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Abstract

We present The Vault, a dataset of high-quality
code-text pairs in multiple programming lan-
guages for training large language models to
understand and generate code. We present
methods for thoroughly extracting samples
that use both rule-based and deep learning-
based methods to ensure that they contain high-
quality pairs of code and text, resulting in a
dataset of 43 million high-quality code-text
pairs. Our extensive evaluations on common
coding tasks including code generation, code
search and code summarization show that when
fine-tuning Code Large Language Models on
The Vault, such models outperform the same
models trained on other datasets such as Code-
SearchNet. We also provide detailed analyses
of our datasets to assess the effects of various
programming languages and docstrings on the
performance of such models.

1 Introduction

The advent of deep learning and advancements in
large language models (LLMs) have spurred a rev-
olution in the field of code representation learning.
These developments, supported by the growing ac-
cessibility of vast open-source code repositories,
have heralded the emergence of code large lan-
guage models (CodeLLMs) for code generation
and understanding tasks. The sheer volume of
these repositories and the rich, unprocessed raw
data they contain, serve as unparalleled resources
for training LLMs. Consequently, current state-of-
the-art models for coding tasks effectively utilize

*Equal contribution

these expansive datasets for training. However, it is
important to note that these datasets, including The
Stack [Kocetkov et al., 2022] and The Pile [Gao
et al., 2020a], often comprise unprocessed data.

Alternatively, there are established datasets,
such as CONCODE [lyer et al., 2018b], FunCom
[LeClair et al., 2019], Deepcom [Hu et al., 2020]
for code summarization tasks; APPS [Hendrycks
et al., 2021] for text-to-code generation; and Code-
SearchNet [Husain et al., 2019] for code search.
These datasets contain carefully curated code-text
pairs. Although considerably smaller in compari-
son to raw code datasets (e.g., 2.3M functions in
CodeSearchNet [Husain et al., 2019] versus 197M
files in The Stack [Kocetkov et al., 2022]), they
provide high-quality code-text pairings that signifi-
cantly enhance the effectiveness of model training.

Consequently, we identify two main types of
datasets used to train CodeLLMs: large yet un-
processed, and smaller yet well-structured (e.g.,
arranged into code-text pairs). The scaling law
[Kaplan et al., 2020, Gordon et al., 2021, Sorscher
et al., 2022] indicates that the volume of train-
ing data is crucial for model performance. How-
ever, other studies underscore the importance of
dataset quality over quantity in training superior
LLMs [Zhou et al., 2023, Sorscher et al., 2022, Dau
et al., 2022, Brown et al., 2020, Khan et al., 2020].
Given these observations, we propose that an ideal
dataset for training CodeLLLMs should combine
both elements: it should be expansive in volume
and meticulously processed to ensure quality.

In this paper, we present The Vault dataset, de-
tailing its creation process, the toolkit developed

4763

Findings of the Association for Computational Linguistics: EMNLP 2023, pages 4763—4788
December 6-10, 2023 ©2023 Association for Computational Linguistics



for constructing and quality-controlling code-text
pairs from raw source code, as well as an analysis
of The Vault’s metrics. We also share empirical
results obtained from utilizing The Vault to fine-
tune well-known foundational models. Our specific
contributions include the following:

* A dataset with approximately 43M pairs of high-
quality code-text pairs (over 10 times larger than
CoDesc), 243M unimodal samples, and 69M
pairs of line comments with context from 10 pop-
ular programming languages (Java, JavaScript,
Python, Ruby, Rust, Golang, C#, C++, C, PHP),
more diverse than CodeSearchNet, which has six
programming languages.

* A novel approach to use a pre-trained language
model for detecting and removing noisy samples
to complement traditional rule-based methods.

* A thorough process for transforming raw source
code into code-text pairs and filtering noisy sam-
ples. We have released the toolkit used in this pro-
cess to the open community via a public GitHub
repository', including tools for parsing code and
docstrings in different programming languages.

* We perform extensive evaluation where we fine-
tuned different CodeLLMs with The Vault com-
pared to other datasets, such as CodeSearch-
Net on various code understanding tasks, includ-
ing code generation, code summarization and
code search. The results show that models fine-
tuned on The Vault outperform those fine-tuned
on CodeSearchNet (code summarization, code
search) and outperform the original model by a
significant margin (code generation on pass @k
over HumanEval and MBPP datasets).

2 Related works

Code Large Language Models for Understand-
ing and Generation Code large language models
facilitate various code understanding and code gen-
eration tasks, including but not limited to code gen-
eration [Feng et al., 2020a, Wang et al., 2023, El-
naggar et al., 2021, To et al., Luo et al., 2023, Shen
et al., 2023], code completion [Feng et al., 2020a,
Wang et al., 2023, Peng et al., 2021], program re-
pair [Xia et al., 2022], program classification [Bui
et al., 2021a,c,b] and code translation [Roziere

"https://github.com/FSoft-AI4Code/
TheVault

et al., 2020, Bui et al., 2019]. A significant por-
tion of recent research employs language models,
originally developed for natural language process-
ing, for handling code [Feng et al., 2020a, Wang
et al., 2023, Guo et al., Ahmad et al., 2021b, Bui
et al., 2021b, Elnaggar et al., 2021, Peng et al.,
2021, Kanade et al., 2020, Chakraborty et al., 2022,
Ahmed and Devanbu, 2022, Niu et al., 2022]. Such
approaches largely regard code as analogous to text
and adapt pretraining strategies that mirror those
used for natural languages. CodeBERT [Feng et al.,
2020a], for instance, modifies a Roberta model [Liu
et al., 2019] to pretrain a code model on multiple
programming languages. CodeT5 [Wang et al.,
2021] and CodeT5+ [Wang et al., 2023] employs
unique identifier information from source code to
pretrain the TS model [Raffel et al., 2019] for code
in a multi-modal fashion.

Datasets for Code Representation Learning:
Code is commonly represented in training datasets
for foundational LLMs, including the ROOTS cor-
pus [Laurencon et al., 2023] for training BLOOM
[Scao et al., 2022] and The Pile [Gao et al., 2020a]
for training LLaMA [Touvron et al., 2023]. The
code data represented in these datasets are unla-
beled raw source code from GitHub. There is also
a family of code-only datasets for training or fine-
tuning coding-specific LLMs, including The Stack
[Kocetkov et al., 2022], a 3TB corpus of permis-
sively licensed source code, preceded by CodePar-
rot with 50GB of deduplicated source code [Tun-
stall et al., 2022]. These massive datasets are usu-
ally used to train CodeLLMs. However, labeled
data are required for training and evaluating LLMs
for coding tasks involving source code and natural
language descriptions. CodeXGLUE is a bench-
mark dataset Lu et al. [2021] for 10 coding tasks
that include 14 subsets, four of which are code-text
pairs. Most of the code-text pairs in CodeXGLUE
come from CodeSearchNet.

CodeSearchNet (CSN) has also been employed
for pretraining LLMs, enabling supervised learning
techniques to achieve state-of-the-art performance
for models such as CodeT5+ [Wang et al., 2023]
and UniXcoder [Guo et al., 2022]. A few code-
text pair datasets set out to surpass CSN in size.
CoDesc combines existing parallel datasets (CSN,
DeepCom [Hu et al., 2020], CONCODE ([Iyer et al.,
2018a], and FunCom [LeClair et al., 2019]), and
then refines the results from the superset, which
yielded 4.2M Java data samples. PyMT5 [Clement
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et al., 2020] is a dataset with 7.7M Python code-
text. However, both of these datasets each contains
code for a single programming language. Notable
datasets created from Stack Overflow 2 include the

necessary code-text data for generating post titles
[Gao et al., 2020b, Liu et al., 2022].

3 The Vault dataset

3.1 Overview

In The Vault, we leverage a subset of The
Stack [Kocetkov et al., 2022], recognized as the
most expansive publicly available, multilingual,
permissive-licensed source code dataset weighing
in at 3TB. From this large-scale dataset, The Vault
transforms raw source code into a collection of
high quality pairs of code and text. Our transfor-
mation pipeline is designed to efficiently extract
data from source code, create text-code pairings,
and remove noise, yielding three distinct output
datasets, as detailed in Figure 2. We draw from
a subset of The Stack, which comprises code in
10 prevalent programming languages, such as C,
C#, C++, Java, JavaScript, GoLang, PHP, Python,
Ruby, and Rust (out of the total 300 languages fea-
tured in The Stack). Each language-specific raw
source code feeds into a custom-built tree-sitter?
parser.

This parser is designed to extract functions,
classes, methods, block code snippets, and their
corresponding block or inline comments. The fig-
ure 1 illustrated a basic structure of a code file that
contains multiple levels of code snippets. By ap-
plying a breadth-first search on the Abstract Syntax
Tree (AST) of the root node, the parser is able to
traverse down different node and leaf levels (class,
function, and inline), result three separate datasets:

1. The first output dataset, referred to as Dpaired.
contains pairs of classes (node 1) and functions
(node 3) with corresponding block comments
that serve as docstrings (node 2). After the ini-
tial construction, this dataset proceeds through a
pipeline that employs both rule-based filters and
neural-based filters to remove noisy samples
that fail to meet the criteria detailed in Section
3.2.

