93 63.83 95.21 65.66 94.89 65.98 98.84 59.25 96.50 65.42
MaxLogit 97.24 78.15 97.19 80.27 98.36 72.16 98.38 75.82 97.79 76.60 100.00 73.28 99.30 75.58
Energy 97.32 78.13 97.51 80.26 98.64 72.12 98.70 75.78 98.04 76.57 100.00 73.27 99.60 75.52
GradNorm 97.16 80.07 97.39 77.86 98.40 71.83 98.05 79.08 97.75 77.21 100.00 86.32 99.40 73.52
KNN10 66.81 87.86 69.67 86.91 77.49 82.60 74.59 86.28 72.14 85.91 81.40 87.74 76.90 88.49
KNN20 66.73 87.75 70.31 86.78 77.89 82.51 75.28 86.13 72.55 85.79 81.40 87.43 77.50 88.39
KNN50 67.25 87.54 70.59 86.62 77.85 82.32 75.41 85.84 72.78 85.58 83.72 86.85 77.80 88.23
KNN100 68.13 87.34 71.47 86.39 78.05 82.08 76.14 85.60 73.45 85.35 83.72 86.39 78.50 88.21

Pre-train on 100% IIT-CDIP− (no fine-tune)

–

KNN10 87.95 66.44 84.49 72.34 95.01 58.47 96.23 49.07 90.92 61.58 31.40 96.19 41.60 94.78
KNN20 88.91 65.39 85.70 71.25 95.33 57.19 96.59 48.06 91.63 60.47 34.88 95.50 48.40 94.12
KNN50 90.59 63.69 87.14 69.45 95.53 54.93 97.08 46.26 92.58 58.58 43.02 94.51 55.20 93.05
KNN100 91.75 62.08 88.55 67.85 95.89 53.05 97.20 44.81 93.35 56.95 50.00 93.60 61.10 92.04
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Table 5: OOD detection performance for document classification with different number of pre-training data from
IIT-CDIP− (remove pseudo OOD categories).

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Pre-train on 10% IIT-CDIP− → fine-tune on RVL-CDIP ID data

L
ay

ou
tL

M
v1

B
a
se

(1
0%

)

95.89

MSP 42.43 76.31 56.05 69.39 54.31 70.25 47.00 73.93 49.95 72.47 43.02 76.55 44.10 75.68
MaxLogit 41.91 91.27 55.04 89.33 54.19 85.20 44.97 90.93 49.03 89.18 38.37 94.27 41.30 91.38
Energy 41.83 91.29 54.92 89.35 54.11 85.22 45.01 90.97 48.97 89.21 38.37 94.29 41.10 91.42
GradNorm 39.15 91.80 54.04 86.93 51.88 86.05 42.49 91.65 46.89 89.11 38.37 91.79 41.40 91.82
KNN10 31.63 94.25 46.52 90.98 46.77 90.49 40.83 92.79 41.44 92.13 24.42 95.95 30.30 95.66
KNN20 32.03 94.11 46.65 90.89 47.01 90.32 41.60 92.63 41.82 91.99 26.74 95.76 31.80 95.44
KNN50 34.39 93.75 49.34 90.46 49.36 89.94 44.52 92.23 44.40 91.60 33.72 95.33 33.20 95.38
KNN100 36.15 93.47 51.27 90.19 51.36 89.65 46.63 91.99 46.35 91.32 33.72 95.10 35.10 95.16

Pre-train on 10% IIT-CDIP− (no fine-tune)

–

KNN10 90.95 72.30 94.66 65.49 90.94 72.38 94.40 67.32 92.74 69.37 48.84 91.56 56.00 75.08
KNN20 91.59 70.54 94.98 63.91 91.66 70.74 94.81 65.95 93.26 67.78 53.49 90.41 57.60 73.51
KNN50 93.07 67.76 95.54 61.24 92.78 68.27 95.25 64.01 94.16 65.32 55.81 88.37 58.50 71.06
KNN100 93.55 65.41 95.90 59.13 93.10 66.19 95.54 62.41 94.52 63.28 67.44 86.44 60.20 69.09

Pre-train on 20% IIT-CDIP− → fine-tune on RVL-CDIP ID data

L
ay

ou
tL

M
v1

B
a
se

(2
0%

)

95.84

MSP 49.20 76.78 61.51 70.13 62.37 69.49 55.52 73.64 57.15 72.51 50.00 77.99 50.70 75.90
MaxLogit 41.03 91.57 54.00 88.45 56.42 85.70 47.00 90.19 49.61 88.98 38.37 93.62 41.80 90.56
Energy 40.95 91.60 53.76 88.47 56.19 85.72 46.79 90.22 49.42 89.00 38.37 93.65 41.70 90.59
GradNorm 37.15 91.89 54.16 84.99 53.03 86.28 43.95 90.94 47.07 88.52 40.70 90.41 42.40 90.91
KNN10 31.63 94.17 47.69 90.29 47.49 90.50 40.54 92.92 41.84 91.97 31.40 95.65 34.50 95.15
KNN20 32.55 94.03 47.89 90.22 48.32 90.34 40.91 92.76 42.42 91.84 33.72 95.45 35.40 94.97
KNN50 35.71 93.67 49.74 89.82 51.04 89.99 44.12 92.39 45.15 91.47 36.05 95.01 36.20 94.92
KNN100 36.75 93.38 50.30 89.60 51.68 89.71 44.97 92.17 45.92 91.22 36.05 94.73 36.50 94.71

Pre-train on 20% IIT-CDIP− (no fine-tune)

–

KNN10 90.39 75.25 79.59 79.43 93.14 72.41 97.12 66.99 90.06 73.52 50.00 91.36 24.70 96.34
KNN20 90.63 73.75 80.47 78.51 93.81 70.58 97.16 65.54 90.52 72.10 55.81 89.91 26.90 95.94
KNN50 91.67 71.19 82.56 76.90 94.45 67.82 97.36 62.98 91.51 69.72 67.44 87.29 29.10 95.31
KNN100 91.95 69.19 83.73 75.55 95.33 65.37 97.36 60.84 92.09 67.74 74.42 84.78 30.30 94.75

Pre-train on 40% IIT-CDIP−→ fine-tune on RVL-CDIP ID data

L
ay

ou
tL

M
v1

B
a
se

(4
0%

)

96.01

MSP 51.76 75.76 62.39 69.63 63.37 68.75 54.22 74.03 57.94 72.04 55.81 71.69 42.50 80.56
MaxLogit 42.03 91.29 54.24 89.47 57.30 84.44 45.66 90.02 49.81 88.80 52.33 93.08 33.00 92.89
Energy 41.87 91.31 54.20 89.49 57.26 84.47 45.50 90.05 49.71 88.83 52.33 93.13 32.50 92.92
GradNorm 38.19 91.66 53.64 86.85 55.03 85.66 43.18 91.45 47.51 88.90 52.33 92.39 34.60 92.95
KNN10 31.47 94.43 47.13 90.63 48.20 90.45 38.11 93.30 41.23 92.20 27.91 95.78 24.70 96.09
KNN20 32.59 94.29 47.61 90.55 49.60 90.27 39.25 93.14 42.26 92.06 32.56 95.60 25.50 95.95
KNN50 34.87 93.93 49.50 90.10 52.11 89.87 42.29 92.75 44.69 91.66 38.37 95.16 26.40 95.95
KNN100 36.55 93.65 50.38 89.82 53.55 89.57 43.71 92.51 46.05 91.39 43.02 94.89 27.70 95.77

