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Abstract

Prompt tuning, in which prompts are optimized
to adapt large-scale pre-trained language mod-
els to downstream tasks instead of fine-tuning
the full model parameters, has been shown to
be particularly effective when the prompts are
trained in the multi-task transfer learning set-
ting. These methods generally involve individ-
ually training prompts for each source task and
then aggregating them to provide the initializa-
tion of the prompt for the target task. However,
this approach critically ignores the fact that
some of the source tasks could be negatively
or positively interfering with each other. We
argue that when we extract knowledge from
source tasks via training source prompts, we
need to consider this correlation among source
tasks for better transfer to target tasks. To this
end, we propose a Bayesian approach where we
work with the posterior distribution of prompts
across source tasks. We obtain representative
source prompts corresponding to the samples
from the posterior utilizing Stein Variational
Gradient Descent, which are then aggregated
to constitute the initial target prompt. We show
extensive experimental results on the standard
benchmark NLP tasks, where our Bayesian
multi-task transfer learning approach outper-
forms the state-of-the-art methods in many set-
tings. Furthermore, our approach requires no
auxiliary models other than the prompt itself,
achieving high degree of parameter-efficiency.1

1 Introduction

Large-scale pre-trained language models (PLMs)
have been recently fine-tuned for various NLP
tasks (Devlin et al., 2019; Raffel et al., 2020a).
Due to the computational challenges of training the
extensive parameters in PLMs, there is a growing
focus on methods that efficiently tune fewer pa-
rameters (Houlsby et al., 2019; Ben Zaken et al.,
2022).

*These authors contributed equally to this work
1Code: https://github.com/heyzude/BMTPT

Figure 1: Two key steps for Bayesian Multi-Task
Prompt Tuning (BMTPT) are illustrated. First, we
merge the posterior distributions of each source task
to form a global posterior distribution. This distribu-
tion is approximated using Stein Variational Gradient
Descent (SVGD), a particle-based variational inference
method. Finally, we adapt to the target task by using the
derived posterior from the source tasks as a prior.

One of the promising approaches is prompt tun-
ing (PT, Lester et al. 2021), where a few adaptable
vectors are added as prompts to the input of the
downstream task (Lester et al., 2021; Li and Liang,
2021). PT freezes the PLM model parameters and
limits the learning to prompts, yet it achieves im-
pressive performance. However, it is still challeng-
ing to achieve the same level of performance as the
full fine-tuning, as well as to mitigate sensitivity to
initialization (Zhong et al., 2022).

To address these challenges, recent works (Wang
et al., 2023; Asai et al., 2022; Vu et al., 2022)
proposed to adopt multi-task transfer learning ap-
proach, where the prompt is trained from multiple
source tasks to be applied to the target task. Specif-
ically, they train real-valued vectors for prompts
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(i.e. soft prompts) on source tasks and use them
as the initialization of prompt for the target task.
However, it is unclear whether aggregating such
individually-trained prompts provides a reliable ini-
tialization point and fully harnesses the benefits of
multi-task transfer learning.

In this paper, we propose Bayesian Multi-Task
Prompt Tuning (BMTPT) as a practical yet effec-
tive solution to this challenge. Unlike traditional
methods of prompt tuning grounded in transfer
learning, our approach engages with the posterior
distribution of prompts across a multitude of source
tasks. For the transference of knowledge gleaned
from source tasks, we utilize the source prompts’
posterior distribution as the prior for the designated
target task. This Bayesian method of transfer learn-
ing augments the conventional transfer learning
framework, which primarily learns the initialization
point of the target prompt from the source tasks.
Specifically, BMTPT employs Stein Variational
Gradient Descent (SVGD, Liu and Wang 2016), a
particle-based Variational Inference (VI) method,
to approximate the source prompts’ posterior dis-
tribution. Further elaboration on this method is
provided in Section 2.2.

We validate our approach through experiments
on 21 datasets across diverse NLP tasks and output
formats. The experimental results demonstrate that
BMTPT achieves comparable or superior perfor-
mance to strong state-of-the-art parameter-efficient
fine-tuning methods (Asai et al., 2022; Wang et al.,
2023) as well as full fine-tuning, while utilizing a
very small number of parameters and requiring no
auxiliary models other than the prompt itself.

2 Background

2.1 Transfer Learning for Prompt Tuning

Fine-tuning entire models for downstream NLP
tasks, particularly with a Large Language Model
(LLM), can be expensive in terms of training costs.
Therefore, parameter-efficient tuning focuses on
limiting the updates to a small set of parame-
ters. Various approaches have been proposed, such
as Adapter (Houlsby et al., 2019) and its vari-
ants (Karimi Mahabadi et al., 2021a; Hu et al.,
2022) that involve inserting trainable layers, and
BitFit (Ben Zaken et al., 2022) that only trains bias
weights while keeping other weights intact.

Recently, there has been growing interest in
prompt tuning (PT). This approach involves up-
dating only the ‘soft prompt’, a set of continuous

vectors that are prepended to the input. We can
formally describe PT as follows: consider an in-
put sequence x, and a soft prompt θ ∈ Rl×d with
length l and dimension d, which matches the lan-
guage model’s (LM) embedding dimension. The
soft prompt is prepended to the sequence x and
then processed by the LM, resulting in the predic-
tion of the target sequence y.

Our work aligns closely with recent efforts to
transfer soft prompts from source tasks in order to
initialize prompts for target tasks. For instance,
SPoT (Vu et al., 2022) retrieves a source task
prompt based on similarity to initialize the target
task prompt, while ATTEMPT (Asai et al., 2022)
employs an attention mechanism to initialize the
prompt for the target task using information from
the source prompts2. The most recent method for
prompt tuning transfer, MPT (Wang et al., 2023),
decomposes source prompts into shared and task-
specific parts to reduce interference between tasks
during aggregation.

However, these strategies may not fully address
the inherent heterogeneity within source task distri-
butions. They can falter, especially when attempt-
ing to aggregate prompts that have been trained
across various tasks. Particularly, these issues per-
sist even when each source task’s posterior distribu-
tion follows a Gaussian distribution. Further discus-
sion on this subject can be found in Appendix A.