2. The second output dataset, denoted as Dypimodal»
consists of standalone functions and classes, not
https://stackoverflow.com/

Shttps://tree-sitter.github.io/
tree-sitter/

paired with any docstring or comments, thereby
forming a unimodal dataset.

3. The third and final dataset, Dyjqck, includes pairs
of arbitrary code blocks (node 4) and inline com-
ments (node 5). To construct this set, we capture
all inline comments. Each comment is paired
with the preceding code block, tagged as the
“previous context” (node 4a), and the following
code block, “next context” (node 4b).

A large number of block comments adhere to
widely accepted docstring formats (Appendix A.5),
encompassing neatly organized details about the
name (identifier) of the associated function or class,
their parameters, arguments, and return types. We
channel these block comments through docstring
parsers, which we have developed and made pub-
licly available, to extract this information as meta-
data for each sample in our dataset. We contend
that this metadata could prove beneficial for down-
stream tasks, prompt settings, and other applica-
tions (Figure 8). Collectively, these three datasets
(Dblock» Dunimodal> and Dpaireq) constitute The Vault.
Note that through the evaluation process, only
Dpaireq 1s used since its contains data that is suitable
for training and comparison with other datasets.

3.2 Data Cleaning Pipeline

From preliminary survey of the output dataset con-
taining pairs of classes and functions with their
corresponding block comments Dpgireq, WE Ob-
serve salient patterns that would impair the training
quality for code related tasks. We implemented a
set of rule-based filters (Section 3.2.1) to remove
irrelevant information or reformat textual data to be
more descriptive of the corresponding code block.
To address cases where the code-text pairs have
inadequate or erroneous semantic correlation, we
trained a neural-based model based on CodeBERT
(Section 3.2.2) to serve as a filter. Such a filter gen-
erates a score, which is used to assess the alignment
of a pair of code and text. Low-scoring samples
are assumed to be unaligned and will be removed.

3.2.1 Remove Noisy Sample by Rules

Our data pipeline employs 13 rule-based filters
to eliminate noisy patterns in the source dataset.
These filters, detailed in Table 1, are categorized
into three main groups: enhancing readability, pro-
moting consistency, and preserving the intended
usage of the code.
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// Java program for implementation of QuickSort
1. Class Node ——»| class QuickSort
L L
:' /* This function takes last element as pivot,
H places the pivot element at its correct |
. position in sorted array, and places all 4——— 2. Block comment Node
Node_ZISthe_ smaller (smaller than pivot) to left of
docsm'ngofth/s pivot and all greater elements to right
function node || i of pivot */
3. Function Node \/int partition(int arr[], int low, int high) I
b >
{
int pivot = arr[high];
int i = (low-1); // index of smaller element
(" for (int j=low; j<high; j++) N
{
// If current element is smaller than or
// equal to pivot
if (arr[j] <= pivot)
{
— 4a > i+s+;
// swap arr[i] and arr[j]
int temp = arr[i];
arr[i] = arr[]]; Node 4a and 4b are
4. Nodes arr[j] = temp; previous and next
3} context respectively
U J
{777 swap arr[i+1] and arr[high] (or pivot) e 5. Line comment Node
int temp = arr[i+l1];
J arr[i+1] = arr[high];
- 4b » arr[high] = temp;
‘ return i+1;
2 v
- J

Figure 1: The tree-sitter node structure. Classes (1) and functions (3) are extracted along with their corresponding
docstring, which may be in the form of a block comment (2) or a line comment (5). The line comments (5) are
extracted along with their preceding (4a) and succeeding (4b) code nodes for the inline dataset.

In terms of readability, we strip delimiters, math
formulas, HTML tags, and metadata tags from the
text. This ensures a cleaner and more coherent
code-text pairing. For consistency, we remove ele-
ments that may cause irregularities in the dataset.
This includes stripping hyperlinks and embedded
code, and removing empty comments, overly short
or long comments, non-English comments, auto-
generated blocks, and work-in-progress comments.
Lastly, to preserve the original purpose of the code,
we remove comments that are questions or serve as
examples or notes. This rigorous filtering process
guarantees a high-quality dataset, improving the
effectiveness of code-focused language models.

3.2.2 Remove Low-Quality Samples with
Neural-based Classifier

Beyond the use of rule-based filtering methods, a
crucial question arises: how do we ensure align-
ment between code and text? Random comments
unrelated to the functionality of the code snippet
can contaminate the dataset, necessitating the re-
moval of such misaligned samples to guarantee
quality. To address this issue, we constructed a clas-
sifier utilizing CodeBERT [Feng et al., 2020b], de-

Categories Percentage (%)
Readability

Strip Delimiters 13.430
Strip Math Formulas 0.021
Strip HTML Tags 3.180
Strip Metadata Tags 5.260
Consistency

Strip Hyperlink 0.510
Strip Embedded Code 12.680
Remove Empty Comments 71.470
Remove Comments Too Short / Long 4.100
Remove Non-English Comments 3.230
Remove Auto-gen Blocks 0.050
Remove Work-in-Progress Comments 0.002
Intended usage

Remove Comments as Questions 0.020
Remove Comments as Examples or Notes 0.460

Table 1: The percentage of constructed code-text pairs
from The Stack caught by each rule-based filter.

signed to score the semantic relationship between
a function or class and its corresponding docstring.

In our scoring model, we input code snippets and
docstrings separated by a token < /s >. Approx-
imately 12% of the already rule-filtered code-text
pairs dataset was randomly selected for training.

4766



Functions & classes w/ comment

x

Classifier
- — Functions & classes w/
docstring metadata
Rule

Classes
V \_/
G S
J<) [
é D?mim odal
Functions & classes wo/ comment
Raw files Tree-sitter Parsers

Code block w/ comment

Figure 2: Pipeline to create datasets of code blocks with comments Dy;,.f, unimodal code D, imodal, and code-text

pairs Dy,qireq from raw source code.

Language Number of functions #Repositories . #Token; ‘
widocsiring All #Unique code .#Unlque -#Umlque
token  docstring token identifier
Python 7,825,291 39,221,539 628,069 22,050,020 1,633,062 3,423,694
PHP 4,696,756 30,323,578 439,514 11,203,393 715,546 1,133,437
JavaScript 1,683,568 33,015,657 355,761 4,895,923 501,750 753,399
Java 6,667,422 69,744,181 321,129 16,536,979 1,749,151 2,525,492
C# 3,350,316 35,736,746 150,657 5,485,063 409,220 1,233,383
C++ 1,709,448 28,684,400 116,897 5,630,067 678,063 1,155,241
C 1,685,966 13,762,988 88,556 5,764,837 750,146 1,197,164
Go 5,153,436 23,832,763 241,238 6,818,885 2,472,000 1,918,773
Rust 864,987 8,230,575 68,615 2,130,327 221,877 315,331
Ruby 461,585 4,342,191 61,804 1,436,713 146,237 213,005
Total 34,098,775 286,894,618 2,364,144 73,077,761 7,351,960 12,869,338

Table 2: The size of extracted function data in each programming language.

As labeled data was unavailable, we generated neg-
ative samples by randomly pairing functions and
docstrings within the same programming language.
We then passed the representation of the < s >
token to a linear layer, which produced a semantic
correlation score between 0.0 and 1.0. Code-text
pairs were then filtered using a binary classification
gate with a threshold of 0.5.

To validate our model, we employed GPT 3.5 for
analogous predictions. A million predictions were
generated from unseen instances, from which we
selected 300 per language: 200 high-confidence
instances (100 consistent and 100 inconsistent
code-text predictions) and 100 low-confidence in-
stances. GPT 3.5-turbo was instructed to assign a
consistency score (1-10) for each instance’s code-
docstring pair, serving as a benchmark for our
model’s predictions. For high-confidence instances,
our model agreed with the GPT 3.5-turbo scores
over 80% of the time. Although our model faced
challenges with ambiguous samples, the Area Un-

der the Curve (AUC) metric proved suitable due
to our primary goal of excluding misalignments
while preserving matched examples. An average
AUC of 0.89 indicates that our approach effectively
reduced dataset noise without discarding numerous
informative samples. Detailed configurations and
evaluation results are available in Appendix A.2.