Pre-train on 40% IIT-CDIP−(no fine-tune)

–

KNN10 87.07 80.44 71.76 83.72 86.75 82.31 96.10 76.36 85.42 80.71 75.58 84.96 5.90 98.24
KNN20 88.95 79.03 74.93 82.31 88.99 81.11 96.71 75.01 87.40 79.36 80.23 82.56 7.20 97.93
KNN50 91.47 77.23 80.39 79.90 91.78 79.75 97.40 72.60 90.26 77.37 87.21 78.19 9.00 97.92
KNN100 90.75 75.27 84.77 77.48 91.74 78.31 97.16 70.26 91.10 75.33 89.53 74.11 14.20 97.49

Pre-train on 100% IIT-CDIP−→ fine-tune on RVL-CDIP ID data

L
ay

ou
tL

M
v1

B
a
se

(1
00

%
)

96.38

MSP 43.43 76.12 57.21 69.16 58.38 68.56 46.14 74.76 51.29 72.15 38.37 78.67 28.30 83.78
MaxLogit 35.19 91.29 50.22 88.98 53.19 84.54 39.98 90.71 44.64 88.88 24.42 96.39 21.40 95.57
Energy 35.23 91.32 50.22 89.00 53.19 84.55 39.98 90.73 44.65 88.90 24.42 96.44 21.40 95.58
GradNorm 30.30 92.54 48.61 88.18 48.96 86.58 36.16 92.63 41.01 89.98 19.77 96.71 19.20 96.35
KNN10 26.50 94.95 43.47 91.69 45.09 90.95 34.09 93.86 37.29 92.86 19.77 97.39 17.80 96.37
KNN20 27.22 94.83 44.07 91.58 45.41 90.79 34.62 93.71 37.83 92.73 19.77 97.22 18.40 96.26
KNN50 29.46 94.49 46.28 91.12 47.69 90.45 37.50 93.33 40.23 92.35 17.44 97.04 18.70 96.80
KNN100 32.15 94.26 48.17 90.85 50.64 90.21 40.38 93.12 42.83 92.11 19.77 96.88 20.70 96.74

Pre-train on 100% IIT-CDIP− (no fine-tune)

–

KNN10 78.74 81.67 74.45 80.86 80.53 83.71 95.01 77.33 82.18 80.89 38.37 94.62 17.70 96.12
KNN20 82.39 80.13 77.86 79.31 83.48 82.75 95.45 75.93 84.80 79.53 44.19 93.42 14.60 96.13
KNN50 86.03 77.65 82.80 76.60 86.91 81.30 96.10 73.07 87.96 77.16 54.65 91.09 9.60 97.21
KNN100 89.11 75.51 88.03 74.08 90.62 79.78 96.71 70.43 91.12 74.95 66.28 88.50 18.00 96.82
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Table 6: OOD detection performance for document classification. Spatial-RoBERTaBase (Pre) or SRBase (Pre)
denotes applying the spatial-aware adapter in the word embedding layer. Spatial-RoBERTaBase (Post) or SRBase

(Post) denotes applying the spatial-aware adaptor at the output layer.

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Fine-tune on RVL-CDIP (ID)

R
oB

E
R

Ta
B
a
se

90.19

MSP 91.19 73.70 90.84 73.49 91.82 71.53 91.03 72.35 91.22 72.77 93.02 80.94 97.60 74.59
MaxLogit 96.88 79.04 96.87 79.38 98.04 75.85 98.54 77.45 97.58 77.93 100.00 82.76 99.40 79.99
Energy 97.48 78.96 97.23 79.31 98.40 75.71 99.07 77.25 98.04 77.81 100.00 82.71 99.20 80.06
KNN10 53.20 88.94 58.50 88.62 61.37 86.25 63.72 88.29 59.20 88.02 22.09 96.52 68.60 92.47
KNN20 53.44 88.81 58.90 88.50 61.65 86.07 63.60 88.15 59.40 87.88 27.91 96.38 71.70 92.02
KNN50 53.84 88.52 59.42 88.42 62.01 85.81 64.16 87.80 59.86 87.64 32.56 96.07 74.30 91.37
KNN100 55.56 88.10 60.67 88.20 63.69 85.41 64.77 87.42 61.17 87.28 34.88 95.67 76.50 90.81

No fine-tune

–

KNN10 93.11 63.52 88.15 66.34 94.57 66.92 98.42 53.37 93.56 62.54 25.58 95.99 86.00 72.99
KNN20 92.99 63.18 88.39 65.78 94.57 66.08 98.42 52.10 93.59 61.78 26.74 95.71 87.30 70.44
KNN50 92.67 62.41 89.31 64.72 94.17 64.74 98.34 50.07 93.62 60.48 26.74 95.02 90.80 66.04
KNN100 92.67 61.57 89.59 63.57 94.01 63.45 98.17 48.33 93.61 59.23 29.07 94.34 92.80 61.62

Pre-train on IIT-CDIP → fine-tune on RVL-CDIP (ID)

SR
B
a
se

(P
re

) 97.11

MSP 46.80 74.52 54.64 70.58 56.26 69.72 54.30 70.74 53.00 71.39 44.19 75.79 57.20 69.23
MaxLogit 39.43 88.64 46.48 89.92 49.96 85.75 48.30 87.66 46.04 87.99 33.72 93.42 50.60 88.70
Energy 39.43 88.66 46.48 89.94 50.00 85.76 48.30 87.67 46.05 88.01 33.72 93.45 50.60 88.71
KNN10 31.91 94.41 42.19 92.65 46.65 89.31 42.09 92.65 40.71 92.26 10.47 97.45 52.10 92.93
KNN20 32.31 94.28 42.59 92.64 47.01 89.21 43.43 92.53 41.34 92.16 11.63 97.31 53.30 92.80
KNN50 34.39 93.99 43.83 92.36 49.04 88.93 45.41 92.19 43.17 91.87 12.79 97.01 53.10 92.51
KNN100 35.15 93.76 44.27 92.15 49.48 88.65 46.14 91.97 43.76 91.63 15.12 96.81 49.70 92.44

Pre-train on IIT-CDIP (no fine-tune)

–

KNN10 78.82 78.92 79.99 73.89 77.69 81.32 91.48 76.52 82.00 77.66 10.47 98.08 87.30 80.89
KNN20 79.74 77.95 82.64 72.17 79.81 80.40 92.13 75.11 83.58 76.41 16.28 97.60 92.10 76.94
KNN50 80.42 76.87 85.13 69.62 82.12 78.93 92.98 73.01 85.16 74.61 22.09 96.66 95.20 70.53
KNN100 81.43 75.70 86.90 67.19 83.40 77.12 93.38 71.07 86.28 72.77 27.91 95.86 96.60 64.56