Hence, an integrated approach regarding source
task distributions may prove advantageous if a rep-
resentative knowledge set can be constituted for
transfer to the target task. This paper takes a
Bayesian approach to transferring prompts from
source tasks to target tasks. Instead of learning
prompts individually then aggregating them, we
use the full posterior distribution of prompts across
the source tasks. Since this is intractable, we ap-
proximate the posterior via sampling, and leverage
these samples for training the prompt for the target
task, which corresponds to setting the posterior as
the prior of the target prompt.

2.2 Particle Based VI and SVGD
Variational Inference (VI) is a widely used ap-
proach in machine learning for distribution ap-
proximation, notable in Bayesian Neural Networks
(BNNs) (Blundell et al., 2015; Graves, 2011). De-
spite its computational simplicity, it often restricts

2Although ATTEMPT includes a randomly initialized tar-
get prompt in the attentional mixture, the argument in this
section still applies.
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the family of distributions, a limitation that is less
present in methods like MCMC (Gilks et al., 1995;
Doucet et al., 2001; Robert and Casella, 2004).

Particle-based VI methods provide an alterna-
tive approach by drawing upon the strengths of
both VI and MCMC. Unlike traditional VI methods,
particle-based VI does not restrict itself to a spe-
cific family of distributions. This flexibility allows
it to approximate a wider range of complex and
diverse distributions (Liu and Wang, 2016; Zhang
et al., 2020; Naesseth et al., 2018). However, its
theoretical guarantees are not yet fully understood.
Assumptions often made, such as the presence of in-
finite particles or adherence to simple distributions
like Gaussian, may not hold in practical scenar-
ios (Naesseth et al., 2018; Salim et al., 2022; Sun
et al., 2022; Liu et al., 2023).

Stein Variational Gradient Descent (SVGD, Liu
and Wang 2016) is a significant advancement in
particle-based VI. SVGD applies a transformation
to particles to make them more representative of
the target distribution through an iterative process.
Specifically, for let particles tend to position them-
selves as though they were samples drawn from
the distribution p, The update rule of SVGD is
described as follows:

θi ← θi + αϕϕϕ∗
p(θi),whereϕϕϕ

∗
p(θi) is

1

M

M∑

j=1

k(θj ,θi)∇θj
log p(θj) +∇θj

k(θj ,θi) ,

where k(·, ·) is the positive definite kernel function
like RBF.

Despite its merits, SVGD can face mode col-
lapse (Chen and Ghattas, 2020; Liu et al., 2022).
One workaround, Damped SVGD (Ba et al., 2022),
mitigates this by adjusting the deterministic bias in
the update rule, which is used in our work. For a
more thorough mathematical explanation, kernel
details, and information about damped SVGD, we
direct readers to Appendix B.

3 Problem Setting

In this section, we formally introduce core ele-
ments, symbols, and problem statements that form
the basis of our approach. We denote the trainable
parameter of the soft prompt as θ ∈ Rl×d, charac-
terized by its length l and the dimension d of the
Language Model (LM). For clarity, we use θS and
θT to denote the soft prompts for source tasks and
target task(s), respectively. This implies that the

soft prompt θ is prepended to the sequence x, prior
to its processing by the LM. The underlying objec-
tive is to predict the target sequence y. We denote
the dataset for the k-th source as DS

k , and define
DS =

⋃K
k=1DS

k . The target task is represented as
DT during task adaptation. Thus, the i-th instance
in the DS

k dataset will be represented as (xk
i ,y

k
i ).

Note that the log-likelihood log p(DS
k |θS) for the

k-th source task can be represented as follows:

log p(DS
k |θS) =

|DS
k |∑

i=1

log pLM(yk
i | [θS ;xk

i ]) .

In this formulation, pLM denotes the likelihood de-
termined by the LM and the corresponding crite-
rion.

Next we state our Bayesian objective, aiming to
optimize the target task prompt using the posterior
of source prompts for a transfer learning scheme.

Problem Statement. The objective is to maximize
the posterior probability of the target prompt θT ,
as expressed by the following equation:

argmax
θT

p(DT |θT ) p(θT |DS) , (1)

where p(DT |θT ) is the likelihood and p(θT |DS)
is the prior that is learned from the source tasks in
prior to the target task adaptation:

p(θT |DS) =
∫

θS
p(θT |θS) p(θS |DS)dθS . (2)

In this context, the prior distribution p(θT | DS)
serves as a guide for the target task adaptation.
We model p(θT |θS) as the multivariate Gaussian
with mean θS , since without any information on
the target task, it is natural to have θT = θS .

This problem formulation provides a general
framework subsuming conventional transfer learn-
ing method for prompt tuning. For example, we
could approximate the above integral in Eq. (2)
defining the prior on θT using a prompt trained
from source tasks θS∗, i.e. p(θS |DS)=δθS∗(θS),
which would be roughly equivalent to the conven-
tional transfer learning setting where the source
prompt serves as the initialization of the target
prompt.

Assuming an uninformative prior for the source
prompt θS (e.g. uniform distribution) as well as
independent selection of source tasks, the posterior
distribution p(θS |DS) for source tasks is formu-
lated as the product of the posteriors of each task.
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Remark. Assuming the uniform prior for θS and
independent selection of source tasks, the global
posterior p(θS | DS) is proportional to the product
of posteriors:

p
(
θS ∣∣DS =

⋃K
k=1DS

k

)
∝

K∏

k=1

p(θS | DS
k ) .

4 Approach

Instead of optimizing individual prompts for each
source task in isolation, our method primarily re-
volves around learning the posterior distribution of
source prompts across all source tasks. This ap-
proach assigns a larger probability mass to those
prompts capable of addressing a greater number of
source tasks, thereby potentially becoming more
suitable candidate prompts for the target task as
well. We implement this concept by using particles
to approximate the posterior distribution. The fol-
lowing subsections provide a detailed explanation
of this methodology.

4.1 Main Strategy
The optimization of the target task prompt is mod-
eled as a MAP inference in Eq. (1) using p(θT |DS)
as the prior. We approximate this with M parti-
cles {θS

i }Mi=1 (each particle corresponds to a soft
prompt) drawn from p( · |DS) using SVGD:

p(θT |DS) = E
[
p(θT |θS)

∣∣∣θS∼ p( · |Ds)
]

Monte-Carlo
Sampling≃ 1

M

M∑

i=1

p(θT |θS
i ) .

