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Abstract

Pre-trained language models (PLMs) have
demonstrated exceptional performance across
a wide range of natural language processing
tasks. The utilization of PLM-based sentence
embeddings enables the generation of contex-
tual representations that capture rich semantic
information. However, despite their success
with unseen samples, current PLM-based rep-
resentations suffer from poor robustness in ad-
versarial settings. In this paper, we propose
RobustEmbed, a self-supervised sentence em-
bedding framework that enhances both gener-
alization and robustness in various text rep-
resentation tasks and against a diverse set of
adversarial attacks. By generating high-risk
adversarial perturbations to promote higher in-
variance in the embedding space and leverag-
ing the perturbation within a novel contrastive
objective approach, RobustEmbed effectively
learns high-quality sentence embeddings. Our
extensive experiments validate the superior-
ity of RobustEmbed over the state-of-the-art
self-supervised representations in adversarial
settings, while also showcasing relative im-
provements in seven semantic textual similarity
(STS) tasks and six transfer tasks. Specifically,
our framework achieves a significant reduction
in attack success rate from 75.51% to 39.62%
for the BERTAttack attack technique, along
with enhancements of 1.20% and 0.40% in STS
tasks and transfer tasks, respectively.

1 Introduction

Recent research has demonstrated the state-of-the-
art performance of Pre-trained Language Models
(PLMs) in learning contextual word embeddings
(Devlin et al., 2019), leading to improved gener-
alization in various Natural Language Processing
(NLP) tasks (Yang et al., 2019; He et al., 2021;
Ding et al., 2023). The focus of PLMs has extended
to acquiring universal sentence embeddings, such
as Universal Sentence Encoder (USE) (Cer et al.,
2018) and Sentence-BERT (Reimers and Gurevych,

2019), which effectively capture the semantic rep-
resentation of the input text. This representation
learning facilitates feature generation for classifica-
tion tasks and enhances large-scale semantic search
(Neelakantan et al., 2022).

The assessment of PLM-based sentence repre-
sentation relies on two crucial characteristics: gen-
eralization and robustness. While considerable
research efforts have been dedicated to develop-
ing universal sentence embeddings using PLMs
(Reimers and Gurevych, 2019; Zhang et al., 2020;
Ni et al., 2022; Neelakantan et al., 2022; Wang
et al., 2023; Bölücü et al., 2023), it is worth not-
ing that despite their promising performance across
various downstream classification tasks (Sun et al.,
2019; Gao et al., 2021), demonstrating proficiency
in generalization, these representations exhibit limi-
tations in terms of robustness in adversarial settings
and are vulnerable to diverse adversarial attacks
(Nie et al., 2020; Wang et al., 2021). Existing re-
search (Garg and Ramakrishnan, 2020; Wu et al.,
2023; Hauser et al., 2023) highlights the poor ro-
bustness of these representations, such as BERT-
based representations, which can be deceived by
replacing a few words in the input sentence.

In this paper, we propose RobustEmbed, a robust
sentence embedding framework that takes both of
these essential characteristics into account. The
core concept involves introducing a small adversar-
ial perturbation to the input text and employing the
contrastive objective (Chen et al., 2020) to learn
high-quality sentence embeddings. RobustEmbed
perturbs the embedding space rather than the raw
text, which exhibits a positive correlation with gen-
eralization and promotes higher invariance. Our
framework utilizes the original embedding along
with the perturbed embedding as “positive pairs,”
while other sentence embeddings in the same mini-
batch serve as “negatives.” The contrastive objec-
tive identifies the positive pairs among the nega-
tives. By incorporating norm-bounded adversarial
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perturbation and contrastive objectives, our method
enhances the robustness of similar sentences and
disperses sentences with different semantics. This
straightforward and efficient approach yields supe-
rior sentence embeddings in terms of both general-
ization and robustness benchmarks.

We conduct extensive experiments on a wide
range of text representation and NLP tasks to ver-
ify the effectiveness of RobustEmbed including
semantic textual similarity (STS) tasks (Conneau
and Kiela, 2018), transfer tasks (Conneau and
Kiela, 2018), and TextAttack (Morris et al., 2020).
Two first series of experiments evaluate the qual-
ity of sentence embeddings on semantic similarity
and natural language understanding tasks, while
the last series assess the robustness of the frame-
work against state-of-the-art adversarial attacks.
RobustEmbed demonstrates significant improve-
ments in robustness, reducing the attack success
rate from 75.51% to 39.62% for the BERTAttack at-
tack technique and achieving similar improvements
against other adversarial attacks. Additionally, the
framework achieves performance improvements of
1.20% and 0.40% on STS tasks and NLP transfer
tasks, respectively, when employing the BERTbase
encoder.

Contributions. Our main contributions in this
paper are summarized as follows:

• We introduce RobustEmbed, a novel self-
supervised framework for sentence embed-
dings that generates robust representations
capable of withstanding various adversarial
attacks. Existing sentence embeddings are
susceptible to such attacks, highlighting a vul-
nerability in their security. RobustEmbed fills
this gap by employing high-risk perturbations
within a novel contrastive learning approach.

• We conduct extensive experiments to demon-
strate the efficacy of RobustEmbed across
various text representation tasks and against
state-of-the-art adversarial attacks. Empiri-
cal results confirm the high efficiency of our
framework in terms of both generalization and
robustness benchmarks.