SR
B
a
se

(P
os

t)

Fine-tune on RVL-CDIP (ID)

97.10

MSP 58.05 78.37 76.46 65.44 65.80 75.00 61.81 77.59 65.53 74.10 54.65 81.65 93.50 52.85
MaxLogit 49.20 89.82 72.36 80.28 57.82 87.28 52.52 90.04 57.98 86.86 34.88 94.88 91.60 73.37
Energy 47.56 89.87 71.96 80.30 56.58 87.32 51.18 90.10 56.82 86.90 34.88 95.04 91.30 73.39
KNN10 37.43 93.37 64.08 86.83 49.44 89.82 46.92 92.17 49.47 90.55 26.74 96.38 90.10 80.21
KNN20 38.27 93.25 65.33 86.52 50.80 89.66 48.09 91.99 50.62 90.35 26.74 96.23 91.20 79.57
KNN50 40.43 92.98 67.38 86.02 52.83 89.38 50.65 91.58 52.82 89.99 26.74 95.89 92.10 78.48
KNN100 41.99 92.77 67.94 85.62 53.87 89.17 51.22 91.33 53.76 89.72 29.07 95.67 92.60 77.68

Pre-train on IIT-CDIP→ fine-tune on RVL-CDIP (ID)

SR
L
a
rg

e
(P

re
) 97.37

MSP 62.37 67.82 71.27 63.36 72.87 62.54 70.25 63.84 69.19 64.39 76.74 60.61 67.00 65.48
MaxLogit 33.39 90.15 39.25 89.87 42.30 88.12 37.05 91.66 38.00 89.95 31.40 92.41 27.70 94.23
Energy 33.39 90.16 39.25 89.88 42.30 88.13 37.05 91.66 38.00 89.96 31.40 92.42 27.70 94.22
KNN10 28.18 94.47 42.43 93.01 37.43 91.74 31.13 94.72 34.79 93.49 25.58 96.24 18.60 96.28
KNN20 28.78 94.32 42.43 92.90 38.07 91.58 32.02 94.55 35.33 93.34 25.58 96.02 18.60 96.33
KNN50 30.22 93.95 43.71 92.69 40.06 91.26 34.54 94.10 37.13 93.00 26.74 95.52 21.40 96.14
KNN100 30.86 93.71 44.11 92.56 40.66 91.05 35.47 93.88 37.78 92.80 26.74 95.22 21.70 96.11

Pre-train on IIT-CDIP (no fine-tune)

–

KNN10 68.49 80.43 88.23 69.83 71.75 83.11 88.11 73.32 79.14 76.67 75.58 84.36 49.80 92.02
KNN20 71.74 78.77 90.24 67.41 75.66 81.38 89.04 71.14 81.67 74.68 81.40 81.55 62.20 90.29
KNN50 75.46 76.49 92.81 63.82 80.17 78.72 90.42 67.84 84.72 71.72 82.56 77.15 78.20 87.49
KNN100 77.62 74.59 94.42 60.94 83.16 76.25 91.80 65.30 86.75 69.27 84.88 73.34 88.20 84.96
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Table 7: OOD detection performance for document classification with the different number of pre-training data
from IIT-CDIP.

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Pre-train on 10% IIT-CDIP→ fine-tune on RVL-CDIP (ID)

V
iT

B
a
se

(1
0%

)

94.89

MSP 55.80 88.37 48.61 91.38 63.93 83.83 55.52 88.55 55.96 88.03 52.05 89.60 34.10 95.04
MaxLogit 50.36 91.51 37.77 94.30 62.37 87.97 53.69 92.11 51.05 91.47 38.36 94.24 28.60 96.06
Energy 50.56 91.48 37.08 94.33 63.49 87.89 55.19 92.00 51.58 91.42 38.36 94.29 29.40 95.96
GradNorm 55.56 79.75 45.96 84.79 66.92 74.07 58.44 81.07 56.72 79.92 47.95 82.04 34.90 91.68
KNN10 50.40 92.60 43.51 93.92 51.60 90.54 74.47 88.87 55.00 91.48 20.55 97.19 9.20 98.21
KNN20 49.80 92.70 40.38 94.43 53.39 90.26 74.72 88.77 54.57 91.54 23.29 96.98 10.40 98.05
KNN50 46.72 92.89 34.27 95.24 56.07 89.92 74.55 88.45 52.90 91.62 27.40 96.56 12.80 97.80
KNN100 45.48 92.89 29.33 95.67 57.62 89.56 75.04 88.25 51.87 91.59 30.14 96.21 15.00 97.57

Pre-train on IIT-CDIP (no fine-tune)

–

KNN10 98.92 43.08 97.67 49.00 99.52 54.41 99.35 40.26 98.86 46.69 93.15 92.51 6.90 98.06
KNN20 98.88 42.47 97.75 48.57 99.52 53.75 99.35 39.56 98.88 46.09 94.52 92.24 8.60 97.91
KNN50 98.80 41.70 97.83 48.04 99.52 52.91 99.35 38.62 98.88 45.32 95.89 91.80 10.60 97.66
KNN100 98.76 41.20 97.79 47.70 99.48 52.32 99.35 38.01 98.84 44.81 98.63 91.31 14.50 97.41

Pre-train on 20% IIT-CDIP→ fine-tune on RVL-CDIP (ID)

V
iT

B
a
se

(2
0%

)

94.62

MSP 54.36 89.01 51.63 91.31 64.57 85.23 60.51 88.67 57.77 88.56 60.27 89.34 44.20 93.73
MaxLogit 44.32 92.16 38.21 94.18 64.92 87.63 58.56 91.33 51.50 91.32 45.21 92.63 39.70 94.36
Energy 44.36 92.17 37.89 94.24 66.56 87.51 60.39 91.22 52.30 91.28 46.58 92.62 41.50 94.18
GradNorm 90.51 54.92 92.04 51.67 94.29 45.41 98.13 32.36 93.74 46.09 95.89 40.44 89.70 59.01
KNN10 52.20 92.58 45.84 93.73 53.79 90.75 77.84 87.02 57.42 91.02 17.81 97.33 16.90 97.40
KNN20 51.60 92.66 43.55 94.15 55.63 90.46 78.04 86.79 57.20 91.02 19.18 97.06 19.40 97.11
KNN50 50.12 92.86 39.98 94.82 58.02 90.18 78.77 86.54 56.72 91.10 19.18 96.63 23.10 96.68
KNN100 48.04 92.91 34.75 95.28 60.38 89.88 78.98 86.42 55.54 91.12 20.55 96.27 26.20 96.35

Pre-train on IIT-CDIP (no fine-tune)

–

KNN10 98.16 41.13 97.51 47.12 99.48 53.05 99.31 38.79 98.62 45.02 94.52 91.80 8.00 97.41
KNN20 98.12 40.71 97.51 46.79 99.48 52.52 99.31 38.31 98.60 44.58 94.52 91.48 8.70 97.25
KNN50 98.04 40.10 97.55 46.31 99.48 51.84 99.39 37.63 98.62 43.97 95.89 91.01 11.50 96.99
KNN100 98.00 39.74 97.55 45.98 99.48 51.34 99.39 37.26 98.60 43.58 97.26 90.55 14.60 96.70