(3)

For task adaptation, i.e. obtaining the prompt for
the target task, the objective Eq. (1) is achieved
based on the approximation provided by Eq. (3):

argmin
θT

− log p(DT |θT )− log p(θT | DS)

≃ argmin
θT

− log p(DT |θT )− log
1

M

M∑

i=1

p(θT |θS
i )

=: J
(
θT )

(4)
The pseudo-code of our BMTPT algorithm is
shown in Algorithm 1.

For practical purposes, we can minimize the
second term of the objective J

(
θT ) by applying

Jensen’s inequality, as demonstrated below:

− log
1

M

M∑

i=1

p(θT |θS
i ) ≤ −

1

M

M∑

i=1

log p(θT |θS
i )

=
1

2σ2

∥∥∥θT − 1

M

M∑

i=1

θS
i

∥∥∥
2
+ C

(5)

Algorithm 1 Bayesian Multi-Task Prompt Tuning

Input:
DS ,DT : source tasks and target task
Θ0 = {θ0,i}Mi=1 : initialized particle set

Source Posterior Learning:
for t← 0 to T−1 do

Θt+1 ← Θt + αϕϕϕ∗
p(·|DS)(Θt)

(SVGD iteration; Section 2.2)
end for
Store θS

i ← θT,i for all i ∈ [M ]

Target Task Adaptation:
J
(
θT ) = − log p(DT |θT )− log

1

M

M∑

i=1

p(θT |θS
i )

θT ∗ ← argminθT J
(
θT )

Output:
θT ∗ : trained weight for the target task

where σ and C are constants arising from the multi-
variate isotropic Gaussian assumption of p(θT |θS).
Combining Eq. (4) and Eq. (5), the final loss for
target adaptation is therefore:

argmin
θT

[
− log p(DT |θT ) +

1

2σ2

∥∥∥θT −θ̄S
∥∥∥
2
]

(6)
where θ̄

S
= 1

M

∑M
i=1θ

S
i . This objective suggests

that, during target adaptation, we can initialize θT

with the average value of the optimized particles
θT ← θ̄

S .

4.2 Additional Strategies

4.2.1 Source Task Sampling

As transfer learning prepares for unknown arbi-
trary target tasks, usually it is considered preferable
that various source tasks are learned. However, if
the number of source tasks K increases, we have
to calculate the training losses of all source tasks.
Therefore it is necessary to alleviate the bottleneck
coming from a large number of source tasks. To
this end, we use an approximate posterior distribu-
tion instead of the true global posterior distribution.
Specifically, during each source posterior learning
iteration, we uniformly sample κ tasks from the
K source tasks (κ < K) without replacement and
constitute a batch with the data entries from that κ
tasks.
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4.2.2 Composition of θT and Multi-target
Task Adaptation

At the start of the target adaptation, we compose
θT with element-wise multiplication of a full-rank
matrix which is initialized with θ̄

S and a low-rank
matrix whose elements are all 1, where both matri-
ces are learnable and have the shape of (l, d). The
low-rank matrix is made by abT where a = 1l and
b = 1d and both a, b are trainable components.
Importantly, during target adaptation, we adopt a
two-speed learning rate scheme for the full-rank
and low-rank matrices by setting a higher learning
rate for the low-rank matrix (Ponti et al., 2022;
Asai et al., 2022; Wang et al., 2023). This facil-
itates multi-target task adaptation, by employing
multiple low-rank matrices to assign each low-rank
matrix to each target task, while sharing the full-
rank matrix among all target tasks. In doing so,
the full-rank matrix captures the shared knowledge
across tasks, while the respective low-rank matrices
capture the task-specific knowledge (Wang et al.,
2023). We also apply this scheme to single-target
adaptation, as we empirically observed that the use
of two-speed learning rate promotes faster perfor-
mance convergence.

4.3 Training Process

4.3.1 Source Task Posterior Approximation
Unlike previous transfer learning methods in
prompt tuning that individually train prompts for
each source task, we approximate the global pos-
terior distribution of source tasks, by employing
M particles. Here, a particle corresponds to one
instance of soft prompt. Each particle is initialized
with randomly sampled tokens, following Lester
et al. (2021). We pack a batch as the following:
each particle θS

i (which is an instantiation of soft
prompt, and 1 ≤ i ≤ M ) is prepended to input
texts from K source tasks, forming a batch of size
M · K. It is worth noting that the log p(·) in the
SVGD update rule can be interpreted as the minus
of the cross-entropy loss of the language model
when given the input with the particle (prompt)
prepended. Also, we employ a limited number of
SVGD particles, usually M ≤ 10. We perform
100K SVGD updates to sample θS .

4.3.2 Target Task Adaptation
With the initialized θT , we start target task adapta-
tion. The loss for the adaptation process is Eq. (6),
which is the combination of Maximum Likelihood

Estimation (MLE) loss with respect to DT and mi-
nus of the average of log priors.

4.4 Efficiency of BMTPT

Recent prompt tuning transfer methods primarily
focus on measuring the efficiency during target
adaptation, overlooking the need to evaluate the
efficiency of source task training phase, which is
helpful for identifying potential bottlenecks. We
highlight the efficiency of BMTPT in comparison
to the most recent prompt tuning transfer methods,
ATTEMPT (Asai et al., 2022) and MPT (Wang
et al., 2023), in both source and target stage. It is
noteworthy that both methods require additional
neural networks beyond soft prompts during either
source task training or target adaptation: MPT in-
volves a teacher network that is of the same size
as the LM backbone as it uses distillation during
source task training, and ATTEMPT involves the
training of an attention module during target adap-
tation.

BMTPT, on the other hand, proves to be efficient
in both the source posterior learning and target
adaptation stages, when evaluated under criteria
of computational and space complexity. The ad-
ditional intricacies that BMTPT introduces, com-
pared to vanilla prompt tuning, are the use of
SVGD during source posterior learning and the
computation of regularization terms derived from
the prior during target adaptation (Eq. (6)). In terms
of computational complexity, given that the SVGD
step used in BMTPT primarily involves computing
RBF kernel values among a limited number of par-
ticles, the computational cost is minimal. Likewise,
the regularization calculation during target adap-
tation is also negligible. On the aspect of space
complexity, BMTPT continues to exhibit efficiency.
During source posterior learning, as BMTPT ac-
companies SVGD particles only, the memory space
that BMTPT requires is occupied by the backbone
LM parameters and the SVGD particles which are
comprised of M · l · d trainable parameters. Since
we employ a small number of particles, the memory
consumption by SVGD particles is almost negligi-
ble. During target adaptation, as we compose one
target task prompt with shared matrix (full-rank)
and task-specific matrix (low-rank), BMTPT re-
quires (l · d)/N + (l+ d) trainable parameters per
one target task, when we adapt on N target tasks.
This makes BMTPT train only 0.035% parame-
ters compared to full fine-tuning. For a detailed
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analysis, we direct the reader to Appendix C.