In addition, we use our model to find noisy ex-
amples in the rule-based noise-remove version of
CodeSearchNet in CodeXGlue. Table 3 presents
some inconsistent examples found by our model for
Python, Java, JavaScript, and PHP in CSN. It can
be observed that detected pairs show strong incon-
sistency between docstring and code. For instance,
the docstring of the example in Python does not
give much insight into what the code does or its pur-
pose. The code defines a method named ‘has_url’
which checks if the attributes have a non-empty
value; however, the docstring mentions templates
which does not provide enough context to fully
understand how this code relates to templates or
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[ Languages | Inconsistent pairs

// Handy for templates.
def has_urls(self):
Python if self.isbn_uk or self.isbn_us or self.official_url or self.notes_url:
return True
else:
return False
// only for change appenders
public MapContentType getMapContentType (ContainerType containerType) {
Java JaversType keyType = getJaversType (Integer.class);
JaversType valueType = getJaversType (containerType.getItemType());
return new MapContentType (keyType, valueType);
}
// we do not need Buffer pollyfill for now
function(str) {
JavaScript var ret = new Array(str.length), len = str.length;
while (len--) ret[len] = str.charCodeAt (len);
return Uint8Array.from(ret);
}
// disini mo ba atur akan apa mo kamana
private function _parse_routes()
{
Suri=implode (' /', S$this->uri->segments());
PHP if (isset ($this—>router[$uril)) {
return $this->_set_request (explode (' /', S$this->router[$uril]));
}
}

Table 3: Examples of Inconsistent pairs in CodeSearchNet found by our model in Python, Java, Javascript and PHP.
“/I” represents for docstring section. More examples are demonstrated in Table 15 in Appendix section.

#Function Training set .

Dataset ‘ #PL ‘ w/ docstring ~ w/o docstring Language Small Mediu%n Full Valid set | Test set

PyMTS5 [Clement et al., 2020] 1 [ ~ 7,700,000 N Python 370,657 | 1,952,110 7,772,647 30,992 21,652
CoDesc [Hasan et al., 2021] 1 4,211,516 - Java 351,213 | 1,612,366 6,629,193 22,677 15,552
CodeSearchNet [Husain et al., 2019] 6 2,326,976 4,125,470 JavaScript 82,931 | 404729 | 1,640,416 | 22,044 | 21,108
CodeXGLUE CSN [Lu et al., 2021] 6 1,005,474 - PHP 236,638 | 1,155,476 | 4,656,371 21,375 19,010
Deepcom [Hu et al., 2020] 1 424,028 - C 105,978 381,207 1,639,319 27,525 19,122
CONCODE [Iyer et al., 2018b] 1 2,184,310 - C# 141,090 783,166 3,305,891 24,787 19,638
Funcom [LeClair et al., 2019] 1 2,149,121 - C++ 87,420 410,907 1,671,268 20,011 18,169
CodeT5 [Wang et al., 2021] 8 3,158,313 5,189,321 Go 267,535 | 1,319,547 5,109,020 19,102 25,314
THEVAULT 10 34,098,775 205,151,985 Ruby 23,921 112,574 424,339 17,338 19,908
Rust 35,367 224,015 825,130 16,716 23,141

Total 1,702,750 | 8,356,097 | 33,673,594 | 222,567 | 202,614

Table 4: Comparison of THEVAULT function set to other
code-text datasets.

its broader purpose. Besides, our model is able to
identify non-English samples, which are presented
in the example of PHP, that are not captured by the
rule-based methods.

4 Empirical Evaluation

In this section, we aim to assess the quality of
The Vault in comparison with other datasets, such
as CSN. To substantiate this quality, we fine-tune
prominent CodeLLMs on tasks that necessitate the
involvement of both code and text, including code

summarization, code search, and code generation.

We then compare these models, which have been
fine-tuned on The Vault, with those fine-tuned on
CSN. The comparison is made using the same test

Table 5: The proportion of training, validation, and test
set of THEVAULT.

datasets and commonly employed metrics, such as
MRR, smoothed BLEU [Lin and Och, 2004], and
pass@k [Chen et al., 2021].

4.1 Dataset Statistics

Table 2 provides the statistics of the samples for
each programming language after undergoing our
data-cleaning pipeline. In total, we have approxi-
mately 34M samples. The table also includes other
information, like the number of tokens for code and
docstrings, and the quantity of repositories.

Table 4 offers a comparison between The Vault
and other parallel datasets frequently used for pre-
training and fine-tuning downstream tasks. These
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Python Java  JavaScript Go PHP Ruby Total/Avg
Model Dataset CODESEARCHNET TESTSET (BLEU-4)

raw/TheStack 16.18 9.06 6.23  19.05 7.07 5.78 11.84/10.56

CodeT5 CodeSearchNet 19.55 20.38 16.15 19.83 2626 1538 21.24/19.59
TheVault/small 1894 17.72 13.96 19.92 2043 1522 18.83/17.70
raw/TheStack 0.86 3.06 0.59 1091 2.29 0.47 3.23/3.03

PLBART | CodeSearchNet 17.99 17.38 14.84 1798 2254 14.08 18.78/17.47
TheVault/small 1493  15.66 11.95 17.03 18.00 11.49 15.95/14.84

THEVAULT TESTSET (BLEU-4)

raw/TheStack 16.18 9.06 6.23  19.05 7.07 5.78 11.84/10.56

CodeT5 CodeSearchNet 10.86 8.00 842 1787 1785 1026 16.11/12.21
TheVault/small 12.26  11.13 9.68 31.64 3886 11.23 25.12/19.13
raw/TheStack 1.69 4.02 043 2460 4383 0.49 7.19/6.01

PLBART | CodeSearchNet 10.24 7.26 7.64 1690 13.83 9.60 14.39/10.91
TheVault/small 10.23 9.28 895 2278 3432 9.74  20.29/15.88

Table 6: Smoothed BLEU-4 results for code summarization. The “Total” column demonstrates combined data in
all languages to calculate BLEU, while “Avg” is the average BLEU score on the language level.

datasets include Funcom [LeClair and McMillan,
2019], Deepcom [Hu et al., 2020], CONCODE
[Iyer et al., 2018b], CSN [Husain et al., 2019],
CoDesc [Hasan et al., 2021], and non-public data
used for pretraining [Clement et al., 2020, Ciurume-
lea et al., 2020, Wang et al., 2021].

We split the training set into two smaller subsets:
the small set and the medium set that contain 5%
and 20% of the full training set, respectively. To re-
duce data leakage during training, we employed the
MinHash LSH technique [Zhu et al., 2023] to filter
training instance clusters that are close to samples
in the validation and test sets of CSN, HumanEval,
and MBPP. Additionally, during dataset partition-
ing, we prevented content from the same repository
from appearing in multiple sets, thereby avoiding
any potential internal data leakage. A more detailed
analysis of The Vault at the class and code block
levels can be found in Appendix A.4.

4.2 Experiment Setup

Data splitting: During the experiment phase, The
Vault (D)g;req) Was split into three distinct datasets:
training, validating, and testing sets. To avoid data
leakage, we reinforced a policy where code sam-
ples from the same repository must all be in the
same set. In the splitting algorithm, we also in-
cluded as a goal the preservation of the token length
distribution from The Vault’s dataset in each subset.

For richer comparisons, the training set was fur-
ther branched off to two smaller sets, the small
and medium training sets, sampling 5% and 20%
of the full training set, respectively. Details about

experiment data can be found in Table 5. Note that
TheVault/small has a comparable size with CSN,
making it fair to assess and compare the quality of
these two datasets.

Besides, in order to validate the efficiency of
our processing pipeline, we conduct a compari-
son between the performance of models trained
on The Stack (raw data) and The Vault (pro-
cessed data). Specifically, we established three
function-level subsets, each approximately the size
of TheVault/small (=1.7M code-text instances).
These subsets were created by randomly sampling
the raw function-level dataset extracted from The
Stack, without applying any filtering (referred to
as raw/TheStack). We use three different seeds to
sample raw/TheStack and report the average result.
All experiments are conducted using 4 NVIDIA
A100 GPUs.

Code search: We select CodeBERT [Feng et al.,
2020a], RoBERTa [Liu et al., 2019] and UniX-
Coder [Guo et al., 2022] as the encoder for embed-
ding source code and natural language query. We
train each model for 10 epochs with a sequence
max length of 512, and a learning rate of 27°.