Pre-train on 40% IIT-CDIP→ fine-tune on RVL-CDIP (ID)

V
iT

B
a
se

(4
0%

)

94.63

MSP 55.48 88.65 52.27 91.54 64.49 85.52 58.08 89.20 57.58 88.73 67.12 84.62 45.80 93.82
MaxLogit 47.12 91.74 40.06 94.09 61.05 88.68 56.57 92.01 51.20 91.63 69.86 89.81 32.90 95.46
Energy 47.12 91.73 39.94 94.10 62.33 88.62 58.60 91.88 52.00 91.58 69.86 89.65 32.70 95.44
GradNorm 47.00 85.76 41.90 89.64 60.69 81.37 53.73 87.06 50.83 85.96 64.38 81.12 34.00 92.93
KNN10 53.28 92.13 48.33 92.99 46.45 92.20 75.61 88.87 55.92 91.55 34.25 95.53 6.80 98.56
KNN20 52.76 92.24 45.88 93.57 48.12 91.95 74.84 88.75 55.40 91.63 32.88 95.21 7.80 98.36
KNN50 51.28 92.52 40.94 94.51 50.52 91.70 75.08 88.46 54.46 91.80 35.62 94.67 10.90 98.04
KNN100 50.32 92.62 36.16 95.12 53.35 91.36 75.93 88.24 53.94 91.84 39.73 94.25 13.60 97.76

Pre-train on IIT-CDIP (no fine-tune)

–

KNN10 97.56 40.60 97.03 46.28 99.24 53.76 99.15 39.62 98.24 45.06 82.19 92.02 1.00 99.59
KNN20 97.56 40.00 96.95 45.86 99.24 53.18 99.15 39.12 98.22 44.54 82.19 91.63 1.00 99.55
KNN50 97.56 39.24 96.99 45.20 99.24 52.39 99.15 38.49 98.24 43.83 86.30 91.07 1.00 99.50
KNN100 97.60 38.78 97.03 44.79 99.24 51.76 99.15 38.15 98.26 43.37 90.41 90.67 1.20 99.45

Pre-train on 100% IIT-CDIP→ fine-tune on RVL-CDIP (ID)

V
iT

B
a
se

(1
00

%
)

94.79

MSP 54.28 88.80 49.14 91.80 64.60 84.45 58.85 88.78 56.72 88.46 61.64 89.44 41.00 94.27
MaxLogit 44.96 92.13 38.01 94.52 63.97 87.97 56.49 91.81 50.86 91.61 68.49 90.65 34.60 95.26
Energy 45.72 92.11 38.01 94.55 65.84 87.86 57.91 91.70 51.87 91.56 72.60 90.41 34.80 95.14
GradNorm 48.72 84.21 44.36 87.50 63.49 78.07 56.25 84.79 53.20 83.64 60.27 82.96 35.60 91.24
KNN10 45.16 93.14 39.13 94.62 51.68 90.85 73.58 88.81 52.39 91.86 50.68 93.09 10.40 98.04
KNN20 44.88 93.14 36.64 95.04 53.35 90.59 74.27 88.67 52.28 91.86 50.68 92.67 12.00 97.81
KNN50 43.67 93.19 31.18 95.60 56.74 90.29 75.28 88.49 51.72 91.89 57.53 92.23 15.60 97.45
KNN100 43.63 93.15 27.52 95.94 58.74 90.02 76.18 88.38 51.52 91.87 61.64 92.01 18.90 97.18

Pre-train on IIT-CDIP (no fine-tune)

–

KNN10 97.04 42.35 93.97 50.17 97.41 52.68 98.01 43.19 96.61 47.10 12.33 97.47 3.10 98.38
KNN20 97.16 41.99 94.01 49.96 97.81 52.01 98.09 42.73 96.77 46.67 15.07 96.95 3.00 98.31
KNN50 96.96 41.62 94.34 49.56 98.00 51.20 98.05 42.24 96.84 46.16 21.92 96.08 2.70 98.18
KNN100 97.00 41.48 94.90 49.31 98.12 50.65 98.13 42.03 97.04 45.87 36.99 95.29 2.30 98.27

Table 8: OOD detection performance for document classification. Longformer4096 denotes the original model
adopted from the Huggingface model hub. Longformer4096 (+) denotes the additional pre-training on IIT-CDIP.

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Fine-tune on RVL-CDIP (ID)

L
on

gf
or

m
er

4
0
9
6

90.71

MSP 95.00 64.32 95.62 62.17 95.89 60.53 93.95 66.89 95.12 63.48 88.37 77.50 98.60 54.72
MaxLogit 97.12 72.84 97.07 75.22 98.24 70.39 95.82 77.57 97.06 74.00 90.70 86.62 99.60 68.10
Energy 97.48 72.82 97.35 75.21 98.36 70.37 96.59 77.56 97.44 73.99 91.86 86.63 99.80 68.08
KNN10 58.45 88.21 65.65 86.88 67.80 83.99 56.78 89.53 62.17 87.15 27.91 96.01 82.10 86.31
KNN20 58.97 88.04 65.57 86.60 68.12 83.80 57.35 89.34 62.50 86.94 29.07 95.82 82.60 85.93
KNN50 60.25 87.64 66.57 86.25 68.91 83.41 58.81 88.96 63.64 86.56 30.23 95.46 82.70 85.27
KNN100 61.97 87.19 68.14 85.81 70.15 82.95 60.47 88.60 65.18 86.14 34.88 95.04 82.80 84.75

No fine-tune

–

KNN10 98.04 55.45 97.63 59.97 98.76 51.75 98.13 53.16 98.14 55.08 70.93 88.69 100.00 64.97
KNN20 98.12 55.19 97.67 59.64 98.80 51.27 98.17 52.71 98.19 54.70 70.93 88.51 100.00 64.08
KNN50 98.00 54.82 97.63 59.13 98.80 50.57 98.30 52.07 98.18 54.15 73.26 88.29 100.00 62.82
KNN100 97.92 54.48 97.67 58.62 98.84 50.00 98.34 51.62 98.19 53.68 74.42 88.14 100.00 61.70

Pre-train on IIT-CDIP→ fine-tune on RVL-CDIP (ID)

L
on

gf
or

m
er

4
0
9
6

(+
)

91.13

MSP 95.20 64.08 95.62 61.38 96.05 59.47 94.48 63.13 95.34 62.02 90.70 67.26 98.00 55.52
MaxLogit 96.96 75.41 96.54 76.03 97.89 70.15 96.71 74.56 97.02 74.04 100.00 78.65 99.70 72.88
Energy 97.28 75.40 96.54 76.03 98.28 70.14 97.16 74.55 97.32 74.03 100.00 78.59 99.70 72.86
KNN10 58.73 89.25 66.21 87.57 72.03 83.76 63.68 88.72 65.16 87.32 48.84 94.78 86.40 87.84
KNN20 58.61 89.18 65.97 87.45 71.67 83.69 63.39 88.61 64.91 87.23 48.84 94.62 85.30 87.70
KNN50 61.17 88.96 66.97 87.29 72.83 83.47 65.83 88.33 66.70 87.01 55.81 94.25 85.20 87.39
KNN100 61.73 88.79 66.93 87.11 73.30 83.24 66.15 88.15 67.03 86.82 55.81 94.00 84.70 87.21