4.5 Contrasts and Contributions

4.5.1 Constrast with Conventional Multi-Task
Learning

Both BMTPT and traditional multi-task learning
algorithms have a common point in that they utilize
multi-source data. However, BMTPT uses multi-
source data to find a posterior distribution across
the multi-source data and transfer the posterior to
target domain, under the Bayesian perspective. Tra-
ditional multi-task learning methods, on the other
hand, optimize network parameters with respect to
MLE objectives in general.

4.5.2 Distinction from MPT
BMTPT constructs soft prompt using full-rank
and low-rank matrices during the target adaptation
stage, similar to MPT (Wang et al., 2023). How-
ever, the methodologies diverge in their application
and intent. MPT separates shared (full-rank) and
task-specific (low-rank) components during source
training with the underlying intuition that discover-
ing common patterns among various source tasks
can promote efficient transfer. After source train-
ing, MPT re-uses the shared component and aver-
ages task-specific components to initialize full-rank
and low-rank matrices, then applies element-wise
multiplication of the full and low-rank matrices to
form a target prompt. BMTPT, on the other hand,
does not use the decomposition at source poste-
rior learning. We employ SVGD particles which
are instantiations of full-rank prompts, to learn the
source posterior. Then, at the beginning of target
adaptation, we prepare a full-rank matrix and low-
rank matrix to form a target prompt. The full-rank
matrix is initialized with the average of SVGD par-
ticles and the low-rank matrix is initialized with
1l×d (see Section 4.2.2). Notably, the intention be-
hind this prompt decomposition is different from
that of MPT; our aim is only to facilitate multi
target task adaptation.

4.5.3 Unique Motivation behind BMTPT
At its core, BMTPT aims to focus on the essence
of transfer learning by enhancing it via transferring
a useful distribution as a prior for target adapta-
tion. On the other hand, existing prompt transfer
methods such as SPoT, ATTEMPT, and MPT tend
to rely on the transferability between individual
NLP tasks (e.g., SQuAD is more helpful for solv-
ing MRPC than SST-2). The efficacy of this unique

motivation is demonstrated by the experimental
results in Section 6.

5 Experiment

5.1 Datasets and Tasks

As in previous works (Asai et al., 2022; Wang
et al., 2023), We use a set of 6 extensive datasets
as source tasks and assess the performance of our
algorithm on a range of 21 distinct target tasks,
encompassing entailment, paraphrase detection,
sentiment analysis, question answering (QA), and
commonsense reasoning.

Source Tasks During source posterior learning,
we use the following datasets from GLUE (Wang
et al., 2019b), SuperGLUE (Wang et al., 2019a),
and MRQA 2019 shared task (MRQA; Fisch
et al. 2019), comprising over 100,000 annotations
in total. Specifically, we utilize 6 source tasks,
MNLI (Williams et al., 2018), QNLI (Dem-
szky et al., 2018), QQP (Wang et al., 2019b)
and SST-2 (Socher et al., 2013) from GLUE,
SQuAD (Rajpurkar et al., 2016) from MRQA, and
ReCoRD (Zhang et al., 2018) from SuperGLUE.

Target Tasks For target adaptation, we test
our algorithm with 21 datasets from four
benchmarks: MNLI, QQP, QNLI, SST-2, RTE (Gi-
ampiccolo et al., 2007), CoLA (Warstadt et al.,
2019), STS-B (Cer et al., 2017) and MRPC (Dolan
and Brockett, 2005) from GLUE; BoolQ (Clark
et al., 2019), CB (de Marneffe et al., 2019), Mul-
tiRC (Khashabi et al., 2018), WiC (Pilehvar and
Camacho-Collados, 2019) and WSC (Levesque
et al., 2012) from SuperGLUE; Natural Questions
(NQ; Kwiatkowski et al. 2019), HotpotQA
(HQ; Yang et al. 2018), NewsQA (News; Trischler
et al. 2017) and SearchQA (SQA; Dunn et al.
2017) from MRQA; WinoGrande (Sakaguchi et al.,
2020), Yelp-2 (Zhang et al., 2015), SciTail (Khot
et al., 2018) and PAWS-Wiki (Zhang et al.,
2019) from the "Others" benchmark in Asai et al.
(2022). We direct readers to Appendix D for the
performance and analysis on MRQA and "Others"
benchmarks.

5.2 Implementation Details and Baselines

Implementation Details Throughout the experi-
ments, we use T5-base as the base LM for BMTPT
and all of the baselines, and we use prompt of
length 100. Unless specified differently, we
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Method # Params
GLUE SuperGLUE

MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg. Multirc BoolQ WiC WSC CB Avg.

Fine-tuning | LM | 86.8 91.6 93.0 94.6 89.7 90.2 71.9 61.8 84.9 72.8 81.1 70.2 59.6 85.7 73.9
Adapters 1.9M 86.5 90.2 93.2 93.8 90.7 85.3 71.9 64.0 84.5 75.9 82.5 67.1 67.3 85.7 75.7

BitFit 280K 85.3 90.1 93.0 94.2 90.9 86.8 67.6 58.2 83.3 74.5 79.6 70.0 59.6 78.6 72.5
PT 76.8K 81.3 89.7 92.8 90.9 89.5 68.1 54.7 10.6 72.2 58.7 61.7 48.9 51.9 67.9 57.8

Vanilla transfer PT 76.8K 85.8 86.9 93.2 92.9 90.5 87.1 77 83.2 87.1 72.2 77.9 65.5 67.3 78.6 72.3
SPoT 76.8K 85.4 90.1 93.0 93.4 90.0 79.7 69.8 57.1 82.3 74.0 77.2 67.0 50.0 46.4 62.9