Code summarization: CodeT5 [Wang et al.,
2021] and PLBART [Ahmad et al., 2021a] are em-
ployed for the summarization task. We use the base
versions and set the max input tokens to 512 and
the max output tokens to 400. We train for 5 epochs
with batch size of 512 and a learning rate of 274
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Model Fine-tune data Python Java JavaScript Go PHP Ruby Avg
CODESEARCHNET TESTSET (MRR)
raw/TheStack 0.3713  0.3492 0.3148 0.5519 0.2731 0.2748 0.3559
CodeBERT | CodeSearchNet | 0.3793 0.4636 0.4437 0.6201 0.4741 0.5219 0.4838
TheVault/small | 0.4074 0.4857 0.4466 0.6578 0.6578 0.5251 0.5301
RoBERTA CodeSearchNet | 0.3479 0.448 0.4254 0.5684 0.4623 0.5147 0.4611
TheVault/small | 0.4849  0.5581 0.4962 0.7446 0.5166 0.59 0.5651
UniXCoder CodeSearchNet | 0.3935 0.4549 0.4459 0.5861 0.489 0.5446  0.4857
TheVault/small | 0.4427 0.4909 0.4506 0.6416 0.4515 0.5702 0.5079
THEVAULT TESTSET (MRR)
raw/TheStack 0.318 0.3245 0.1837 0.4194 0.1718 0.0878 0.2509
CodeBERT | CodeSearchNet | 0.2881 0.3213  0.2409 0.4123 0.1854 0.2579 0.2843
TheVault/small | 0.3501 04214 0.3216 0.4864 0.2351 0.2904 0.3165
ROBERTa CodeSearchNet | 0.2644 0.3329 0.2371 0.2375 0.1577 0.2574 0.2478
TheVault/small | 0.4533 0.5519 0.4386 0.5021 0.2876 0.3717 0.4342
UniXCoder CodeSearchNet | 0.2959 0.344 0.2508 0.185 0.1646  0.2669 0.2512
TheVault/small | 0.3852 0.4279 0.3491 0.4628 0.238 0.3201 0.3639

Table 7: Comparison between the models fine-tuned on the CODESEARCHNET and on different THEVAULT training

subsets on code search task.

Code generation: We use CodeGen 350M and
2B Multi [Nijkamp et al., 2023] to evaluate code
generation. We use the same configuration as in
the code summarization task.

4.3 Evaluation Results

4.3.1 Code Summarization

For this task, we utilize the Vault and CSN to
fine-tune CodeT5 and PLBART to summarize the
source code. The Vault and CSN exhibit significant
differences in docstring format. The Vault retains
the complete docstring format, offering compre-
hensive descriptions of core logic, parameters, ar-
guments, and return types. This feature enables
versatile applications in code documentation and
various downstream tasks. Additionally, we save
the first sentence of each complete docstring as
metadata, termed as short_docstring. To facili-
tate fair comparison between The Vault and CSN,
we apply post-processing to our full docstrings and
short_docstrings training sets, thereby reducing
format distribution disparity.

Table 6 shows the results when comparing
CodeT5 and PLBART trained on CSN and The
Vault for the code summarization task, we re-
port the best score when using full docstrings
and short_docstrings. We present further exper-
imental outcomes using the Rouge-L [Lin, 2004]
and BERTScore [Zhang et al., 2020] metrics in

Appendix, Table 14. The results show that our
pipeline has witnessed strong effectiveness com-
pared to unprocessed data, raw/TheStack. Particu-
larly, during training on the raw/TheStack dataset
for the code summarization task, we found that
the PLBART and CodeT5 generate outputs with
substantial noise. These outputs are characterized
by a prevalence of special tokens like “//” and “*”.
This finding strongly underscores the efficacy of
our filtering process in enhancing the quality of
the dataset. However, the result using CSN shows
superior performance on CSN’s testset than using
The Vault. The reason for this is our mention of
the post-processing step to reduce the difference
between the CSN and The Vault filtering methods,
where the syntactic distribution can still exhibit
nonidentical characteristics, which can affect the
BLEU score. However, this gap could be reduced
by using the full version of The Vault as shown
in Table 14. Although the total performance gain
when evaluated on the CSN test set is marginal
(21.73 versus 21.24), it is worth noting that, despite
the intermediary processing, CSN is a considerably
smaller dataset with more consistent docstring pat-
terns. In contrast, our dataset is substantially larger
and exhibits greater diversity, thereby encouraging
broader generalization. When evaluated against
The Vault’s test set, the model fine-tuned on CSN
lags behind by over 10%.
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Model Fine-tune dataset

‘ pass@1 ‘ pass@10 ‘ pass@100

HUMANEVAL
- 6.67 10.61 16.84
Py/CodeSearchNet 2.76 8.76 14.72
CodeGen 350M | (250K) Py/TheVault 374 10.57 1626
raw/PyTheStack 6.64 15.42 24.80
Py/TheVault 8.14 18.12 30.07
- 14.51 2467 38.56
CodeGen 2B Py/TheVault 14.00 25.74 4172
MBPP
- 746 24.18 4637
CodeGen 350M | b1y, e vaule 10.13 33.96 5320
- 18.06 4580 65.34
CodeGen 2B Py/TheVault 27.82 50.06 65.06

Table 8: Result on code generation benchmarks using
CodeGen Multi 350M and 2B models.

4.3.2 Code Search

We utilize CodeBERT, RoBERTa and UniXCoder
to fine-tune both The Vault and CSN for the pur-
pose of the code search task. We also furnish a base-
line Mean Reciprocal Rank (MRR) score. MRR
is a widely used metric for evaluating code search
tasks, and in our case, it is trained on 10 different
programming languages and assessed using the test
set from CSN and The Vault. The results of this
task, when fine-tuning the model on The Vault and
CSN, are illustrated in Table 7. Remarkably, we
attain superior results in most languages when fine-
tund using the smallest dataset, TheVault/small,
in contrast to solely fine-tuning on the CSN cor-
pus. Surprisingly, ROBERTa, a model pretrained
on natural language text, outperforms the two code-
pretrained models when evaluated on code search.
This could imply the importance of natural lan-
guage text representation over code representation
in this task. Furthermore, models trained on The
Vault consistently outperform all baseline models
trained on raw/TheStack, underscoring both the ef-
ficiency of our processing pipeline and the dataset’s
ability to generalize across different architectures.

4.4 Code Generation

We experiment with two versions of CodeGen
Multi [Nijkamp et al., 2023], which are 350M and
2B models on the HumanEval and MBPP bench-
marks for code generation. The scope of our ex-
periment was limited because the benchmarks only
support Python. We use these checkpoints and
continue fine-tuning them on The Vault because
CodeGen Multi models are trained on the dataset
with multiple languages.

To create Py/CodeSearchNet and Py/TheVault,
we use the Python subsets of CSN and TheVault,
respectively. We sampled the training Python set of

TheVault to match the size of the Python subset in
CSN with 250K samples in the first round of fine-
tuning. Additionally, raw/PyTheStack is a subset
of Python data from The Stack mirroring the size
of Python data present in The Vault dataset, which
helps us to demonstrate the advancements achieved
in our data process pipeline.

The results are shown in Table 8. We can see
that fine-tuning the CodeGen Multi 350M on The
Vault causes the model to improve significantly
in terms of pass@1, pass@10, and pass@ 100 on
the HumanEval and MBPP benchmarks. Addition-
ally, CodeGen 2B is used to assess The Vault on
larger scale models. Similar to experiments on
small models, Table 8 shows that The Vault can
improve the performance of pretrained large-scale
models. These results validate The Vault’s ability
to improve the performance of pre-existing pre-
trained models. In the future, we will expand our
evaluation to even larger scale models and assess
The Vault’s impact on them.

5 Conclusion

In this paper, we presented The Vault, a large
dataset of high-quality code-text pairs from ten
programming languages, with over 43 million sam-
ples. The Vault was carefully curated to ensure that
each pair meets quality standards, with detailed
and informative descriptions and consistent cod-
ing styles. Our analysis uncovered a number of
intriguing patterns and trends that shed light on
the characteristics of programming languages and
coding practices. We believe that The Vault will
be a valuable resource for researchers and practi-
tioners in this rapidly evolving field, providing a
solid foundation for developing novel approaches
and advancing state-of-the-art code large language
models.
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Limitations

In our approach, we employed 13 heuristic and
context-specific rule-based filters, curated from
manual data observations. While these filters effec-
tively mitigated noisy patterns, their deterministic
nature precluded comprehensive generalizability.
To address this, we supplemented these rules with
a neural-based approach as described in Section
3.2.2. However, the absence of labeled training
data necessitated pseudo-random sample genera-
tion, which could compromise model soundness
and potentially eliminate quality code-text pairs.
Although cross-validation with GPT 3.5-turbo oc-
casionally revealed scoring inconsistencies, we be-
lieve that human labeling and model fine-tuning
could further refine the dataset.

Compared to The Stack and The Pile, our dataset
is smaller, mainly due to our rigorous quality con-
trol procedures. Moreover, creating AST parsers
for each programming language is a non-trivial
task, limiting our dataset to 10 popular program-
ming languages compared to The Stack’s 300.
Nonetheless, our framework’s codebase is publicly
available, encouraging future contributions to ex-
tend our parsers and rules to additional languages.

The current study primarily utilized small mod-
els with less than 2 billion parameters to illustrate
the value of The Vault. These models effectively
demonstrated the dataset’s potential, but further
research with larger models would shed light on
its robustness and scalability across more complex
tasks. In future work, we plan to conduct experi-
ments using large-scale language models to further
assess the impact of our dataset.
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A Appendix
A.1 Rule-based filters

While some datasets eliminate all special characters
(1@#$%&*()_-+=/.,— *) and keep only the first
sentence or the paragraph preceding the first double
endline symbol [Hasan et al., 2021, Mahmud et al.,
2021], our heuristic rules take a different approach.
Instead of discarding such characters outright, we
selectively remove the noisy elements while aiming
to capture as many informative sections as possible.