Pre-train on IIT-CDIP (no fine-tune)

–

KNN10 95.48 61.40 98.07 53.66 97.73 55.55 98.66 48.70 97.49 54.83 81.40 91.12 97.40 46.27
KNN20 95.56 60.92 97.95 52.95 97.49 54.97 98.50 48.21 97.38 54.26 84.88 90.62 97.50 45.55
KNN50 95.60 59.94 97.95 51.77 97.41 53.97 98.62 47.29 97.40 53.24 87.21 89.95 98.20 44.18
KNN100 95.60 59.04 97.99 50.74 97.21 52.99 98.58 46.51 97.34 52.32 88.37 89.52 98.50 43.09
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Table 9: OOD detection performance for document classification. All models are pre-trained on ImageNet.

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

R
es

N
et

-5
0

91.12

MSP 64.49 87.87 55.89 90.94 66.60 87.31 77.88 80.87 66.22 86.75 51.16 92.76 63.10 90.36
MaxLogit 64.89 88.59 47.97 92.81 65.40 87.52 77.56 81.87 63.96 87.70 41.86 94.62 54.00 93.29
Energy 67.09 88.30 47.81 92.86 66.68 87.24 78.53 81.75 65.03 87.54 39.53 94.73 48.50 93.68
KNN10 73.38 86.82 67.98 87.46 71.31 87.84 92.90 77.74 76.39 84.96 6.98 99.12 5.20 98.98
KNN20 74.90 86.41 66.29 87.79 73.82 87.21 93.95 76.51 77.24 84.48 6.98 98.96 5.50 98.85
KNN50 76.66 86.04 66.41 88.48 78.29 86.39 95.50 74.76 79.22 83.92 5.81 98.68 5.90 98.70
KNN100 77.54 85.61 65.41 88.99 82.16 85.43 96.23 73.37 80.33 83.35 6.98 98.34 6.30 98.51

Pre-train on ImageNet

–

KNN10 96.96 51.14 94.62 51.75 98.76 53.84 99.59 37.60 97.48 48.58 83.56 85.00 20.80 97.00
KNN20 96.96 50.37 94.34 51.54 98.92 52.98 99.59 36.60 97.45 47.87 83.56 84.49 22.70 96.71
KNN50 96.92 49.29 94.29 51.30 99.00 51.84 99.59 35.15 97.45 46.90 83.56 84.03 26.70 96.21
KNN100 97.12 48.60 94.54 51.25 99.16 51.11 99.55 34.36 97.59 46.33 82.19 83.31 29.40 95.67

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

Sw
in

B
a
se

95.74

MSP 47.64 88.09 49.90 88.11 58.22 83.14 50.28 88.90 51.51 87.06 49.32 91.31 36.50 93.63
MaxLogit 42.39 93.11 42.47 93.45 58.62 88.79 45.90 93.18 47.34 92.13 50.68 92.50 32.20 95.65
Energy 43.15 93.05 42.95 93.40 59.02 88.70 46.71 93.07 47.96 92.06 52.05 92.38 33.60 95.49
KNN10 49.44 92.82 46.73 92.87 42.90 92.57 72.69 88.45 52.94 91.68 16.44 96.73 6.10 98.30
KNN20 48.84 92.95 43.27 93.51 44.53 92.32 72.28 88.35 52.23 91.78 17.81 96.52 7.40 98.10
KNN50 46.44 93.26 39.25 94.57 47.41 92.09 73.34 87.87 51.61 91.95 26.03 96.15 8.60 97.80
KNN100 43.76 93.42 35.03 95.29 50.08 91.72 75.77 87.42 51.16 91.96 28.77 95.94 11.30 97.55

Pre-train on ImageNet

–

KNN10 98.56 52.75 95.06 55.14 99.36 58.85 99.80 41.86 98.20 52.15 65.75 93.26 2.10 99.35
KNN20 98.44 51.86 95.18 54.72 99.32 57.88 99.80 40.66 98.18 51.28 68.49 92.52 2.60 99.22
KNN50 98.52 50.69 95.38 54.13 99.16 56.61 99.76 39.01 98.20 50.11 78.08 91.14 3.40 98.99
KNN100 98.72 49.96 95.66 53.80 99.16 55.84 99.76 38.16 98.32 49.44 79.45 89.89 4.30 98.77

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

V
iT

B
a
se

94.38

MSP 56.81 89.14 52.19 91.80 67.48 84.26 59.90 88.77 59.10 88.49 47.67 92.98 59.50 91.99
MaxLogit 50.76 91.37 44.60 93.75 68.04 86.94 55.15 91.81 54.64 90.97 40.70 94.20 52.40 93.16
Energy 51.16 91.31 44.52 93.75 69.43 86.81 56.09 91.77 55.30 90.91 38.37 94.11 53.20 93.11
KNN10 62.57 90.12 57.73 90.91 53.67 90.36 84.50 86.19 64.62 89.40 12.79 97.96 13.00 97.92
KNN20 63.01 90.24 56.01 91.51 55.03 90.02 84.38 86.01 64.61 89.44 15.12 97.76 14.90 97.67
KNN50 61.97 90.62 53.23 92.62 58.26 89.57 84.25 85.64 64.43 89.61 16.28 97.38 19.80 97.24
KNN100 60.29 90.85 49.70 93.53 60.38 89.07 84.01 85.43 63.60 89.72 16.28 97.05 23.60 96.82

Pre-train on ImageNet

–

KNN10 98.48 52.15 95.02 56.94 99.48 53.77 99.47 38.90 98.11 50.44 93.15 90.27 20.40 97.13
KNN20 98.48 51.41 95.06 56.61 99.44 52.92 99.55 37.61 98.13 49.64 94.52 89.44 22.60 96.80
KNN50 98.32 50.43 94.86 56.21 99.40 51.86 99.59 35.82 98.04 48.58 97.26 88.23 26.60 96.25
KNN100 98.40 49.76 95.06 55.90 99.44 51.15 99.59 34.59 98.12 47.85 98.63 87.24 31.20 95.76
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Table 10: OOD detection performance for document classification (select OOD categories achieve the best
performance across most of the models with different modalities).