• To facilitate further research in this important
area, our source code is available in the Ro-
bustEmbed Repository

2 Related Work

The early work in text representations focused
on applying the distributional hypothesis to pre-
dict words based on their context (Mikolov et al.,
2013b,a). There are extensive studies on learn-
ing universal sentence embeddings using su-
pervised and unsupervised approaches, such as
Doc2vec (Le and Mikolov, 2014), SkipThought
(Zhu et al., 2015), Universal Sentence Encoder (Cer
et al., 2018), and Sentence-BERT (Reimers and
Gurevych, 2019). More recently, self-supervised
approaches have emerged, employing contrastive
objectives to learn effective and robust text repre-
sentations: SimCSE (Gao et al., 2021) introduced a
minimal augmentation strategy to predict the in-
put sentence by applying two different dropout
masks. The ConSERT model (Yan et al., 2021)
utilized four distinct data augmentation techniques
to generate diverse views for the purpose of exe-
cuting a contrastive objective: adversarial attacks,
token shuffling, cut-off, and dropout. Qiu et al.
(2021) introduced two adversarial training methods,
CARL and RAR, to strengthen the ML model’s
defense against gradient-based adversarial attacks.
CARL aims to acquire a resilient representation
at the sentence level, whereas RAR focuses on
enhancing the robustness of individual word repre-
sentations. Rima et al. (2022) proposed adversar-
ial training with contrastive learning for training
natural language processing models. It involves
applying linear perturbations to input embeddings
and leveraging contrastive learning to minimize the
distance between original and perturbed represen-
tations. Pan et al. (2022) presents a straightfor-
ward approach for regularizing transformer-based
encoders during the fine-tuning step. The model
achieves noise-invariant representations by gener-
ating adversarial examples perturbing word embed-
dings and leveraging contrastive learning.

In comparison to several existing contrastive ad-
versarial learning approaches in the text represen-
tation area (Yan et al., 2021; Meng et al., 2022;
Qiu et al., 2021; Li et al., 2023; Rima et al., 2022;
Pan et al., 2022), our framework stands out by gen-
erating more efficient high-risk iterative perturba-
tions in the embedding space. Furthermore, our
framework leverages a more powerful contrastive
objective approach, leading to high-quality text
representations that demonstrate enhanced general-
ization and robustness properties. Empirical results
substantiate the superiority of our approach across
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various generalization and robustness benchmarks.

3 Background

In this section, we present an overview of the recent
progress in adversarial perturbation generation and
self-supervised contrastive learning.

3.1 Adversarial Perturbation Generation

Adversarial perturbation involves adding mali-
ciously crafted perturbations to benign data, which
can deceive Machine Learning (ML) models, in-
cluding deep learning methods (Goodfellow et al.,
2015). These perturbations are designed to be im-
perceptible to humans but can cause the model to
make incorrect predictions (Metzen et al., 2017).
Adversarial training, which involves incorporating
adversarial perturbations during the model training
process, has been shown to enhance the model’s
robustness against adversarial attacks (Madry et al.,
2018; Shafahi et al., 2020; Xu et al., 2020; Wang
et al., 2019b). While various perturbation genera-
tion techniques have contributed to machine vision
(Chakraborty et al., 2021), the progress of these
techniques in the NLP domain has been at a slower
pace due to the discrete nature of text (Jin et al.,
2020). In recent years, instead of directly applying
adversarial perturbations to raw text, a few studies
have focused on perturbing the embedding space
(Wang et al., 2019a; Dong et al., 2021). However,
these methods still face challenges in terms of gen-
eralization, as they may not be applicable to any
ML model and NLP tasks. Utilized within our
framework, a more generalized approach for gener-
ating high-risk adversarial perturbations involves
applying a small noise δ within a norm ball to the
embedding space, aiming to maximize the adver-
sarial loss:

arg max
||δ||≤ϵ

L(fθ(X + δ), y), (1)

where fθ(.) denotes an ML model parameterized
with X as the sub-word embeddings, and y is the
truth label. Various gradient-based algorithms have
been proposed to address this optimization prob-
lem. We employ a practical combination of the
Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2015) and the Projected Gradient Descent
(PGD) technique (Madry et al., 2018) to generate
adversarial perturbations that represent worst-case
examples.

3.2 Contrastive Learning Based
Representation

The objective of contrastive learning is to acquire
effective low-dimensional representations by bring-
ing semantically similar samples closer and push-
ing dissimilar ones further apart (Hadsell et al.,
2006). Self-supervised contrastive learning has
demonstrated promising results in data represen-
tation across domains such as machine vision
(Chen et al., 2020), natural language processing
(Gao et al., 2021; Neelakantan et al., 2022), and
speech recognition (Lodagala et al., 2023). Our
framework adopts the contrastive learning con-
cept proposed by Chen et al. (2020) to generate
high-quality representations. Let {(xi, x+i )}Ni=1 de-
note a set of N positive pairs, where xi and x+i
are semantically correlated and (zi, z

+
i ) represents

the corresponding embedding vectors for the pos-
itive pair (xi, x+i ). We define zi’s positive set as
{xposi } = z+i , while the negative set {xnegi } as the
set of other positive pairs. Then, the contrastive
training objective can be defined as follows:

Lcon,θ(xi, {xpos
i }, {xneg

i }) = (2)

− log(

∑
{xpos

i } exp(sim(zi, {xpos
i })/τ)

∑
{xpos

i , x
neg
i } exp(sim(zi, {xpos

i , xneg
i })/τ) ),

where τ denotes a temperature hyperparameter
and sim(u, v) = u⊤v

∥u∥.∥v∥ is the cosine similarity
between two representation vectors. The standard
objective function only contains a single sample in
the positive set. The total loss is computed over all
positive pairs within a mini-batch.