We analyze each docstring block individually
and retain the sections that meet our quality crite-
ria. Table 9 provides comprehensive descriptions of
our 13 rule-based filters, accompanied by illustra-
tive examples. Additionally, table 10 presents the
corresponding percentages of code-text pairs gen-
erated through the application of these rule-based
filters.

A.2 Neural-based refinement method

To detect semantic inconsistency between code-text
pairs, we considered fine-tuning on large founda-
tional models such as CodeGen [Nijkamp et al.,
2023], BLOOM [Scao et al., 2022] or leverage
GPT 3.5-turbo APIs. However, these approaches
would incur very high costs in terms of financial
resources, time, and computational power. We de-
cided to train a dedicated model to deal with this
specific task and use GPT 3.5-turbo to cross-check
the predictions.

Training: We trained our model based on Code-
BERT, [Feng et al., 2020a]. The model assigns a
score for semantic correspondence between code
and text, before passing through binary classifi-
cation into Consistent and Inconsistent categories.
We randomly chose 5SM samples (500K for each
language in The Vault) and divided them into train-
ing, validation, and testing sets at a ratio of 3:1:1.
The input to the model is the concatenation of the
docstring and the code together with the < /s >
token used to separate them (Figure 3). We use the
representation of the < s > token and feed it into
a linear layer to obtain the output logit.

Since labeled data was unavailable, we utilized
self-supervised learning. We created negative sam-
ples by randomly pairing a function with a doc-
string from the same programming language (Fig-
ure 3).

Cross-check: We used GPT 3.5-turbo to per-
form similar classifications for semantic consis-
tency of code-text pairs. We used a prompting

template to ask GPT 3.5-turbo to score each pair
of code-text on a scale of 1 to 10 for semantic cor-
respondence with a detailed explanation and ran
this prompting template on systematically selected
300 data points from each language with 100 data
points in each of the following groups:

* Consistency group: Examples that the model
gives high confidence prediction to class Con-
sistent. We select the top 100 based on the
output probability for class 1.

* Inconsistency group: Examples that the model
gives high confidence prediction to class In-
consistent. We select the top 100 based on the
output probability for class 0.

* Uncertainty group: Examples that the model
gives uncertain predictions. We select the low-
est top 50 examples for each class.

The systematic sampling scheme helped us se-
lect 2994 samples in function level to be scored out
of millions, reducing the cost of requesting GPT
3.5-turbo API while enabling meaningful analysis.
The prompt input to GPT 3.5-turbo is as follow:

I want you to act as an unbiased
docstring evaluator for code. I will
give you a docstring along with a
source code, and you will give me a

score for the consistency between
them. The score will be on a scale
of 1 to 10, 10 means the docstring
can effectively summarize the code
while 1 means they are inconsistent.
The response answers must contain
the score and the explanation that

follows the format in the response
format.

- Response format:
Score: X
Explanation: Y

— Docstring:
"{docstring}"

— Code:
"{code}"

Empirical Evaluation Results: Table 11
presents the performance of our model with GPT
3.5 turbo’s scores as a reference, along with the
scoring result for each group. In groups with high
confidence, we witness a strong correlation be-
tween our model and GPT 3.5-turbo, with a high
score for Consistency (7.81) and a low score for
Inconsistency (3.15). A similar pattern is observed
in the Uncertainty group, where the average score
is close to the middle of the scale at 5.74.

4776



[ Categories | Syntax Feature | Action | Docstring
/**
x Lexical essentially tokenizer.
Comment Unnecessary comment delimiter Update : y
Delimiter
— Lexical essentially tokenizer.
Deletes a Mux asset
@see
Hyperlink URL Link Update https://docs.mux.com/vl/reference#deletean-asset
— Deletes a Mux asset
Set the trust level for a key in GPG keychain.
code-block:: bash
. . salt "+’ gpg.trust-key key-id=’3FADIF1E’
Embedded Inline or embedded dee snippets, Update trust-level='marginally’
Code command lines, or script excerpts
— Set the trust level for a key in GPG keychain.
code-block:: bash
isup <url> - Is it down for everyone, or just you?
Question Question: Why? How?, ... Update
— isup <url>
Recursive filter design using a least-squares
method.
{(}B,A{]} = YULEWALK(N,F,M) finds the N-th order
Math \sqrt(), \exp(), \mathbf, ... Update | recursive filter coefficients B and A.
formula
— Recursive filter design using a least-squares
method.
Creates a slice of ‘array’ with ‘n’ elements
dropped
from the end.
@static
Metadata Metadata tags or annotations Update @memberOf_
Tag @since 3.0.0
— Creates a slice of ‘array’ with '‘n’ elements
dropped from the end.
Constructs a <code>GeneralStoresProductModel</code>
. from a plain JavaScript object.
HTML Tags HTM; tags: <p>... </p>, ... Update
Special tags. — Constructs a GeneralStoresProductModel from a
plain JavaScript object.
Pull packages data dir.
. ’ :
Example Code example, note from developers | Update note: Uses su to access package’s data dir.
and note — Pull packages data dir.
Unsuitable Length < 5, length > 500 Remove | Write objects
Length
. . . Retorna uma estrutura com os argumentos
Non-_ Not written in English Remove passados para o programa.
English
x<!-begin-user-doc->
Auto-gen Auto-generated Remove | <!-end-user-doc->
@generated
| R Deprecate this build, so that it will be rebuilt if
Under-dev Under-development eMOVE | ..y other test run wants to use it.
No com- | No docstring/comment in function Remove | null
ment

Table 9:

Rule-based filters and examples.

4777




Categories Python PHP JavaScript Java C# C++ C Rust Ruby Go Total
Comment Delimiter | 12.02  33.38 9.94 1198 167 692 1328 843 9.13 495 | 1343
Hyperlink 0.95 0.44 0.66 0.25 0.71 0.15 0.11 0.59 1.11 0.65 | 0.51

Embedded Code 31.65 1.09 1.38 1.41 1.39 651 6.16 0.67 3.18 241 | 12.68
Question 0.03 0 0.02 0.02 001 003 002 006 013 002 | 0.02
Math formula 0.1 0 0.01 0.01 001 002 0.02 0.01 0 0 0.021
Metadata Tag 0.62 6.81 1.86 269 215 435 6.14 0.83 1.69 046 | 5.26
HTML Tags 0.79 0.68 0.8 27 17.15 031 045 1.13 1.56 0.13 | 3.18

Example and note 1.4 0.26 0.36 034 022 0.18 0.4 045 0.79 0.3 0.46
Unsuitable Length 5.11 8.79 3.90 220 275 458 386 226 519 437 | 410
Non-English 1.69 5.72 3.26 416 2.62 4.1 1.94 042 153 1.77 | 3.23

Auto-gen 0.01 0 0 0.2 0 0 0 0 0 0 0.05

Under-dev 0.02 0 0 0 0 0 0 0 0 0 0.002
No comment 60.54  49.0 78.5 77.15 76.16 80.95 7228 80.43 71.55 69.75| 71.47

Table 10: The percentage of constructed code-text pairs from The Stack caught by each rule-based filter, by

programming language.

Java Positive example / \
<s> Docstring, </s> </s> Code, Code;
Code,,
Negative example random
9 P select /
<s> Docstring,, </s> </s> Code,, mn CodeSet

o /

Figure 3: Input representation and Negative sample generation for code-docstring inconsistency detection.

In addition, we use GPT 3.5-turbo’s scores to
generate pseudo-labels and calculate accuracy and
AUC for our model. We set a relative threshold of
5 to determine the labels. It can be witnessed that
our model performs well in high-confidence groups
but struggles in the uncertainty group. However,
the accuracy is influenced by the choice of rela-
tive threshold, we consider Area Under the Curve
(AUC) to measure the false positive and true pos-
itive rates. The metric shows a convincing result
averaging 0.89, enabling us to effectively reduce
a high amount of noise in our dataset while avoid-
ing excluding too many informative examples. Fi-
nally, after removing noisy data using the proposed
neural-based method, we notice a decrease of 1.3%
in the dataset.

We use our model to find noisy examples in the
rule-based noise-remove version of CodeSearch-
Net in CodeXGlue. Table 15 illustrates some exam-
ples found in 6 programming languages. It can be
observed that detected pairs show strong inconsis-
tency between docstring and code. For instance, the
docstring of the first example in Python does not
give much insight into what the code does or its pur-

pose. The code defines a method named ‘has_url’
which checks if the attributes have a non-empty
value; however, the docstring mentions templates
which does not provide enough context to fully un-
derstand how this code relates to templates or its
broader purpose. A similar pattern also presents
in the remaining examples. An example that pro-
vides more clarity is the second example in Ruby.
The docstring describes a function with a ‘YAML
filePath’ parameter, but the function itself does not
actually have this parameter. Besides, our model
is able to identify non-English samples (the sec-
ond example in PHP) that are not captured by the
rule-based method.