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Email Resume File folder Sci. publication Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Pre-train on pure-text data→ fine-tune on RVL-CDIP (ID)

R
oB

E
R

Ta
B
a
se 86.13

MSP 96.22 60.38 90.67 71.72 93.82 59.47 93.86 65.51 93.64 64.27 91.86 70.57 93.00 69.99
MaxLogit 99.21 66.57 95.80 73.66 95.47 66.81 97.09 65.63 96.89 68.17 94.19 77.17 94.60 74.69
Energy 99.60 66.53 96.64 73.57 95.14 66.82 97.21 65.35 97.15 68.07 94.19 77.44 95.60 74.90
KNN10 83.70 82.77 69.02 84.28 88.32 74.06 86.11 74.02 81.79 78.78 43.02 92.74 72.00 88.87
KNN20 84.50 82.35 69.06 84.21 88.20 73.71 86.72 74.02 82.12 78.57 48.84 92.38 73.80 88.31
KNN50 84.98 81.57 68.86 84.06 88.08 73.01 87.08 73.94 82.25 78.14 54.65 91.92 75.40 87.44
KNN100 86.25 80.88 70.26 83.80 88.28 72.40 87.44 73.89 83.06 77.74 58.14 91.50 78.20 86.68

Pre-train on pure-text data

–

KNN10 86.09 75.63 95.12 58.62 97.71 59.75 98.95 50.54 94.47 61.14 10.47 98.46 89.80 63.01
KNN20 86.29 74.92 95.00 58.14 97.71 58.88 99.03 49.49 94.51 60.36 12.79 98.35 90.80 60.59
KNN50 87.32 73.55 94.64 57.53 97.83 57.56 99.15 48.11 94.73 59.19 12.79 98.11 93.30 56.61
KNN100 89.27 72.48 94.28 57.12 97.99 56.52 99.11 47.37 95.16 58.37 11.63 97.89 94.30 52.98

Pre-train on pure-text data→ fine-tune on RVL-CDIP (ID)

L
on

gf
or

m
er

4
0
9
6 88.34

MSP 96.90 60.55 96.20 59.14 96.31 55.72 97.82 55.12 96.81 57.63 95.35 80.44 99.60 52.82
MaxLogit 98.97 68.97 97.60 65.64 95.67 63.42 98.63 62.87 97.72 65.23 97.67 88.42 99.70 71.54
Energy 99.44 68.96 97.92 65.63 95.83 63.42 98.71 62.83 97.98 65.21 97.67 88.46 99.90 71.55
KNN10 68.28 88.72 69.62 83.36 78.17 85.08 90.88 74.98 76.74 83.04 16.28 96.90 81.60 86.94
KNN20 68.04 88.61 70.10 83.22 77.53 84.92 90.75 74.95 76.60 82.92 16.28 96.84 81.80 86.49
KNN50 69.28 88.29 70.98 82.92 78.29 84.46 90.96 74.82 77.38 82.62 19.77 96.59 83.40 85.71
KNN100 69.28 88.15 71.34 82.69 78.49 84.21 90.43 74.86 77.39 82.48 22.09 96.38 83.90 85.17

Pre-train on pure-text data

–

KNN10 97.42 47.77 95.72 50.09 97.67 46.58 99.52 38.61 97.58 45.76 45.35 93.92 100.00 63.03
KNN20 97.46 46.91 95.60 49.80 97.71 46.02 99.52 38.21 97.57 45.24 46.51 93.77 100.00 61.92
KNN50 97.58 45.68 95.56 49.45 97.75 45.19 99.52 37.72 97.60 44.51 50.00 93.60 100.00 60.35
KNN100 97.66 44.78 95.60 49.17 97.87 44.63 99.56 37.57 97.67 44.04 51.16 93.48 100.00 58.89

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

R
es

N
et

-5
0

85.25

MSP 60.53 87.26 69.53 87.00 27.86 95.13 94.05 75.79 62.99 86.30 91.78 74.40 27.80 95.47
MaxLogit 59.98 89.27 72.61 88.02 30.04 95.41 93.39 75.38 64.00 87.02 80.82 79.89 30.00 95.29
Energy 63.71 89.14 75.64 87.55 45.71 94.15 92.77 75.02 69.46 86.46 78.08 81.07 62.20 93.44
KNN10 72.46 85.68 85.69 85.30 68.62 76.01 96.15 55.35 80.73 75.59 36.99 94.56 2.20 99.37
KNN20 76.15 84.55 88.65 84.22 66.13 80.67 96.54 56.31 81.87 76.44 38.36 93.81 2.70 99.28
KNN50 80.37 82.61 92.00 82.49 60.98 86.77 96.93 59.06 82.57 77.73 47.95 92.42 3.80 99.11
KNN100 84.70 80.54 95.15 80.64 51.29 91.78 97.16 61.19 82.08 78.54 50.68 91.01 4.70 98.91

Pre-train on ImageNet

–

KNN10 99.72 40.94 99.65 21.52 52.47 91.03 98.33 45.40 87.54 49.72 84.93 84.38 20.40 97.12
KNN20 99.68 41.18 99.65 20.68 50.61 91.63 98.41 44.65 87.09 49.54 86.30 83.94 23.40 96.87
KNN50 99.64 41.58 99.65 19.48 46.97 92.36 98.37 43.49 86.16 49.23 84.93 83.70 26.90 96.43
KNN100 99.64 42.19 99.65 18.98 44.91 92.84 98.33 42.86 85.63 49.22 84.93 83.12 29.20 95.98

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

Sw
in

B
a
se

91.25

MSP 70.23 81.87 67.68 85.31 43.97 92.68 83.78 79.40 66.42 84.82 86.30 78.23 54.10 91.62
MaxLogit 54.73 87.04 46.51 92.30 17.25 96.51 90.86 74.11 52.34 87.49 82.19 83.20 34.40 94.82
Energy 54.05 87.11 44.38 92.49 16.38 96.63 91.29 73.59 51.53 87.46 84.93 83.07 33.80 94.82
KNN10 56.08 90.66 48.80 92.84 38.31 93.31 91.02 66.91 58.55 85.93 27.40 96.03 3.30 98.84
KNN20 54.61 90.95 49.98 92.68 27.58 95.24 91.44 68.54 55.90 86.85 26.03 96.35 4.00 98.76
KNN50 55.25 90.68 52.15 92.37 15.75 97.28 91.25 71.62 53.60 87.99 28.77 96.10 4.90 98.59
KNN100 56.20 90.31 54.75 92.17 9.14 98.00 91.13 75.11 52.80 88.90 30.14 95.77 6.50 98.35

Pre-train on ImageNet

–

KNN10 99.84 43.55 99.76 20.64 47.92 93.20 98.91 37.55 86.61 48.74 58.90 93.88 1.60 99.32
KNN20 99.84 43.78 99.76 19.61 44.76 93.61 98.91 37.01 85.82 48.50 65.75 93.42 2.10 99.20
KNN50 99.84 44.47 99.80 18.36 41.31 94.14 99.03 36.45 85.00 48.36 72.60 92.69 2.60 99.00
KNN100 99.88 45.26 99.80 17.92 39.97 94.39 99.03 36.71 84.67 48.57 79.45 91.97 3.70 98.81