ATTEMPT 232K 84.3 90.3 93.0 93.2 89.7 85.7 73.4 57.4 83.4 74.4 78.8 66.8 53.8 78.6 70.5
MPT 77.6K 85.9 90.3 93.1 93.8 90.4 89.1 79.4 62.4 85.6 74.8 79.6 69.0 67.3 79.8 74.1

BMTPT (Ours) 77.6K 86.20.06 90.30.32 93.40.31 94.40.04 90.90.37 87.20.7 81.31.48 86.60.69 88.7 72.40.13 80.30.5 67.40.43 67.30.00 85.71.87 74.6
Fine-tuning* | LM | 85.7 91.1 92.0 92.5 88.8 90.2 75.4 54.9 83.8 - - - - - -

Adapters* 1.9M 86.3 90.5 93.2 93.0 89.9 90.2 70.3 61.5 84.4 - - - - - -
HyperFormer* 280K 85.7 90.0 93.0 94.0 89.7 87.2 75.4 63.7 84.8 - - - - - -
HyperDecoder* 76.8K 86.0 90.5 93.4 94.0 90.5 87.7 71.7 55.9 83.7 - - - - - -

ATTEMPT* 232K 83.8 90.0 93.1 93.7 90.8 86.1 79.9 64.3 85.2 74.4 78.3 66.5 69.2 82.1 74.1
MPT* 77.6K 84.3 90.0 93.0 93.3 90.4 89.2 82.7 63.5 85.8 74.8 79.2 70.2 67.3 89.3 76.1

BMTPT* (Ours) 77.6K 85.90.06 90.20.17 93.20.31 95.30.04 91.20.27 86.90.54 80.91.48 85.60.05 88.7 72.30.39 80.10.32 67.70.47 67.30.00 89.30.00 75.3

Table 1: Experiment results for GLUE and SuperGLUE using T5-base, along with the number of trained parameters.
BMTPT results are averaged across three runs, with subscripts indicating the standard deviation. The evaluation
metrics are Pearson correlation for STS-B, F1 for MultiRC, and accuracy for the other tasks. Top rows use single-
task adaptation with no parameter sharing during the target task adaptation, while bottom rows employ multi-task
adaptation. The best performance among parameter-efficient fine-tuning methods is bolded. BMTPT consistently
outperforms most baselines in GLUE and is comparable in SuperGLUE, affirming its robustness across language
tasks.

k-shot Method
GLUE SuperGLUE

MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg. Multirc BoolQ WiC WSC CB Avg.

4
PT 40.1 63.2 40.4 53.0 88.8 68.1 56.3 27.4 54.7 61.8 61.6 51.2 60.4 53.5 57.7

MPT 59.4 82.0 86.2 56.5 89.1 68.1 62.6 34.8 67.3 62.6 62.6 52.9 67.3 73.6 63.6
BMTPT (Ours) 43.0 82.4 89.2 60.3 90.0 76.7 55.8 67.8 70.7 60.6 62.7 56.1 67.3 78.6 65.1

16
PT 41.5 62.3 59.9 50.9 87.8 68.1 54.7 28.5 56.7 60.3 61.9 48.9 44.2 63.5 55.8

MPT 61.6 84.7 90.6 63.2 89.1 70.1 64.8 32.1 69.5 64.5 63.3 49.8 67.3 78.6 64.7
BMTPT (Ours) 65.2 85.5 91.3 70.9 89.7 77.0 63.5 68.4 76.4 60.4 63.7 62.4 67.3 75.0 65.8

32
PT 37.0 62.3 56.7 50.9 87.5 68.1 54.7 23.2 55.1 59.2 61.7 52.6 67.3 67.8 61.7

MPT 63.6 88.5 91.0 75.9 89.7 74.5 59.7 30.8 71.7 63.3 68.9 53.9 67.3 82.1 67.1
BMTPT (Ours) 66.3 88.9 91.6 89.1 90.4 78.2 59.4 67.4 79.0 63.2 64.2 55.5 67.3 82.1 66.5

Table 2: Few-shot experiment results for GLUE and SuperGLUE using T5-base, using 4, 16, and 32 training
instances. BMTPT results are averaged across three runs. In tasks with limited training data, BMTPT consistently
surpasses MPT and prompt tuning.

GLUE SuperGLUEBMTPT Variations
MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg. Multirc BoolQ WiC WSC CB Avg.

Standard BMTPT 86.2 90.3 93.4 94.4 90.9 87.2 81.3 86.6 88.7 72.4 80.3 67.4 67.3 85.7 74.6
BMTPT w/ T5-large 89.1 90.9 94.1 95.5 92.3 89.3 85.6 87.7 90.6 76.6 84.4 72.4 67.3 85.7 76.8
BMTPT w/ T5-3B 92.3 91.4 94.3 95.2 93.3 89.4 85.7 89.4 91.4 79.4 88.3 73.7 67.3 89.3 79.6

Source task sampling (1) 86.2 90.1 92.9 94.3 91.2 88.2 81.3 83.6 88.5 71.8 80.9 66.8 67.3 85.7 74.5
Source task sampling (2) 85.8 90.3 93.1 94.8 90.9 88.3 80.4 86.9 88.8 72.0 80.8 69.1 67.3 85.7 75.0

w/ 10 particles 85.7 90.4 93.3 93.8 90.8 90.8 77.0 85.2 88.4 72.7 78.9 68.6 67.3 83.1 74.1
w/o prior 85.3 87.1 93.0 94.3 90.9 88.4 79.7 83.9 87.8 71.9 78.2 66.8 67.3 82.1 73.3

Table 3: Table corresponding to Section 6.2. We examined BMTPT in larger models and evaluated three components
of BMTPT: source task sampling, performance based on the number of particles, and the prior.

employ 5 particles for SVGD and use 6 source
tasks as mentioned in Subsection 5.1, therefore
forming a batch of size 30 (5× 6). Also we use σ
=105 for target adaptation loss, denoted at Eq. (6).
For two-speed learning rate, we set 0.3 as the
full-rank matrix learning rate and 0.4 as low-rank
matrix learning rate. We use a batch of size 32
during target adaptation. For multi-target task
adaptation, we first form a batch of input texts
from target tasks, using example-proportional

mixing strategy (Raffel et al., 2020b), then prepend
a corresponding target prompt to each input text
in the batch. We ran all the experiments three
times using different random seeds and provide the
mean and standard deviations of the results. In
cases where a dataset lacks a publicly available
test split with annotations, we adopt either the
original development set as our test set or perform
a split within the original development set to create
separate development and test sets, following
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Mahabadi et al. (2021).