A.3 Analysis of Function-Level Data in The
Vault

Detailed description of function level data in The
Vault can be found in Figure 4.

A.3.1 Code and Docstring Analysis

Token Length Distribution: When training seq-
to-seq LLMs, maximum input and output lengths
are typically required. By understanding the distri-
bution of sequence lengths in the corpus, we can

4778



GPT 3.5-turbo score (accuracy)
Language Consistency | Inconsistency | s Uncertainty Accuracy (%) | AUC
Python 8.19 £ 1.15(99%) | 3.76 + 1.96 (69%) | 6.20 £ 2.12 (44%) 70.67 0.8559
PHP 7.73 £1.32(96%) | 3.01 4+ 1.45 (90%) | 4.90 + 2.23 (49%) 78.33 0.8863
JavaScript | 7.73 £ 1.25 (99%) | 2.95 + 1.40 (89%) | 5.58 £ 2.29 (49%) 79.00 0.8984
Java 7.65 £ 1.71 (94%) | 2.73 +1.32 (93%) | 5.83 £2.12 (53%) 80.00 0.9014
C# 7.70 + 1.35 (97%) | 3.31 £ 1.56 (82%) | 5.35 + 2.09 (46%) 75.00 0.8606
C++ 7.51 £1.64 (92%) | 2.82 + 1.46 (89%) | 5.80 £ 2.33 (57%) 79.33 0.8787
C 7.79 + 1.10 98%) | 2.99 + 1.48 (88%) | 5.81 + 2.08 (47%) 77.67 0.9108
Go 8.08 + 1.21 (99%) | 3.68 £ 1.67 (74%) | 6.09 £ 2.06 (50%) 74.83 0.8819
Rust 8.03 £ 1.20 (99%) | 3.72 + 1.77 (75%) | 6.83 £+ 1.62 (50%) 74.67 0.9051
Ruby 7.72 +1.03 (98%) | 2.51 £ 1.04 (96%) | 5.01 +2.23 (49%) 81.00 0.9203
All 7.81 £ 1.33(97%) | 3.15 £ 1.59 (84%) | 5.74 + 2.19 (49%) 77.05 0.8874

Table 11: Evaluate CodeBERT using the consistency score provided by GPT 3.5-turbo. We report the mean = the

standard deviation for the score in each subset.

w/docstring-filtered

JavaScript

w/docstring-noise
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JavaScript A

Python A

wo/docstring
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Rust 4
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Number of functions

Figure 4: Distribution and the number of functions by the presence of docstrings. Functions with docstrings are
further divided into two categories: functions removed by rule-based filters and functions in the final code-text

dataset.
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Figure 5: Code and Docstring tokens length distribution.
The plot shows the lower to upper quartile values of the
number of tokens in the data. The orange solid line
indicates the median and the green triangle A presents
the mean.

choose appropriate input and output lengths for
training. This can help improve the performance of
training a language model and prevent the resulting
LLMs from producing outcomes too short or too
long for the intended use cases [Kaplan et al., 2020,
Brown et al., 2020].

Our tokenization process utilizes the tree-sitter
framework to parse source code into nodes on an
abstract syntax tree; each node is considered a to-
ken. For docstring tokenization, we tokenize by
word and punctuation. The code and docstring
tokens length distribution for each programming
language is illustrated in Figure 5. The number of
tokens present in a function (average of around 100
tokens) is considerably more than the number of
tokens found in the docstrings (average of 15-30
tokens) that describe it. In particular, among the
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10 programming languages, C and C++ have the
highest number of tokens in a function. This can
be attributed to the fact that these languages are
low-level languages, which typically require more
code to perform a task when compared to higher-
level languages. In the case of docstrings, their
number of tokens is determined not only by the
naturalness of the description in practice but also
by cleaning rules outlined in Section 3.2.1. From
Figure 5-Right and Table 10, it can be observed
that the docstrings in Java and C are lengthy but
are slightly cleaned by update-action rules, indicat-
ing that the docstrings in these two languages are
typically long and more detailed in practice. Mean-
while, the number of tokens of docstrings in C# is
the lowest. The cleaning rules may have played a
role, as a significant proportion of the samples in
C# has been updated based on Comment Delimite
(16,7%) and HTML Tags (17,15%) rules.

Table 2 depicts the overall number of distinct
tokens for each programming language. As our
dataset contains extensive unique tokens, we be-
lieve that model training on The Vault can effec-
tively handle unseen tokens. Besides, we find that
multiple function names are reused due to the rela-
tively small number of unique identifiers compared
to the total number of functions in the dataset. This
finding implies that even for humans, naming func-
tions might be a difficult task.

Docstring Styles: Alongside typical docstrings
that provide brief descriptions of the source code,
many adhere to formatting and style conventions
like Google, Jsdoc, and reST styles, among others.
Our toolkit, designed to parse docstrings and ex-
tract metadata into a dictionary, supports 11 preva-
lent docstring styles. The styles we support and
the information we aim to extract are depicted in
figures 10 and 8 in Appendix A.5. This rich dataset
could inspire research on advanced problems, such
as controlling docstring style during generation or
crafting explanations for function parameters.

Figure 9 provides statistics on the number of
docstrings following a standard style. The data
suggests that styled docstrings constitute a small
fraction of the overall code-text dataset. One pos-
sible explanation is that our style detection rules
are stringent, excluding docstrings with even mi-
nor syntax deviations, which might result in un-
derestimating the number of docstrings adhering
to a specific format. For styled docstrings, Figure
9-bottom presents the distribution of the number

of extracted attributes for each programming lan-
guage, with most having between 1 to 5 elements.
We make our docstring-style parser available to
the community to facilitate easy customization and
enhancement.

A.4 Analyzing for Class and Inline Comment
Set

In Table 12, we provide a statistical analysis of the
number of classes and inline comments in both the
raw set and the filtered set. Since the class structure
18 not defined in C and Go, we do not have their
information to give in this table.

Initially, we excluded a substantial number of
class samples from the raw dataset that lacked doc-
strings. The remaining class-docstring pairs un-
derwent additional processing. Since the nature
of classes and functions is similar, their function-
alities can be meaningfully defined by pairs of a
code snippet and a docstring. However, one of the
problems when constructing paired data for class-
comment samples is the large code snippet length
of the class structure. As a result, we set the maxi-
mum number of code tokens that a class can have
to 5000. On average, the code-token length of the
class set is approximately 500, which is around five
times longer compared to the average token length
in the function set, while the number of docstring-
token lengths is similar between the two sets, as
shown in Figure 6. Each pair of class-docstring
is also examined via a rule-based filtering process,
as described in Section 3.2.1, serving as a sample
point in D,,q;, dataset.

In the Dy, analysis, we initiate the initial for-
mation of the sub-dataset by identifying and extract-
ing inline comments within code functions. The ex-
tracted comments undergo a series of cleaning pro-
cedures similar to those applied to the docstrings
(as discussed in Section 3.2.1). After eliminating
noisy samples, we proceed to establish various in-
tervals for the number of comment tokens, aiming
to determine the optimal upper and lower bounds
that yield high-quality collected comments. Our
observations reveal that inline comments exceed-
ing 15 tokens typically incorporate code snippets,
while comments containing fewer than 3 tokens
lack substantial meaningful information. Conse-
quently, this interval serves as a filtering criterion
to generate the final version of Dy,.r. Figure 7
shows the distribution of code-token length and
docstring-token length in Dy, Set.
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Number of raw classes Number of classes | Number of raw | Number of inline comments

Language . A .
w/ comment wo/ comment after filtering inline comments after filtering

Python 497,550 1,440,539 422,187 24,066,884 14,013,238
PHP 2,223,472 6,232,180 1,173,916 9,892,486 5,873,744
JavaScript 494,819 2,409,932 291,479 4,426,086 1,438,110
Java 8,438,772 11,997,783 4,872,485 24,982,298 17,062,277
C# 2,378,379 9,097,968 1,437,800 10,130,704 6,274,389
C++ 285,184 791,355 174,370 20,770,494 10,343,650
Rust 188,517 3,591,465 93,311 2,998,368 2,063,784
Ruby 721,338 2,903,507 353,859 1,236,143 767,563
C - - - 16,009,812 6,778,239
Go - - - 7,574,542 4,390,342
Total 15,228,031 38,464,729 8,819,407 122,087,817 69,005,336

Table 12: The number of classes and inline comments associated with the class and inline set. The symbol ‘-’
indicates that this information is unavailable due to the nonexistence of traditional classes in C and Go.