4 The Proposed Adversarial
Self-supervised Contrastive Learning

We introduce RobustEmbed, a simple yet effec-
tive approach for generating universal text repre-
sentations through adversarial training of a self-
supervised contrastive learning model. Given a
PLM fθ(.) as the encoder and a large unsupervised
dataset D, RobustEmbed aims to pre-train fθ(.) on
D to enhance the efficiency of sentence embed-
dings across diverse NLP tasks (improved general-
ization) and increase resilience against various ad-
versarial attacks (enhanced robustness). Algorithm
1 demonstrates our framework’s approach to gener-
ating a norm-bounded perturbation using an itera-
tive process, confusing the fθ(.) model by treating
the perturbed embeddings as different instances.
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Figure 1: The general architecture of the RobustEmbed framework. In contrastive learning step, a blue arrow
indicate gathering positive pairs together, and a red arrow refers to keeping distance among negative pairs

Our framework then employs a contrastive learn-
ing approach to maximize the similarity between
the embedding of an input instance and the adver-
sarial embedding of its positive pair. Moreover,
Figure 1 provides an overview of our RobustEm-
bed framework, which aims to achieve adversarial
robustness in representations. The framework in-
volves an iterative collaboration between the per-
turbation generator and the fθ(.) model to generate
high-risk perturbations for adversarial contrastive
learning during the final training step. The subse-
quent sections delve into the main components of
our framework and provide a detailed analysis of
the training objective.

4.1 Perturbation Generation
As the primary step, RobustEmbed aims to generate
small perturbations that fool the ML model, lead-
ing to incorrect predictions, while remaining nearly
imperceptible to humans. The framework uses an
approach based on combination of the PGD and
FGSM algorithms to generate a perturbation that
maximizes the self-supervised contrastive loss, fa-
cilitating discrimination between various instances.
RobustEmbed employs multiple iterations of this
combination, specifically T-step FGSM and K-step
PGD, to meticulously reinforce invariance within
the embedding space, ultimately resulting in en-
hanced generalization and robustness.

In particular, considering the PLM-based en-
coder fθ(.) and an input sentence x, RobustEmbed
passes the sentence to the fθ(.) model twice: by

Algorithm 1: RobustEmbed Algorithm
Input: Epoch number E, PLM Encoder fθ , dataset of

raw sentences D = {xi}Ni=1, perturbation δ,
dropout masks m1 and m2, perturbation
bound ϵ, step sizes α and β, learning rate η,
perturbation modulator λ, regularization
parameter γ, perturbation generation iterators
K and T , contrastive learning objective
Lcon,θ (eq. 2)

Output: Robust Sentence Representation
for epoch = 1, ..., E do

for minibatch B ⊂ D do
δ1 ∼ N (0, σ2I)
X = fθ.embedding(B, m1)
X+ = fθ.embedding(B, m2)
for t = 1, ...,max(K, T ) do

g(δt) = ∇δLcon,θ(X + δt, {X+})
if t ≤ K then

δt+1
pgd = Π∥δ∥P≤ϵ(δ

t + αg(δt)/∥g(δt)∥P )
end
if t ≤ T then

δt+1
fgsm = Π∥δ∥P≤ϵ(δ

t + βsign(g(δt)))

end
end
δf = λδK

pgd + (1− λ)δT
fgsm

LRobustEmbed, θ := Lcon,θ(X, {X+, X + δf})
Ltotal := LRobustEmbed, θ + γLcon,θ(X + δf , {X+})
θ = θ − η∇θLtotal

end
end

applying the standard dropout twice, two different
embeddings of (X,X+) are obtained as “positive
pairs” (Gao et al., 2021). The framework takes
the following steps to update the perturbation sep-
arately for the PGD and FGSM in iteration k + 1
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and t+ 1 respectively:

δk+1
pgd = Π∥δ∥P≤ϵ(δ

k + αg(δk)/∥g(δk)∥P ), (3)

δt+1
fgsm = Π∥δ∥P≤ϵ(δ

t + βsign(g(δt))), (4)

where g(δn) = ∇δLcon,θ(X+δn, {X+}) with
n = t or k is the gradient of the contrastive learn-
ing loss with respect to δ. The perturbation is
generated by the ℓ∞ norm-ball around the input
embedding with radius ϵ, and Π projects the per-
turbation onto the ϵ-ball. Further, α and β are the
step sizes of the attacks and sign(.) returns the sign
of the vector. Essentially, T-step FGSM and K-
step PGD are mathematically equivalent when P
is either 2 or ∞. Their primary distinctions lie in
the number of iterations (i.e., T and K) and the
step size of the attack (i.e., α and β ) used to mod-
ify the input perturbation, ultimately generating a
unique high-level perturbation. The final perturba-
tion can be obtained through the combination of
T-step FGSM and K-step PGD:

δfinal = λδKpgd + (1− λ)δTfgsm, (5)

where 0 ≤ λ ≤ 1 modulates the relative signifi-
cance of each separate perturbation in the genera-
tion of the final perturbation.