Baselines We conduct a comprehensive compar-
ison of BMTPT with various baseline methods,
including full finetuning (FT), vanilla prompt
tuning (PT) (Lester et al., 2021), existing prompt
transfer methods such as SPoT (Vu et al., 2022),
ATTEMPT (Asai et al., 2022) and MPT (Wang
et al., 2023), as well as popular parameter-efficient
approaches like Adapters (Houlsby et al., 2019)
and BitFit (Ben Zaken et al., 2022). On GLUE,
we additionally compare with several state-of-
the-art multi-task learning methods including
HyperFormer (Karimi Mahabadi et al., 2021b)
and HyperDecoder (Ivison and Peters, 2022),
along with multi-task variants of FT and Adapters.
Also, to compare our algorithm with conventional
multi-task transfer learning, we implement and
evaluate a vanilla multi-task transfer method that
learns a single prompt upon the combined loss
of source tasks and transfers it to the target task.
We either directly quote reported numbers or
utilize publicly available source code under the
same backbone for a fair comparison, as outlined
in the respective papers (Mahabadi et al., 2021;
Karimi Mahabadi et al., 2021b; Asai et al., 2022;
Wang et al., 2023).

6 Results

In Section 6.1, we provide the main findings on
GLUE and SuperGLUE benchmarks. For findings
on MRQA and "Others" benchmarks, please refer
to Appendix D. In Section 6.2, we further provide
a set of analyses.

6.1 Main Results

6.1.1 GLUE and SuperGLUE
As shown in the top part of Table 1, BMTPT
achieves new state-of-the-art results in parameter-
efficient fine-tuning for both GLUE and Super-
GLUE, outperforming other prompt tuning transfer
methods (Vu et al., 2022; Asai et al., 2022; Wang
et al., 2023). Compared to vanilla PT (Lester et al.,
2021), BMTPT demonstrates a relative improve-
ment of 16.5% on GLUE and 16.8% on Super-
GLUE. This highlights the advantages of trans-
ferring knowledge using Bayesian approach. It is
worth mentioning that BMTPT outperforms the full
fine-tuning baseline on both benchmarks, despite
only tuning 0.035% of the parameters compared to
full fine-tuning.

The results presented in the bottom part of Ta-
ble 1 demonstrate the ability of BMTPT to ef-
fectively utilize multi-task knowledge during fine-
tuning on a group of target tasks. This highlights
that BMTPT can benefit from multi-target adap-
tation setting, by further reducing the number of
trainable parameters.

We also compare the performance of BMTPT
and vanilla multi-task transfer that is introduced in
Section 5.2, in Table 1. Surprisingly, vanilla multi-
task transfer shows strong performance in GLUE
and SuperGLUE tasks, outperforming competitive
baselines. This result supports Section 2.1 which
claims that previous methods (Vu et al., 2022; Asai
et al., 2022; Wang et al., 2023) are not the op-
timal transfer technique. It is worth noting that
BMTPT outperforms vanilla multi-task transfer. To
understand this advantage, we may delve into the
Bayesian perspective of BMTPT, which includes
conventional transfer learning. While vanilla multi-
task transfer only learns an initialization point that
contains relatively limited source task informa-
tion (Shwartz-Ziv et al., 2022), BMTPT learns pos-
terior from the source tasks and adopts it as prior
during target adaptation, enabling a richer and more
insightful adaptation process.

6.1.2 Few-Shot Experiments

We also present the results of the few-shot experi-
ments on the GLUE and SuperGLUE datasets. For
the 4-shot experiments, the learning rates were re-
duced to one-third of their original values to accom-
modate the decreased batch size relative to standard
experiments. The performance figures for BMTPT
are averaged over three runs, each initialized with
a different random seed. These outcomes suggest
that the prior used in target adaptation effectively
positions the prompts to an optimal initial point for
task adaptation in low-resource conditions.

6.2 Analyses

6.2.1 Model Scaling

We perform scaling experiments to analyze the
performance of BMTPT as the size of the pre-
trained model increases. The result demonstrates
that BMTPT can largely benefit from scaling LM
to larger models. This aligns with the finding by
(Lester et al., 2021), which suggests that prompt
tuning is effective especially when applied to larger
backbone LMs. Note that BMTPT achieves compa-
rable performance to fully fine-tuned models even
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with T5-base, meaning that BMTPT is effective
across various model scales.

6.2.2 Effectiveness of Source Task Sampling
To evaluate the effectiveness of Source Task Sam-
pling discussed in Section 4.2, we conducted exper-
iments under two settings: (1) subsampling 3 tasks
from a pool of 6 source tasks (refer to Section 5.1),
to examine if Source Task Sampling can mitigate
performance degradation at limited computation
resource scenario, and (2) diversifying the source
task set to include 12 tasks and subsampling 6 tasks
from this expanded set, to investigate the potential
benefits of Source Task Sampling with an expanded
source task set. For the second setting, we expand
the source task set with AGNews (Zhang et al.,
2015), CommonsenseQA (Talmor et al., 2019),
OpenBookQA (Mihaylov et al., 2018), ARC (Clark
et al., 2018), adversarial NLI (Nie et al., 2020), and
Winogrande (Sakaguchi et al., 2020).

From Table 3, we can see that setting (1) shows
minimal performance degradation compared to the
case with 6 source tasks. This finding indicates
the successful application of the Source Task Sam-
pling technique in low computation resource sce-
narios. Also, setting (2) demonstrates slight perfor-
mance enhancements, suggesting that Source Task
Sampling can derive benefits from diversifying the
source task set.

6.2.3 BMTPT Performance on Different
Numbers of Particles

Since SVGD is a particle-based VI method, the
number of particles employed may affect the perfor-
mance of our method. Therefore we investigate the
effect of the number of particles on target adapta-
tion performance by comparing 5-particle BMTPT
and 10-particle BMTPT (Table 3). We found that
the 10-particle case does not yield better results
than the 5-particle case. Because of the instabil-
ity reported in the original SVGD paper (Liu and
Wang, 2016) and a similar empirical finding from
Yoon et al. (2018) we speculate that this absence
of enhancement might be attributed to the inherent
characteristics of SVGD, including its sensitivity
to kernel function parameters.