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

V
iT

B
a
se

89.97

MSP 61.25 85.84 66.57 85.04 40.44 93.10 85.84 81.83 63.52 86.45 73.97 80.66 60.30 90.41
MaxLogit 53.02 90.37 55.77 88.86 19.91 96.25 92.38 79.69 55.27 88.79 76.71 85.16 50.60 93.12
Energy 51.79 90.49 55.07 89.03 17.53 96.53 92.69 79.20 54.27 88.81 79.45 85.01 50.10 93.20
KNN10 54.13 91.18 52.86 91.18 58.49 87.46 92.88 65.98 64.59 83.95 42.47 95.07 11.00 97.94
KNN20 54.21 91.18 53.17 90.99 50.61 89.35 93.04 67.52 62.76 84.76 43.84 94.98 13.10 97.62
KNN50 54.53 91.05 53.33 90.79 41.95 92.82 93.00 72.06 60.70 86.68 42.47 94.74 17.30 97.12
KNN100 54.65 90.81 54.12 90.56 30.79 95.78 93.04 75.39 58.15 88.14 45.21 94.24 22.00 96.58

Pre-train on ImageNet

–

KNN10 99.80 46.46 99.68 26.50 58.65 90.61 98.72 46.40 89.21 52.49 87.67 91.39 19.90 97.25
KNN20 99.80 46.02 99.65 25.69 57.30 91.01 98.72 46.46 88.87 52.30 90.41 90.87 21.70 97.01
KNN50 99.80 45.48 99.61 24.76 55.16 91.52 98.76 46.69 88.33 52.11 94.52 89.99 24.30 96.62
KNN100 99.80 45.33 99.65 24.43 54.81 91.90 98.72 47.10 88.24 52.19 95.89 89.31 28.80 96.27
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Table 11: OOD detection performance for document classification (randomly select four categories as OOD).

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Letter Handwritten Advertisement Memo Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
Pre-train on pure-text data→ fine-tune on RVL-CDIP (ID)

R
oB

E
R

Ta
B
a
se 88.86

MSP 70.22 79.21 50.14 87.24 84.64 67.80 91.42 57.99 74.10 73.06 95.35 59.75 94.30 55.12
MaxLogit 66.04 87.51 39.65 92.53 86.47 77.03 91.67 71.84 70.96 82.23 100.00 77.89 96.80 71.96
Energy 66.20 87.57 38.19 92.59 87.35 77.03 91.67 71.89 70.85 82.27 100.00 77.92 96.80 71.96
KNN10 62.62 80.19 60.98 70.90 75.62 80.24 85.84 69.20 71.26 75.13 94.19 81.99 90.40 82.48
KNN20 63.18 80.10 60.07 71.17 75.90 80.03 85.72 68.88 71.22 75.04 94.19 81.75 91.20 81.89
KNN50 63.78 80.00 57.30 71.70 76.34 79.67 85.88 68.38 70.82 74.94 94.19 81.45 91.80 81.09
KNN100 64.77 79.98 54.33 71.94 77.37 79.32 86.08 67.80 70.64 74.76 94.19 81.20 91.90 80.47

Pre-train on pure-text data

–

KNN10 85.53 59.90 98.61 21.79 96.21 56.72 97.69 58.39 94.51 49.20 12.79 98.01 84.50 65.73
KNN20 85.45 59.27 98.73 21.19 96.21 55.63 97.90 57.05 94.57 48.28 12.79 97.91 86.10 63.57
KNN50 86.80 57.94 98.77 20.45 96.89 54.12 98.30 55.35 95.19 46.96 13.95 97.60 89.30 59.64
KNN100 88.47 56.71 98.81 19.97 96.81 52.89 98.18 53.93 95.57 45.88 13.95 97.38 91.10 55.17

Pre-train on pure-text data→ fine-tune on RVL-CDIP (ID)

L
on

gf
or

m
er

4
0
9
6 92.08

MSP 65.96 69.58 50.38 77.93 81.52 60.89 90.21 54.23 72.02 65.66 82.56 60.14 95.00 50.90
MaxLogit 62.19 87.35 44.64 89.79 79.97 78.84 88.39 68.08 68.80 81.02 80.23 84.19 94.30 77.36
Energy 61.27 87.35 43.61 89.81 79.13 78.85 88.15 68.08 68.04 81.02 80.23 84.19 94.30 77.37
KNN10 58.65 79.54 50.77 71.81 66.56 83.48 80.87 75.19 64.21 77.51 58.14 92.78 90.00 77.76
KNN20 57.81 79.43 51.40 71.72 67.00 83.35 81.15 74.86 64.34 77.34 58.14 92.57 89.70 77.12
KNN50 58.77 79.30 51.60 71.67 66.72 83.15 81.31 74.36 64.60 77.12 61.63 92.24 89.80 76.17
KNN100 61.39 79.16 52.75 71.61 67.84 82.93 81.76 73.91 65.94 76.90 62.79 91.99 89.80 75.29

Pre-train on pure-text data

–

KNN10 99.40 47.83 100.00 27.75 98.28 47.03 93.20 60.40 97.72 45.75 46.51 93.85 100.00 63.64
KNN20 99.44 47.33 100.00 27.48 98.32 46.49 93.24 60.22 97.75 45.38 48.84 93.70 100.00 62.79
KNN50 99.44 46.33 100.00 27.23 98.40 45.85 93.41 60.05 97.81 44.86 51.16 93.51 100.00 61.55
KNN100 99.44 45.67 100.00 27.31 98.44 45.23 93.53 59.90 97.85 44.53 52.33 93.40 100.00 60.31

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

R
es

N
et

-5
0

87.80

MSP 70.58 85.35 55.29 89.88 64.29 86.54 71.15 85.58 65.33 86.84 54.79 91.70 77.20 84.67
MaxLogit 64.25 87.46 53.59 90.72 49.70 90.60 64.45 88.71 58.00 89.37 36.99 95.13 78.90 86.86
Energy 62.66 87.65 58.33 90.33 46.00 91.26 63.56 89.05 57.64 89.57 32.88 95.69 83.00 87.05
KNN10 90.99 79.37 56.36 90.64 72.41 86.20 89.17 81.74 77.23 84.49 2.74 99.32 39.70 93.70
KNN20 92.17 78.00 47.47 92.61 68.27 88.42 90.85 80.23 74.69 84.82 2.74 99.25 43.80 93.08
KNN50 94.32 75.96 28.44 94.49 65.65 89.27 92.78 77.91 70.30 84.41 1.37 98.97 49.70 92.09
KNN100 95.58 74.02 27.21 95.07 60.44 89.78 94.22 75.63 69.36 83.62 2.74 98.67 53.80 91.10

Pre-train on ImageNet

–

KNN10 98.46 42.21 77.29 81.41 27.87 91.16 99.08 43.47 75.68 64.56 80.82 89.98 12.30 98.17
KNN20 98.66 41.00 76.78 81.70 29.22 92.27 99.08 42.29 75.94 64.32 83.56 89.30 14.10 97.97
KNN50 98.58 39.53 76.58 81.81 31.01 92.05 99.12 40.80 76.32 63.55 83.56 88.51 16.30 97.61
KNN100 98.62 38.62 77.13 81.49 32.64 91.84 99.12 39.86 76.88 62.95 83.56 87.80 19.50 97.23