Code_token Docstring_token
Ruby - I—l:j—i Ruby - I—| ;‘ |
C++ 4 I—Ej—| C++ A |—| A |
c#{ H A | e HI A——
ova | —T—a] = Ry R—
JavaScript 1 I—| A | JavaScript 1 I—|::¥n—|
PHP{ +—] A ! PHP{ H T b—
Python - I—| A | Python - I—| g‘ |
0 200 400 600 800 1000 1200 1400 10 20 30 40 50 60
Figure 6: Code and Docstring tokens length distribution of the Class set after filtering.
Code_token Comment_token
Go{ I ———— Goq R
Rust{ —m & }F——— Rust{ F——— A f———
Ruby { +——] a ! Ruby{ ———
cpp{ M T& = —— cpp{ — A |
C_sharp{ —— A { C_sharp{ +H— }
A — cq — I
Java{ F——] A ! Java{ ———] A b
Javascript{ —— A }——————1 | JavaScript{ ——] |
PP —— [ E e —— —
Python4 +—] A | Python { F——— A —
0 100 200 300 400 500 4 6 8 10 12 14

Figure 7: Code and Docstring tokens length distribution of Dy, set after filtering.

A.5 Docstring Styling

A docstring is a string literal used as a form of docu-
mentation for a module, function, class, or method

definition in programming languages. It is usu-
ally placed as the first statement in the code block
(which can be inside or outside the code block it-
self) and enclosed by a comment delimiter (e.g.,
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. Python Java JavaScript PHP Rub Rust C C++ C# Av
Model Fine-tune data = . CODESEARCHNET TESTSET (MRR) .
CodeSearchNet | 0.3793 04636 0.4437 0.6201 04741 05219 - B R B 0.4838
CodeBERT | TheVault/small 04074  0.4857  0.4466 0.6578 0.6578 0.5251 - - - - 0.5301
TheVault/medium | 0.6585 0.6945 0.6197 0.8571 0.638  0.7096 - - - 0.6962
TheVault 0.6952  0.7242  0.6562 0.8789  0.6646 0.7474 - - - - 0.7278
ROBERTa | CodeSearchNet [ 0.3479 0448~ 0.4254 05684 04623 05147 - - - - 0.6952
TheVault/small 0.4849  0.5581  0.4962 0.7446  0.5166 0.59 - - - - 0.5651
UniXCoder | CodeSearchNet [ 10.3935 04549 0.4459 0.5861 0489 05446 - . R B 0.4857
TheVault/small 0.4427  0.4909  0.4506 0.6416 0.4515 05702 - - - - 0.5079
THEVAULT TESTSET (MRR)
CodeSearchNet | 0.2881 03213 0.2409 04123 0.1854 02579 - B - B 0.2843
CodeBERT | TheVaultsmall 03501 04214 03216 04864 02351 02904 0326 02996 03015 03483 0.3165
TheVault/medium | 0.5929  0.6215  0.549 0.6862 03642 0514 05705 0.5362 0.5264 0.5268 0.5488
The Vault 0.6448  0.6633  0.592 07111  0.3891 0.5607 0.6243 0.5947 0.5932 0.5616 0.5935
ROBERTs | CodeSearchNet —[70.2644 03329 02371 02375 0.1577 02574 - B N B 0.2478
The Vault/small 04533 0.5519  0.4386 0.5021 0.2876 0.3717 0.4195 0.3805 037  0.4099 0.4342
UniXCoder | CodeSearchNet 702959 0344 02508 0.185 0.1646 02669 - B - B 0.2512
TheVault/small 0.3852  0.4279  0.3491 0.4628 0.238  0.3201 0363  0.2934 0.2861 0.3473  0.3639
Table 13: Code search results of various architectures and training dataset.
triple quotes (‘) or a star slash (\*)). Depending on its corresponding docstring information is avail-

developer comment habit or docstring style format,
docstrings can form two types: one-line docstrings
and multi-line (or block) docstrings. A docstring
can provide a concise summary of the functionality
while also providing a detailed description of the
code block, including its parameters, return val-
ues, exceptions, and other relevant information (as
illustrated in Figure 8)

The primary purpose of a docstring is to provide
clear, concise, and easily accessible documenta-
tion for a code block. Docstring styles are conven-
tions followed while writing docstrings to ensure
consistency, readability, and ease of understanding
throughout a codebase. This has become a standard
for clean code in the industry and has developers
saving tons of time when it comes to understanding
or (auto-)generating documentation (using Sphinx,
Doxygen, etc).

There are several popular docstring styles, such
as Google Style, NumPy Style, reStructuredText
(reST) Style for Python programmers, JavaDoc
Style or Doxygen for Java users, each with its own
formatting rules, structure and target programming
language (docstring style examples and preferred
language are listed in Figure 10). The statistic for
docstring style corresponding to function level is
presented in Figure 9. We believe that information
inside a docstring is extremely useful and can pro-
vide numerous advantages for various applications
in the fields of Al for source code, such as pro-
viding more precise and relevant search results for
code search and retrieval tasks, or the performance
of code analysis or refactoring can be significantly
improved while the identifier of a parameter and

able. Furthermore, the presence of various data
types allows for the exploration of scenarios such
as continual learning [Van et al., 2022, Nguyen
et al., 2023, Yadav et al., 2023] and multitask learn-
ing [Zhang et al., 2023], which have been lacking
investigation in the context of source code data.

A.6 Experimental results on code
summarization

We report Rouge-L, BERTScore, and BLEU-4 met-
rics on test sets of CSN and The Vault in Table 14.
The results obtained from the experiments clearly
indicate that models trained on our dataset con-
sistently outperform CSN on all three evaluation
metrics. This notable improvement across the met-
rics serves as strong evidence for the syntactic and
semantic richness embedded within our dataset for
code summarization. This highlights the effective-
ness of our dataset in enabling models to grasp
contextual information and generate high-quality
summaries that accurately represent the underlying
code functionality.

A.7 Experimental results on code search

In this section, we assess TheVault’s versatility
and adaptability by providing additional experi-
mental results on several architectures (RoBERTa
[Liu et al., 1907], UniXcoder [Guo et al., 2022],
PLBART [Ahmad et al., 2021a]) for code search.
Tables 13 illustrates the results for code search. As
a result, models trained on The Vault consistently
outperform all baseline models, underscoring both
the efficiency of our pipeline and the dataset’s abil-
ity to generalize across different architectures.
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Language | Finetune dataset CodeSearchNet The Vault
Rouge-L | BERTScore | BLEU-4 | Rouge-L | BERTScore | BLEU-4
CodeSearchNet 34.000 88.827 19.55 26.798 87.055 10.86
TheVault/medium-S 34.676 88.905 19.74 30.335 87.633 13.06
Python TheVault-S 36.499 89.211 21.15 31.786 87.929 14.14
TheVault/medium-L 33.848 88.734 18.88 30.947 87.716 13.36
TheVault-L 35.024 88.921 19.83 32.251 87.954 14.33
CodeSearchNet 35.625 89.132 20.38 27.297 87.385 8.00
TheVault/medium-S 33.385 88.490 18.62 31.320 87.897 11.17
Java TheVault-S 35.495 88.907 20.43 33.137 88.268 12.00
TheVault/medium-L 32.561 88.161 18.29 30.773 87.596 11.50
TheVault-L 35.221 88.782 20.37 32.882 88.000 12.47
CodeSearchNet 28.330 87.568 16.15 24.895 86.519 8.42
TheVault/medium-S 26.528 87.017 14.88 27.891 86.846 10.58
JavaScript | TheVault-S 28.345 87.384 16.30 29.817 87.320 11.71
TheVault/medium-L 27.062 87.057 14.95 28.290 86.936 10.83
TheVault-L 27.869 87.276 15.63 30.572 87.391 12.38
CodeSearchNet 41.346 89.981 26.26 39.960 89.281 17.85
TheVault/medium-S 34.802 88.125 21.78 63.984 93.287 37.72
PHP TheVault-S 37.297 88.676 23.53 65.401 93.580 38.30
TheVault/medium-L 33.325 87.963 20.27 65.195 93.679 39.13
TheVault-L 36.478 88.641 23.21 67.089 94.012 40.13
CodeSearchNet 40.076 90.487 19.83 38.189 89.994 17.87
TheVault/medium-S 42.011 90.816 21.38 54.030 92.372 34.47
Go TheVault-S 44.649 91.188 24.37 54.889 92.541 35.44
TheVault/medium-L 41.480 90.731 21.22 56.721 92.994 39.27
TheVault-L 44.063 91.108 23.96 57.681 93.130 40.38
CodeSearchNet 28.196 87.371 15.38 24.500 86.417 10.26
TheVault/medium-S 29.680 87.559 16.09 26.904 86.964 12.26
Ruby TheVault-S 31.133 87.830 17.15 28.535 87.280 13.79
TheVault/medium-L 29.389 87.565 15.42 27.485 87.044 12.63
TheVault-L 30.634 87.759 16.53 29.141 87.223 14.24
CodeSearchNet 36.739 89.341 21.24 30.563 87.853 16.11
TheVault/medium-S 34.935 88.755 19.91 39.589 89.278 26.02
Total TheVault-S 37.120 89.163 21.73 41.079 89.591 27.41
TheVault/medium-L 34.086 88.585 19.16 40.544 89.473 27.71
TheVault-L 36.305 89.024 21.14 42.187 89.753 29.32
TheVault/medium-S - - - 28.132 86.277 10.21
C TheVault-S - - - 33.275 87.353 13.39
TheVault/medium-L - - - 29.151 86.566 11.32
TheVault-L - - - 35.009 87.807 14.86
TheVault/medium-S - - - 39.480 89.616 23.88
Ci TheVault-S - - - 46.854 90.819 31.11
TheVault/medium-L - - - 39.720 89.652 24.30
TheVault-L - - - 46.594 90.788 31.05
TheVault/medium-S - - - 28.029 86.719 14.55
Cirt TheVault-S - - - 29.942 87.116 16.18
TheVault/medium-L - - - 28.815 86.827 14.85
TheVault-L - - - 30.754 87.163 16.65
TheVault/medium-S - - - 30.416 87.758 13.30
Rust TheVault-S - - - 32.535 88.126 14.72
TheVault/medium-L - - - 30.999 87.862 13.75
TheVault-L - - - 32.857 88.142 15.18