4.2 Robust Contrastive Learning

To achieve robust representation through self-
supervised contrastive learning, adversarial learn-
ing objective, which follows a min-max formula-
tion to minimize the maximum risk for any pertur-
bation δ (Madry et al., 2018), could be defined as
follows:

argminθ E(x)∼D[max∥δ∥≤ϵ Lcon,θ(X + δ, {X+})], (6)

where X + δ is the adversarial embedding gen-
erated by the iterative gradient-based perturbation
generation (eq. 5). Our framework utilizes ad-
versarial examples generated in the embedding
space, rather than using the original raw text, result-
ing in an ultimate pre-trained model that is robust
against m-way instance-wise adversarial attacks.
The framework employs the contrastive learning
objective to maximize the similarity between clean
examples and their adversarial perturbation by in-
corporating the adversarial example as the addi-
tional element in the positive set:

LRobustEmbed, θ := Lcon,θ(x, {xpos, xadv}), (7)

Ltotal := LRobustEmbed, θ + γLcon,θ(x
adv, {xpos}), (8)

where xadv represents the adversarial perturbation
of the input sample x in the embedding space, and
γ denotes a regularization parameter. The first part
of the total contrastive loss (eq. 8) aims to opti-
mize the similarity between the input sample x,
its positive pair, and its adversarial perturbation,
while the second part serves to regularize the loss
by encouraging the convergence of the adversarial
perturbation and the positive pair of x.

5 Evaluation and Experimental Results

This section presents a comprehensive set of exper-
iments aimed at validating the effectiveness of our
proposed framework in terms of generalization and
robustness metrics. In the first two series of experi-
ments, we investigate the performance of our frame-
work on seven semantic textual similarity (STS)
tasks and six transfer tasks within the SentEval
framework1 to assess the generalization capability
of our framework in generating efficient sentence
embeddings. In the final series of experiments, we
measure the resilience of the embeddings against
five state-of-the-art adversarial attacks to assess the
robustness capability of our framework in generat-
ing robust text representation. Appendices A and
B provide training details and ablation studies that
illustrate the effects of hyperparameter tuning.

5.1 Semantic Textual Similarity (STS) Tasks

We evaluate our framework on a set of seven se-
mantic textual similarity (STS) tasks, which in-
clude STS 2012–2016 (Agirre et al., 2012, 2013,
2014, 2015, 2016), STS Benchmark (Cer et al.,
2017), and SICK-Relatedness (Marelli et al., 2014).
In our experiments, we solely utilize fixed sen-
tence embeddings without any training datasets
or regressors. To benchmark our framework’s per-
formance, we compare it against various unsuper-
vised sentence embedding approaches, including:
1) baseline methods such as GloVe (Pennington
et al., 2014) and average BERT or RoBERTa em-
beddings; 2) post-processing methods like BERT-
flow (Li et al., 2020a) and BERT-whitening (Su
et al., 2021); and 3) state-of-the-art methods such
as SimCSE (Gao et al., 2021), ConSERT (Yan et al.,
2021), USCAL (Miao et al., 2021), and ATCL
(Rima et al., 2022). We validate the findings of
the SimCSE, ConSERT, and USCAL frameworks

1https://github.com/facebookresearch/SentEval
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
GloVe embeddings (avg.) ♡ 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase (first-last avg.) ♣ 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERTbase-flow ♣ 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening ♣ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
ConSERT-BERTbase 64.56 78.55 69.16 79.74 76.00 73.91 67.35 72.75
ATCL-BERTbase 67.14 80.86 71.73 79.50 76.72 79.31 70.49 75.11
SimCSE-BERTbase 68.66 81.73 72.04 80.53 78.09 79.94 71.42 76.06
USCAL-BERTbase 69.30 80.85 72.19 81.04 77.52 81.28 71.98 76.31
⋆RobustEmbed-BERTbase 70.52 82.13 73.56 82.38 77.72 82.97 73.24 77.51
RoBERTabase-whitening □ 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
ConSERT-RoBERTabase 66.90 79.31 70.33 80.57 77.95 81.42 68.16 74.95
SimCSE-RoBERTabase 68.75 80.81 71.19 81.79 79.35 82.62 69.56 76.30
USCAL-RoBERTabase 69.28 81.15 72.81 81.47 80.55 83.34 70.94 77.08
⋆RobustEmbed-RoBERTabase 69.71 81.77 73.34 81.98 79.74 83.70 71.10 77.33
USCAL-RoBERTalarge 68.70 81.84 74.26 82.52 80.01 83.14 76.30 78.11
⋆RobustEmbed-RoBERTalarge 68.92 81.53 74.35 82.91 79.98 83.93 76.93 78.36

Table 1: Semantic Similarity performance on STS tasks (Spearman’s correlation, “all” setting) for sentence
embedding models. We emphasize the top-performing numbers among models that share the same pre-trained
encoder. ♡: results from (Reimers and Gurevych, 2019); ♣: results from (Gao et al., 2021); All remaining results
have been reproduced and reevaluated by our team. The ⋆ symbol shows our framework.