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

Sw
in

B
a
se

92.42

MSP 63.96 87.03 65.21 88.15 73.56 79.72 61.40 88.46 66.03 85.84 84.93 74.34 49.60 92.49
MaxLogit 56.49 90.22 75.36 87.00 72.64 84.26 44.22 93.01 62.18 88.62 72.60 84.16 29.10 95.70
Energy 57.43 90.11 77.01 86.60 73.44 84.17 43.78 93.06 62.92 88.48 73.97 84.25 28.00 95.69
KNN10 60.27 90.12 66.90 90.76 49.66 89.15 47.67 92.67 56.12 90.68 42.47 94.28 7.20 98.56
KNN20 61.32 90.01 61.37 91.31 48.83 90.33 49.00 92.52 55.13 91.04 30.14 95.56 8.80 98.33
KNN50 62.22 89.78 56.44 91.56 50.34 89.55 48.52 92.30 54.38 90.80 26.03 95.72 11.80 97.97
KNN100 62.62 89.60 54.98 91.85 50.70 88.93 47.63 92.18 53.98 90.64 30.14 95.54 13.90 97.66

Pre-train on ImageNet

–

KNN10 99.15 45.57 86.02 79.44 32.45 90.98 99.52 46.20 79.28 65.55 24.66 96.24 0.40 99.78
KNN20 99.19 44.11 86.89 80.35 33.48 92.19 99.60 44.79 79.79 65.36 27.40 95.62 0.50 99.73
KNN50 99.23 42.39 87.99 81.66 36.78 91.59 99.60 43.07 80.90 64.68 43.84 94.57 0.80 99.63
KNN100 99.19 41.46 89.02 82.63 40.60 91.05 99.60 42.14 82.10 64.32 52.05 93.49 1.20 99.53

Pre-train on ImageNet→ fine-tune on RVL-CDIP (ID)

V
iT

B
a
se

91.03

MSP 69.68 86.81 69.67 87.88 72.25 80.78 69.38 86.61 70.24 85.52 67.12 85.97 58.50 91.47
MaxLogit 63.35 89.20 68.40 88.58 69.58 84.38 61.08 89.94 65.60 88.02 57.53 89.41 48.40 93.04
Energy 62.22 89.21 70.34 88.43 70.26 84.37 60.75 90.03 65.89 88.01 58.90 89.47 49.70 93.03
KNN10 68.10 88.99 54.90 92.30 53.44 88.05 58.19 91.34 58.66 90.17 38.36 95.02 22.90 96.71
KNN20 67.61 88.95 49.01 92.85 51.53 89.25 58.59 91.16 56.68 90.55 41.10 94.47 25.40 96.35
KNN50 67.29 88.91 42.54 93.15 53.96 88.43 58.75 90.88 55.64 90.34 42.47 93.60 29.90 95.78
KNN100 66.19 88.90 43.80 93.19 55.71 87.73 59.11 90.64 56.20 90.12 45.21 92.86 34.90 95.27

Pre-train on ImageNet

–

KNN10 98.90 41.98 90.96 77.15 34.87 90.69 99.40 41.21 81.03 62.76 54.79 94.27 10.80 98.47
KNN20 98.94 40.54 91.67 77.20 36.82 91.71 99.44 39.85 81.72 62.32 64.38 93.57 12.70 98.25
KNN50 99.07 38.75 92.61 76.99 40.00 91.17 99.52 38.14 82.80 61.26 75.34 92.47 15.90 97.87
KNN100 99.11 37.43 93.25 76.56 43.38 90.68 99.56 36.93 83.82 60.40 82.19 91.52 18.90 97.49

Table 12: OOD detection performance for document classification. All models are pre-trained on IIT-CDIP. For
LayoutLM models, we adopt the checkpoints from the Huggingface model hub. For UDoc, we pre-train the model
on our side. All models are fine-tuned on RVL-CDIP ID data.

ID Method
OOD Dataset (In-domain) OOD Dataset (Out-domain)

Acc
Sci. Report Presentation Form Letter Average Sci. Poster Receipt

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

L
ay

ou
tL

M
v1

B
a
se

97.28

MSP 47.48 74.91 59.74 68.72 66.40 65.36 58.89 69.12 58.13 69.53 43.02 77.15 72.40 62.40
MaxLogit 27.06 92.38 37.97 91.52 45.65 88.36 35.92 91.22 36.65 90.87 24.42 94.96 57.30 86.70
Energy 27.06 92.40 37.97 91.54 45.65 88.36 35.92 91.23 36.65 90.88 24.42 94.97 57.30 86.70
KNN10 20.82 96.09 35.32 93.82 40.06 91.34 28.65 94.80 31.21 94.01 17.44 97.00 49.80 93.92
KNN20 21.74 95.93 36.20 93.77 41.42 91.12 30.44 94.61 32.45 93.86 17.44 96.82 51.70 93.73
KNN50 24.34 95.56 38.25 93.41 43.93 90.69 33.64 94.19 35.04 93.46 23.26 96.44 53.80 93.70
KNN100 25.54 95.30 39.13 93.20 45.17 90.35 34.78 93.99 36.16 93.21 25.58 96.24 54.70 93.45

L
ay

ou
tL

M
v3

97.81

MSP 56.16 70.81 63.44 67.17 67.16 65.30 58.60 69.58 61.34 68.22 52.33 72.70 43.60 77.10
MaxLogit 30.70 89.17 40.42 88.18 42.98 84.09 33.12 88.22 36.80 87.42 19.77 94.50 11.70 97.02
Energy 30.70 89.18 40.42 88.18 42.98 84.10 33.12 88.23 36.80 87.42 19.77 94.51 11.70 97.03
KNN10 21.74 95.03 35.68 93.38 32.88 91.86 18.51 96.26 27.20 94.13 11.63 97.58 8.90 97.97
KNN20 22.74 94.90 36.56 93.20 33.96 91.66 19.64 96.15 28.22 93.98 12.79 97.44 10.00 97.89
KNN50 24.62 94.62 38.37 92.71 35.83 91.38 21.63 95.93 30.11 93.66 13.95 97.20 10.70 97.72
KNN100 25.22 94.38 39.29 92.32 36.55 91.09 22.48 95.79 30.88 93.40 16.28 97.04 11.80 97.59

U
D

oc
R
e
sN

e
t5

0

97.36

MSP 66.13 65.73 69.43 64.09 71.03 63.28 71.06 63.25 69.41 64.09 40.70 78.47 39.80 78.99
MaxLogit 45.96 82.12 47.21 86.39 49.64 83.16 49.59 83.13 48.10 83.70 2.33 98.57 4.00 98.34
Energy 45.96 82.12 47.21 86.40 49.64 83.16 49.59 83.13 48.10 83.70 2.33 98.60 4.00 98.36
KNN10 30.02 94.47 41.22 88.66 41.90 90.99 36.65 93.48 37.45 91.90 1.16 99.13 5.50 98.42
KNN20 31.10 94.36 41.98 88.44 42.10 90.90 38.03 93.35 38.30 91.76 1.16 99.04 6.90 98.32
KNN50 33.95 94.07 43.35 87.89 44.01 90.72 40.71 93.06 40.51 91.43 1.16 98.84 7.40 98.26
KNN100 34.83 93.84 43.75 87.51 45.01 90.61 41.96 92.90 41.39 91.22 1.16 98.72 8.30 98.16
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