6.2.4 Effect of Prior
To assess the impact of the prior term in Eq. (6),
we conducted an ablation experiment by remov-
ing the prior term from the target adaptation loss.
The ablated version of BMTPT exhibited poorer

performance, implying the efficacy of learning an
informative source posterior and leveraging it dur-
ing target adaptation to facilitate effective transfer
learning.

7 Conclusion

We present Bayesian Multi-Task Prompt Tuning
(BMTPT), a Bayesian approach for transferring
soft prompt. Our method defines a posterior
distribution over prompt on source tasks, and
approximates the posterior using SVGD, then
initializes the target prompt with aggregation of
source prompts while regularizing the training
of the target prompt using transferred posterior.
Empirically we found this approach achieves
comparable or superior performance over strong
parameter-efficient fine-tuning baselines.

Limitations While showing compelling ex-
perimental results with only the use of a soft
prompt, BMTPT has its limitations. Primarily,
appending the soft prompt to the input text
leads to an extension in the overall input length,
consequently increasing the memory footprint.
This is a well-known issue in PT (Karimi Ma-
habadi et al., 2021a), and BMTPT is not immune
to it. Furthermore, in BMTPT, since multiple
particles are used and source task sentences are
appended to each, the batch size grows to be a
multiple of the number of particles. This could
potentially increase memory demands during the
source posterior learning. However, this can be
mitigated by implementing Source Task Sampling
or reducing the number of particles. Experiments
determining the optimal number of particles
have not been performed in our study, and future
research could potentially explore this aspect to
ascertain the most appropriate number of particles.
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A Analogy with Gaussians for the Aggregation of Prompts Trained on Diverse Tasks

Consider a scenario with K source tasks, each characterized by a posterior p(θ|Dk) = N (µk,Λ
−1
k ),

where Dk represents the dataset of k-th task, and θ is a soft prompt. Under the uniform prior, maximizing
the likelihood (MLE) is equivalent to MAP estimation, and would lead each source prompt trained on task
k to the mode µk. By combining individual posteriors with assuming independent selection of tasks, we
can construct the global posterior p(θ|D ≡ ⋃K

k=1Dk) ∝
∏K

k=1 p(θ|Dk)
3. The goal of transfer learning is

to maximize this posterior, anticipating that the overall knowledge captured from source tasks will lead to
a good starting point for a target task. Note that the posterior, which is a product of Gaussian distributions,
is a Gaussian distribution whose mean is µglobal=(

∑K
k=1Λk)

−1
(∑K

k=1Λkµk

)
. Since the mean is the

mode of a Gaussian, µglobal would be a good candidate for the initialization point of the target prompt.
However, unless the covariances differ only by a scaling factor, a weighted sum of the individual modes
{µk}Kk=1 is unlikely to equal µglobal.

B Details for SVGD

B.1 Choice of SVGD
Stein Variational Gradient Descent (SVGD) is a nonparametric variational inference technique that
amalgamates the benefits of Markov Chain Monte Carlo (MCMC) and variational inference (Liu and
Wang, 2016). Our utilization of SVGD over conventional variational inference (VI) methods is driven by
multiple factors, each rooted in the limitations and attributes of standard VI approaches.

The target posterior distribution we aim to approximate is complex, potentially even multi-modal.
Standard VI methods, constrained by a specific family of distributions, often fail to capture such intricate
structures. Therefore, they can show an inherent bias toward particular tasks. In contrast, SVGD employs
a particle-based approach to dynamically generate a more expansive class of approximating distributions.
This capability allows SVGD to represent complex and multi-modal distributions with greater accuracy.

Furthermore, traditional VI methods like Variational Autoencoders (VAE) are generator-based and
necessitate sampling. In contrast, SVGD requires the log derivatives of the prior at each point, commonly
referred to as the score function. Additionally, while most VI methods aim to minimize surrogates of
KL divergence through optimization, SVGD employs a first-order update method with a competing
mechanism between particle repulsion and gradient descent.

B.2 Mathematical Explanation
Whereas gradient descent guides particles towards the optimal direction of fastest objective decrease,
SVGD identifies the optimal transformation to minimize the KL divergence between the current and target
distributions.

To find the optimal direction in the unit ball B of the Reproducing Kernel Hilbert Space H, which
is the closed linear span of {k(θ, ·) : θ ∈ RD}, that minimizes the KL-divergence towards the target
distribution p, SVGD uses the point transformation T[αϕϕϕ](θ) = (I + αϕϕϕ)(θ). We will use the same
notation for probability density with probability measure µ, if there is no confusion. Specifically, it finds
ϕϕϕ∗ that satisfies:

ϕϕϕ∗
µ,p

∥ϕϕϕ∗
µ,p∥H

= argmax
ϕϕϕ∈B

{
− d

dα
KL

(
T[αϕϕϕ]#µ ∥ p

)∣∣∣
α=0

}
,

where T#µ(A) = µ(T−1(A))4. The closed-form solution of the above is given by:

ϕϕϕ∗
µ,p =

∫

Rd

[
∇ log p(θ)k(θ, ·) +∇k(θ, ·)

]
µ(dθ) .

Here, log p(θ) is the log-likelihood of p. The SVGD algorithm updates the distribution as follows:

µt+1 = (I + αϕϕϕ∗
µ,p)#µt,

3Under the uniform prior assumption, this relation can be derived from p(θ|Dk) ∝ p(Dk|θ) for each k. Please refer the
Remark in the Section 3.

4If random variable X follow distribution µ, the distribution T#µ can be seen as the distribution of T(X).
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where α is the step size. Discretized version of the above update rule for a finite set of particles {θi}Mi=1,
SVGD iteratively transports the particles using the following update rule for m ∈ [M ]:

θi ← θi + αϕϕϕ∗(θi),whereϕϕϕ
∗(θi) is

1

M

M∑

j=1

[∇θj
log p(θj)k(θj ,θi) +∇θj

k(θj ,θi)] .

The behavior inherent to SVGD is orchestrated by the two terms in the update, which define the key
control mechanisms. Firstly, the first term entails the sharing of gradient information among particles,
guiding their update trajectory. Additionally, the influence of neighboring particles is modulated by kernel
distance weighting. The second term, ∇θj

k(θj ,θi), introduces a repelling force between the particles,
preventing them from converging to a single mode.