by reproducing their results using our own config-
uration for BERT and RoBERTa encoders. The
results presented in Table 1 demonstrate the supe-
rior performance of our RobustEmbed framework
compared to various sentence embedding meth-
ods across most of the semantic textual similarity
tasks. Our framework achieves the highest aver-
aged Spearman’s correlation among state-of-the-art
approaches. Specifically, when using the BERT en-
coder, our framework outperforms the second-best
embedding method, USCAL, by a margin of 1.20%.
Additionally, RobustEmbed achieves the highest
score in the majority of individual STS tasks (6 out
of 7) compared to other embedding methods and
performs comparably to the SimCSE method on
the STS16 task. For the RoBERTa encoder, both
the base version and the large version, RobustEm-
bed outperforms the state-of-the-art embeddings in
five out of seven STS tasks and achieves the highest
averaged Spearman’s correlation.

5.2 Transfer Tasks
This experiment leverages transfer tasks to evaluate
the performance of our framework, RobustEmbed,
on diverse text classification tasks, including sen-
timent analysis and paraphrase identification. Our
assessment encompasses six transfer tasks: CR
(Hu and Liu, 2004), SUBJ (Pang and Lee, 2004),
MPQA (Wiebe et al., 2005), SST2 (Socher et al.,
2013), and MRPC (Dolan and Brockett, 2005),

with detailed information provided in Appendix E.
We adhere to the standard methodology described
in Conneau and Kiela (2018) and train a logistic
regression classifier on top of the fixed sentence
embeddings for our experimental procedure. We
replicated the SimCSE, ConSERT, and USCAL
frameworks using our configuration for both BERT
and RoBERTa encoders. The results presented in
Table 2 indicate that our framework demonstrates
superior performance in terms of average accuracy
when compared to other sentence embedding meth-
ods. Specifically, when utilizing the BERT encoder,
our framework outperforms the second-best embed-
ding method by a margin of 0.40%. Moreover, Ro-
bustEmbed achieves the highest score in four out
of six text classification tasks. The similar inter-
pretation of the BERT encoder are also maintained
for the RoBERTa encoder, including both the base
version and the large version.

5.3 Adversarial Attacks
In this section, we evaluate the robustness of our
sentence embedding framework against various
adversarial attacks, comparing it with two state-
of-the-art sentence embedding models: SimSCE
(Gao et al., 2021) and USCAL (Miao et al., 2021).
Our evaluation involves fine-tuning a BERT-based
PLM using different embedding approaches on
seven text classification and natural language in-
ference tasks, namely MRPC (Dolan and Brockett,
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Model MR CR SUBJ MPQA SST2 MRPC Avg.
GloVe embeddings (avg.) ♣ 77.25 78.30 91.17 87.85 80.18 72.87 81.27
Skip-thought ♡ 76.50 80.10 93.60 87.10 82.00 73.00 82.05
BERT-[CLS] embedding ♣ 78.68 84.85 94.21 88.23 84.13 71.13 83.54
ConSERT-BERTbase 79.52 87.05 94.32 88.47 85.46 72.54 84.56
SimCSE-BERTbase 81.29 86.94 94.72 89.49 86.70 75.13 85.71
USCAL-BERTbase 81.54 87.12 95.24 89.34 85.71 75.84 85.80
⋆RobustEmbed-BERTbase 81.94 87.45 95.04 89.88 86.47 76.40 86.20
SimCSE-RoBERTabase 81.15 87.15 92.38 86.79 86.24 75.49 84.87
USCAL-RoBERTabase 82.15 87.22 92.76 87.74 84.39 76.20 85.08
⋆RobustEmbed-RoBERTabase 81.49 87.54 93.37 87.95 84.63 76.62 85.27
USCAL-RoBERTalarge 82.84 87.97 93.12 88.48 86.28 76.41 85.85
⋆RobustEmbed-RoBERTalarge 82.38 88.27 93.91 88.79 86.01 77.11 86.08

Table 2: Results of transfer tasks for different sentence embedding models. ♣: results from (Reimers and Gurevych,
2019); ♡: results from (Zhang et al., 2020); We emphasize the top-performing numbers among models that share
the same pre-trained encoder. All remaining results have been reproduced and reevaluated by our team. The ⋆
symbol shows our framework.

Adversarial Attack Model IMDB MR SST2 YELP MRPC SNLI MNLI-Mismatched Avg.