Table 14: Experimental results for code summarization. For models that are finetuned on The Vault, “-S” annotation
refers to finetuning process using short_docstring field as summarization, while “-L” represents the docstring field.
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Languages

Inconsistent pairs

Python

// Handy for templates.
def has_urls(self):
if self.isbn_uk or self.isbn_us or self.official_url or self.
notes_url:
return True
else:
return False

// compresses the waveform horizontally; one of

// *‘"normal"‘', “‘"resync"'', ‘‘"resync2"‘‘

def phase_type(self, value):
self._params.phase_type = value
self._overwrite_lock.disable ()

// InWithTags, OutWithTags, Both, BothWithTags
func Predicates (from Shape, in bool) Shape {
dir := quad.Subject
if in {
dir = quad.Object
}
return Unique{NodesFrom{
Quads: Quads{
{Dir: dir, Values: from},
br
Dir: quad.Predicate,

// select Surf ro PhomtomJS

func (self *xDefaultRequest) GetDownloaderID () int {
self.once.Do(self.prepare)
return self.DownloaderID

Java

// supplied callback function.
public boolean rm(Pipe pipe, IMtrieHandler func, XPub pub)
{
assert (pipe != null);
assert (func != null);
return rmHelper (pipe, new byte[0], 0, 0, func, pub);

// only for change appenders
public MapContentType getMapContentType (ContainerType

containerType) {
JaversType keyType = getJaversType (Integer.class);
JaversType valueType = getJaversType (containerType.

getItemType ());
return new MapContentType (keyType, valueType);
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Languages | Inconsistent pairs
// we do not need Buffer pollyfill for now
function (str) {
var ret = new Array(str.length), len = str.length;
]avaSCrHﬁ while(len--) ret[len] = str.charCodeAt (len);
return Uint8Array.from(ret);

}

// WeakMap works in IE11l, node 0.12

function (fn, name) {
{

function proxiedFn ()
"use strict’;
var fields = privates.get (this);

arguments) ;

return fn.apply (fields,
}

Object.defineProperty (proxiedFn,

// jshint ignore:line

"name’, {

value: name,
configurable: true
1)
return proxiedFn;

}

// —> NEW
public function consumerId()
=== true) {

{
(isset (Sthis->session—>data[’ customer_id’])

if
return $this->session->datal[’customer_id’];

PHP
}

return null;

// disini mo ba atur akan apa mo kamana
private function _parse_routes ()

{
Suri=implode (' /’, $this->uri->segments());
if (isset ($this->router[$uri])) {
return $this->_set_request (explode (’/’, $this->router

[Suril));

}
($Sthis->router as S$key — $val) {
str_replace(’ :num’,

foreach
Skey = str_replace(’:any’, '.+’,
"[0-9]1+", Skey));
if (preg_match(’#°’.$key.’ $#’, Suri)) {
if (strpos($val, ’'$’) !== FALSE AND strpos (S$key,
' (") !== FALSE) {
Sval = preg_replace(’#"’ .Skey.’'$#’, S$val,
Suri);
}
return $this->_set_request (explode (' /', $val));
}
}
Sthis->_set_request ($this->uri->segments());
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Languages | Inconsistent pairs
// Initialize a new page, which can be simply rendered or
// persisted to the filesystem.
def method_missing(name, xargs, &block)
I{uby return metal[name.to_s] if meta.key? (name.to_s)

super
end

//
//
//
//
de

Accepts the path of the YAML file to be parsed into
commands - will throw a CommandException should it have
invalid parameters
@param filePath [String] Path for YAML file
f action_options
# Attempt resolution to outputs of monitor
return @action_options unless @monitor_class.outputs.length >
0
action_options = @action_options.clone
@monitor_class.outputs.each do |output, _typel
action_options.each do |option_key, option_value|
action_options[option_key] =
option_value.gsub ("{{#{output}}}", @monitor.send(output) .

to_s)
end
end
action_options
end

Table 15: Inconsistent pairs in CodeSearchNet found by our model. “//” represents for docstring section.

Identifier

Parameter list 1. Short docstring

Docstring Style:

Vs

|
v

def x_intercept (m, b):

the x axis
This function can be used in conjuction with L{z_ transform}

to find an arbitrary function's =zeros.

@type m:

@param m:

Qtype b:

(M

number :
The slope of the line. '
number b

{y=0}) . ——— 2. Docstring

3. Param's docstring

H and type

@param b: The y intercept of the line. The X{y intercept} of |

a line is the point at which it crosses the y axis (M{x=0}). :
i @type count: string Ei 4. Outlier param's
i @param count: The outlier param ! docstring and type
E @rtype: number f 5. Return's docstring
\ Q@return: the x intercept of the line M{y=m*x+b}. and type
{“@author: Epydoc's Documents T ;
i @see: https://epydoc.sourceforge.net/manual-epytext.html «— 6. Others

pass

J

Figure 8: Structure of a docstring and its metadata.
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le7

1.00 A
w/style
0.75 A all
0.50 A
0.25 A J—I
0.00 T T T T T T T _m T
Python PHP JavaScript Java C# C++ C Rust Ruby

Languages Python PHP JavaScript Java C# C++ C Rust Ruby

w/style 2853520 8271 39295 14432 2754629 32517 25233 84427 156286

all 9893858 5455989 2562158 7886299 4011467 1934958 1978551 1076588 544867

LI B LI L LI LI B LI B L LI B LI}
0 5101520 0 5101520 0 5101520 0 5 101520 0 5101520 0 5101520 0 5101520 0 5101520 0 5101520

Figure 9: Number of docstrings follows a specific style over all extracted code-text pairs. Upper figure and Middle
table illustrate statistics for docstrings with style. Lower figures present the histogram of extracted attributes in the
range of 1-20 for docstrings in each language. Golang does not have a supported style.
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/

Google Style

Python
Test function.
Args:
paraml (int): Description of paraml.
param2 (str): Description of param2.
Returns:
\\\ bool: Description of the return value.

-

/**

JavaDoc

* Test function.

*

* @param paraml Description of paraml.

* @param param2 Description of param2.

* @return Description of the return value.

-

/**

* Test function.
** # Arguments

* “paraml’: Description of paraml.
* “param2”: Description of param2.
* # Returns

* Description of the return value.

\*/

RustDoc
Rust

N\

N
;

AN

reST

Test function. Python

:param paraml: Description of paraml.
:type paraml: int

:param param2: Description of param2.
:type param2: str

:return: Description of the return value.
:rtype: bool

e

/

=begin
Test method.

Rdoc

@param paraml [Integer] Description of paraml.
@param param2 [String] Description of param2.
@return [Boolean] Description of the return value.

\\fend

/
N

/

J
- N

/**

Jsdoc

JavaScript

* Test function.

*

* @param {int} paraml - Description of paraml.

* @param {string} param2 - Description of param2.
* @return {bool} Description of the return value.

>/ J

-~

PHPdoc

*5k PHP!
Test function.

@param int $paraml Description of paraml.
@param string $param2 Description of param2.
* @return bool Description of the return value.

2/

* ¥ ¥ ¥ N

~

/

4 N

Doxygen

.

Test function.

@brief Constructor.

@param paraml Description of paraml
@param param2 Description of param2
* @see Test()

L

LR R

e

/// <summary>

/// Test function.
/// </summary>
/// <param name="paraml">Description of paraml.
</param>

/// <param name="param2">Description of paraml.
</param>

/// <returns>

/// Description of the return value.

\\1?/ </returns>

XML

N

/

V2N

-

Epytext

Python

Test function.

@type paraml: int

@param paraml: Description of paraml
@type param2: string

@param param2: Description of param2
@rtype: bool

@return: Description of the return value.

N

/

///~ NumPy Style i\\\
nuun Python
Test function.
Parameters
paraml : int
Description of paraml.
param2 : str
Description of param2.
Returns
bool

\\\\?escription of the return value.

Figure 10: Supported docstring styles.
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