B.3 Detailed Explanation for RBF Kernel

In the execution of the Stein Variational Gradient Descent (SVGD) for our set of particles denoted as
{θi}Mi=1, we adopted the Radial Basis Function (RBF) kernel, which is defined as follows:

k(θ1,θ2) = exp

(
−∥θ2 − θ1∥2

h

)
,where h=

(
Median

{
∥θj − θi∥2

∣∣ i ̸= j , i , j ∈ [M ]
} )2

log(M + 1)
.

In this formulation, h is a parameter frequently adjusted according to the distances between particles.
As part of our methodology, we adhere to the median heuristic, a strategy supported by previous stud-
ies (Schölkopf and Smola, 2018; Ba et al., 2022). This entails designating the bandwidth as the median of
the set of mutual distances between particles.

B.4 Damped SVGD

The variant of Stein Variational Gradient Descent (SVGD) we employ in this work is Damped SVGD,
as delineated in the work by Ba et al. (2022). SVGD, in its typical implementation, is prone to variance
collapse when applied in a finite regime with particles, rather than updating distributions directly. This
necessitates an adaptation of the SVGD’s update rule to ensure a proper approximation of the distribution
with particles. The Damped SVGD specifically addresses this issue by moderating the influence of its
own gradient descent term. This adjustment can be seen clearly in the update rule for θi in a configuration
{θi}Mi=1. As compared to the standard update rule, the modification reads:

ϕϕϕ∗
damped(θi) =

1

M

∑

j ̸=i

[∇θj
log p(θj)k(θj ,θi) +∇θj

k(θj ,θi)] +
1

M
λ · ∇θi

log p(θi)k(θi,θi)

= ϕϕϕ∗(θ)− (1− λ)
1

M
∇θi

log p(θi)k(θi,θi)

= ϕϕϕ∗(θ)− 1− λ

M
∇θi

log p(θi) .

In the Damped SVGD paper, the parameter λ can be chosen using one of two strategies: taking λ as λmin =
min

(
1, e−1(1 + M

l·d)
)

for "fully damped," or taking λ as a value between λmin and 1 for "intermediate." In
our experiments, we use "intermediate" by consistently choosing the value min

(
1, e−1(5 + M

l·d)
)
, taking

both selections into account. In our standard setting, this yields λ ≈ 0.368. This variant of SVGD
improves upon the original by mitigating the issue of variance collapse in some degree.

C Computational Complexity Analysis of BMTPT

Our computational analysis verifies that BMTPT is computationally efficient for both source task posterior
learning and task adaptation stages. Note that the additional computation necessary for BMTPT occurs
after the prompt receives the back-propagated gradient information from the LLM.
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C.1 Definitions of Notations
• M : Number of particles.

• l: Length of the prompt.

• d: Hidden dimension of LLM (Large Language Model).

• dprompt = d× l: Dimension of the prompt.

• Tgrad: Number of operations for the gradient backpropagation through the backbone LLM.

• K: RBF Kernel matrix with dimensions M ×M (Ki,j = k(θi,θj)).

• Θ: Matrix of prompt parameters with dimensions M × dprompt.

• ∇ logp: Gradient of log-probability for each particle.

• α: Stepsize.

C.2 Source Task Training
In the source task training phase, we have a multi-particle formulation governed by SVGD with an RBF
Kernel. The formulation involves various matrix and vector products, which we denote as

∆ΘΘΘ = α
(
K∇ logp+

2

h
(diag(K1)−K)ΘΘΘ

)
.

The computational complexity for BMTPT during this phase can be summarized as O(Tgrad) + M2 ·
O(dprompt). This indicates that BMTPT requires additional M2 · O(dprompt) calculations over the vanilla
prompt tuning. However, since Tgrad is the dominating factor and M2 = 25 in our experiments, this
increase is computationally acceptable. The average wall-clock time recorded during the training of the
source task, based on 5 updates, is as follows: 0.42 seconds for the backward pass through the language
model (LM) and 0.0035 seconds for Damped SVGD. We used a single GeForce RTX 3090 GPU for these
computations.

C.3 Task Adaptation Stage
During the task adaptation stage, the additional computational complexity of BMTPT is mainly due to
the upper bound of log prior term, which takes O(dprompt) computations. Therefore, the computational
complexity for a single update is O(Tgrad) + O(dprompt). Here as well, the dominating factor is Tgrad.
Similarly, we report the wall-clock time observed on our device during the target adaptation phase,
specifically for the SuperGLUE-CB task with a batch size of 32. The forward pass through the LM takes
an average of 0.16 seconds, while the forward pass for the prior term requires 0.00011 seconds. We used
a single GeForce RTX 3090 GPU.

D Experiment on MRQA and "Others" Benchmark

Method # Params
MRQA Others

NQ HP SQA News Avg. WG Yelp SciTail PAWS Avg.
Fine-tuning | LM | 75.1 77.5 81.1 65.2 74.7 61.9 96.7 95.8 94.1 87.1

Adapter 1.9M 74.2 77.6 81.4 65.6 74.7 59.2 96.9 94.5 94.3 86.2
BitFit 280K 70.7 75.5 77.7 64.1 72.0 57.2 94.7 94.7 92.0 84.7

PT 76.8K 67.9 72.9 75.7 61.1 69.4 49.6 95.1 87.9 55.8 72.1
SPoT 76.8K 68.2 74.8 75.3 58.2 69.1 50.4 95.4 91.2 91.1 82.0

ATTEMPT 232K 70.4 75.2 77.3 62.8 71.4 57.6 96.7 93.1 92.1 84.9
MPT 77.6K 72.0 75.8 77.2 63.7 72.2 56.5 96.4 95.5 93.5 85.5

BMTPT (Ours) 77.6K 69.60.21 82.90.22 76.20.09 62.40.07 72.8 55.60.37 97.60.03 95.40.47 93.70.22 85.6

Table 4: Experiment results on MRQA and Others. We evaluate MRQA tasks using F1 score and Others using
accuracy. BMTPT results are averaged over three runs with standard deviation indicated by subscripts.

For MRQA and several "Others" datasets, BMTPT remains competent among parameter-efficient
baselines, showing the versatility of our approach outside GLUE and SuperGLUE.
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