TextFooler
SimCSE-BERTbase 75.32 65.53 71.49 79.67 80.07 72.65 68.54 72.61
USCAL-BERTbase 61.94 48.71 55.38 62.30 60.18 54.82 53.74 56.72

RobustEmbed-BERTbase 40.55 32.69 36.17 44.25 38.88 37.61 35.63 37.97

TextBugger
SimCSE-BERTbase 52.21 42.04 49.67 56.19 56.73 45.39 40.16 48.91
USCAL-BERTbase 39.16 27.37 31.90 41.25 37.86 30.79 25.45 33.40

RobustEmbed-BERTbase 23.70 18.03 20.24 28.58 20.89 19.07 16.33 20.98

PWWS
SimCSE-BERTbase 64.41 55.73 60.48 67.54 68.15 56.09 52.58 60.71
USCAL-BERTbase 51.95 40.67 45.29 52.30 46.86 50.92 39.37 46.77

RobustEmbed-BERTbase 33.63 28.15 30.56 29.94 25.51 27.16 28.49 29.06

BAE
SimCSE-BERTbase 73.50 61.83 68.27 75.15 77.84 69.06 65.43 70.15
USCAL-BERTbase 58.57 46.19 51.72 59.49 58.38 50.90 51.16 53.77

RobustEmbed-BERTbase 37.35 29.82 32.08 41.66 36.45 34.17 31.98 34.79

BERTAttack
SimCSE-BERTbase 78.42 66.94 73.59 80.87 82.16 74.35 72.22 75.51
USCAL-BERTbase 63.23 51.08 57.73 63.96 63.05 55.41 55.86 58.62

RobustEmbed-BERTbase 42.30 34.76 38.81 45.15 39.97 39.08 37.24 39.62

Table 3: Attack success rates of various adversarial attacks applied to three sentence embeddings (SimCSE-BERT,
USCAL-BERT, and RobustEmbed-BERT) across five text classification and two natural language inference tasks.

2005), YELP (Zhang et al., 2015), IMDb (Maas
et al., 2011), Movie Reviews (MR) (Pang and Lee,
2005a), SST2 (Socher et al., 2013), Standford NLI
(SNLI) (Bowman et al., 2015), and Multi-NLI
(MNLI) (Williams et al., 2018). Detailed infor-
mation regarding these tasks can be found in Ap-
pendix E. To assess the robustness of the fine-tuned
models, we perform adversarial attacks using the
TextAttack framework (Morris et al., 2020) to in-
vestigate the impact of five efficient adversarial
attack techniques: TextBugger (Li et al., 2019),
PWWS (Ren et al., 2019), TextFooler (Jin et al.,
2020), BAE (Garg and Ramakrishnan, 2020), and

BERTAttack (Li et al., 2020b). To acquire a more
comprehensive insight into the functionality of
these attacks, we provide more details in Appendix
F. It should be noted that adaptive attacks cannot
generate adversarial attacks using the main algo-
rithm of our framework, as it operates exclusively
in the embedding space while the input instances
of sentence embeddings are raw text. To ensure
statistical validity, each experiment was conducted
five times, each time using 1000 adversarial attack
samples; the reported results shown in this section
are the average results of five iterations.

Table 3 presents the attack success rates of five

4593



adversarial attack techniques on three sentence em-
beddings, including our framework. Our embed-
ding framework consistently outperforms the other
two embedding methods, demonstrating signifi-
cantly lower attack success rates across all text
classification and natural language inference tasks.
Consequently, RobustEmbed achieves the lowest
average attack success rate against all adversar-
ial attack techniques. These findings validate the
robustness of our embedding framework and high-
light the vulnerabilities of the two state-of-the-art
sentence embeddings to various adversarial attacks.

Figure 2 depicts the average number of queries
required and the resulting accuracy reduction for
a set of 1000 attacks on two fine-tuned sentence
embeddings. Green data points represent attacks
on the RobustEmbed framework, while red points
represent attacks on the USCAL approach (Miao
et al., 2021). Connected pairs of points are asso-
ciated with specific attack techniques. Ideally, a
robust sentence embedding should be situated in
the top-left region of the diagram, indicating that
the attack technique necessitates a larger number of
queries to deceive the target model while causing
minimal performance degradation. The figure illus-
trates that, for each attack, RobustEmbed exhibits
greater stability compared to the USCAL method.
In other words, a larger number of queries is re-
quired for RobustEmbed, resulting in a lower accu-
racy reduction (i.e., better performance) compared
to USCAL. This observation holds true for all ap-
plied adversarial attacks, indicating the robustness
of our framework.

5.4 Robust Embeddings

We introduce a new task called Adversarial Se-
mantic Textual Similarity (AdvSTS) to evaluate
the resilience of sentence embeddings within our
representation framework. AdvSTS uses an effi-
cient adversarial approach, such as TextFooler, to
manipulate a pair of input sentences in a way that
encourages the target model to produce a regression
score that deviates as much as possible from the
true score (the ground truth label). Consequently,
we create an adversarial STS dataset by convert-
ing all benign instances from the original dataset
into adversarial examples. Similar to the STS task,
AdvSTS employs Pearson’s correlation metric to
assess the correlation between the predicted simi-
larity scores generated by the target model and the
human-annotated similarity scores for the adversar-
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Figure 2: Average number of queries and the result-
ing accuracy reduction for a set of 1000 attacks on two
fine-tuned sentence embeddings. Green points repre-
sent attacks on the RobustEmbed framework, while red
points represent attacks on the USCAL approach.

ial dataset.
Table 4 illustrates the attack success rates

of five different adversarial attack techniques
(namely TextFooler, TextBugger, PWWS, BAE,
and BERTAttack) applied to three sentence em-
beddings, including our framework. These evalua-
tions are carried out for two specific AdvSTS tasks,
namely AdvSTS-B and AdvSICK-R. Notably, our
embedding framework consistently outperforms
the other two embedding methods, showing sig-
nificantly lower attack success rates across both
AdvSTS tasks and all employed adversarial attack
techniques.

In conclusion, the extensive experiments con-
ducted and the results presented in Tables 1, 2, 3,
and 4, as well as Figure 2, provide strong evidence
of the exceptional performance of RobustEmbed in
various text representation and classification tasks,
as well as its resilience against various adversarial
attacks and tasks. These findings support the notion
that our framework possesses remarkable general-
ization and robustness capabilities, underscoring
its potential as an efficient and versatile approach
for generating high-quality sentence embeddings.

5.5 Distribution of Sentence Embeddings

We followed the methodology proposed by Wang
and Isola (2020) to employ two critical evaluation
metrics, termed alignment and uniformity, to assess
the quality of our representations. In the context
of positive pairs represented by the distribution
ppos, alignment calculates the anticipated distance
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Adversarial Attack Model AdvSTS-B AdvSICK-R Avg.

TextFooler
SimCSE-BERTbase 21.07 24.17 22.62
USCAL-BERTbase 16.52 18.71 17.62

RobustEmbed-BERTbase 7.48 8.95 8.22

TextBugger
SimCSE-BERTbase 27.49 28.34 27.91
USCAL-BERTbase 21.52 24.88 23.20

RobustEmbed-BERTbase 11.76 13.01 12.39

PWWS
SimCSE-BERTbase 24.15 26.82 25.49
USCAL-BERTbase 21.28 23.65 22.47

RobustEmbed-BERTbase 13.56 14.44 14.00

BAE
SimCSE-BERTbase 26.92 28.81 27.86
USCAL-BERTbase 22.92 25.48 24.20

RobustEmbed-BERTbase 11.13 12.82 11.98

BERTAttack
SimCSE-BERTbase 31.60 32.85 32.23
USCAL-BERTbase 26.02 28.51 27.26

RobustEmbed-BERTbase 12.99 13.18 13.09

Table 4: Attack success rates of five adversarial attack techniques applied to three sentence embeddings (SimCSE,
USCAL, and RobustEmbed) across two Adversarial STS (AdvSTS) tasks (i.e. AdvSTS-B and AdvSICK-R).

between the embeddings of paired instances:

ℓalign ≜ E
(x,x+)∼ppos

∥f(x)− f(x+)∥2. (9)

Uniformity quantifies how uniformly the embed-
dings are distributed within the representation
space:

ℓuniform ≜ log E
x,y

i.i.d.∼ pdata

e−2∥f(x)−f(y)∥2 , (10)

where pdata represents the data distribution. The
underlying principle of these metrics is that posi-
tive instances should remain closely grouped, while
embeddings for random instances should be spread
across the hypersphere. Figure 3 illustrates the
uniformity and alignment of various sentence em-
bedding models, where lower values correspond
to improved performance. In comparison to alter-
native representations, RobustEmbed achieves a
similar level of uniformity (-2.293 vs. -2.305) but
demonstrates superior alignment (0.058 vs. 0.073).
This highlights the greater efficiency of our frame-
work in optimizing the representation space in two
distinct directions.

6 Conclusion and Future Work

In this paper, we proposed RobustEmbed, a self-
supervised sentence embedding framework that sig-
nificantly enhances robustness against various ad-
versarial attacks while achieving state-of-the-art

Figure 3: ℓalign − ℓuniform plot of models based on
BERTbase

performance in a wide range of text representation
and NLP tasks. Current sentence embeddings are
vulnerable to adversarial attacks. RobustEmbed
fills this gap by leveraging high-risk adversarial
perturbations within a novel contrastive objective
approach. We demonstrated the effectiveness of
our framework through extensive experiments on
semantic textual similarity and transfer learning
tasks. Furthermore, Empirical findings substanti-
ate the robustness of RobustEmbed against diverse
adversarial attacks. As future work, we aim to
explore the use of hard negative examples in the
supervised setting to further enhance the efficiency
of text representations.

4595



Limitations

Despite the ingenuity of our methodology and its
impressive performance, our framework does have
some potential limitations:

• Our framework is primarily designed and op-
timized for descriptive models, such as BERT,
which excel in understanding and representing
language, as well as related tasks like text clas-
sification. However, it may not be directly ap-
plicable to generative models like GPT, which
prioritize generating coherent and contextu-
ally relevant text. Therefore, there may be
limitations in applying our methodology to en-
hance the generalization and robustness char-
acteristics of generative pre-trained models.

• Our framework requires significant GPU re-
sources for pre-training large-scale pre-trained
models like RoBERTalarge. Due to limitations
in GPU availability, we had to utilize smaller
batch sizes during pre-training. While larger
batch sizes (e.g., 256 or 512) generally lead
to improved performance metrics, our exper-
iments had to compromise and use smaller
batch sizes to generate sentence embeddings
efficiently given the GPU resource constraints.
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A Training Details

In our experimental setup, we initialize our sen-
tence encoder, denoted as fθ, using the check-
points obtained from BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019). For sentence em-
bedding, RobustEmbed utilizes the representation
of the [CLS] token as the starting point and incor-
porates a pooler layer on top of the [CLS] represen-
tations to facilitate contrastive learning objectives.
The training process of RobustEmbed involves 2
epochs, with model evaluation conducted every 250
training steps. The best checkpoint, determined by
the highest average STS (Semantic Textual Similar-
ity) score, is selected for final evaluation. To train
the model, we utilize a dataset consisting of 106 ran-
domly sampled sentences from English Wikipedia,
as provided by the SimCSE framework (Gao et al.,
2021). The average training time for RobustEmbed
is 2-4 hours. As our framework is initialized with
pre-trained checkpoints, it exhibits robustness that
is not sensitive to batch sizes, thus enabling us to
employ batch sizes of either 64 or 128. In terms of
transfer tasks, we determine the best hyperparame-
ters based on the averaged score obtained from the
development sets of six transfer tasks.

B Ablation Studies

In this section, we analyze the influence of four
key hyperparameters in our approach on the overall
performance. We utilize BERTbase as the encoder
and evaluate the hyperparameters using the devel-
opment set of STS tasks.
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Figure 4: The impact of step sizes in perturbation gener-
ation on the average performance of STS tasks.

B.1 Step Sizes in Perturbation Generation

As depicted in Algorithm 1, the RobustEmbed
framework incorporates two step sizes, denoted
as α and β, to perform iterative updates during the
PGD and FGSM perturbation generation processes,
respectively. Figure 4 illustrates the collaborative
effect of varying ranges for these two step sizes
in generating high-risk perturbations, which is sig-
nificant for achieving efficient contrastive learning
objective. The results indicate greater improve-
ment when β is adjusted in a lower range while α
is placed in an upper range. Specifically, better per-
formance is observed when α and β are assigned
ranges of [1e-4, 1e-6] and [1e-2, 1e-4], respectively.
Therefore, we utilize α = 1e-5 and β = 1e-3 for our
experiments as it achieves the best results among
the different arrangements.

B.2 Step Numbers in Perturbation
Generation

RobustEmbed applies T-step FGSM and K-step
PGD iterations to obtain high-risk adversarial per-
turbations for the contrastive learning objective. To
simplify the analysis of perturbation generation it-
erations, we set K = T. Figure 5 demonstrates the
impact of different step numbers (N = K or T) on
effectiveness. We observe a gradual improvement
as N increases from 1 to 9; however, beyond N=9,
the improvement becomes negligible. Moreover, a
higher N leads to longer running-time and unfair
resource allocation. Hence, we select N=5 for our
experiments.
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Figure 5: The effect of the step number (denoted as N =
K or T) in the T-step FGSM and K-step PGD methods
on the averaged correlation of the different Semantic
Textual Similarity (STS) tasks.

B.3 Norm Constraint

To ensure the imperceptibility of the generated ad-
versarial examples, the magnitude of the pertur-
bation vector, denoted as δ, is controlled in Ro-
bustEmbed. Three commonly used norm functions,
namely L1, L2, and L∞, are employed to restrict
the magnitude of δ to small values. Table 5 presents
the averaged Spearman’s correlation of these norm
functions across different Semantic Textual Simi-
larity tasks. The L∞ norm demonstrates superior
correlation compared to the other two norms, thus
it is selected as the norm function for our experi-
mental evaluation.

Norm Correlation
L∞ 77.51
L2 76.82
L1 75.28

Table 5: The influence of the norm constraint on pertur-
bation generation on the average performance of various
Semantic Textual Similarity (STS) tasks.

B.4 Modulation Factor

RobustEmbed incorporates a modulation factor, de-
noted as 0 ≤ λ ≤ 1, to adjust the relative sig-
nificance of each separate perturbation (PGD and
FGSM) in the formation of the final perturbation.
The performance efficiency of various values for
this modulation factor on semantic textual simi-
larity tasks is presented in Table 6. The results
indicate that λ = 0.5 achieves the highest averaged
correlation among the tested magnitudes, indicat-

ing its effectiveness in generating more powerful
perturbations. Therefore, we adopt this setting in
the configuration of our framework.

λ Correlation
0 76.36
0.25 76.91
0.5 77.51
0.75 77.04
1 76.48

Table 6: The impact of the modulation factor on the
average performance of different Semantic Textual Sim-
ilarity (STS) tasks in generating the final perturbation.

C Adversarial Training Comparison

To compare our framework with other standard
adversarial training methods, we fine-tuned our
pre-trained model using a similar adversarial train-
ing approach as the one employed during the pre-
training phase. Subsequently, we compared the
fine-tuned model with three standard adversarial
training methods, namely PGD, FreeLB (Zhu et al.,
2020), and SMART (Jiang et al., 2020), after the
fine-tuning step, and presented the experimental
results in table 7. As shown, our framework outper-
forms the three other adversarial training methods,
achieving the highest average accuracy for STS and
transfer tasks and the lowest average attack success
rate under TextFooler, TextBugger, and BERTAt-
tack attacks.

D Contrastive Learning Loss

The first part of the total contrastive loss (Equa-
tion 8) optimizes the similarity between the input
instance x and its positive pair (xpos), along with
the similarity between x and its adversarial pertur-
bation (xadv). Although it indirectly brings xpos

and xadv closer, our observations show that regu-
larizing the main objective function (Equation 7)
through direct contrastive learning between xpos

and xadv (the second part of Equation 8) helps us
achieve improved clean accuracy and robustness.
Table 8 illustrates the effect of different values of
the regularization parameter (γ) on the final perfor-
mance of our framework. As can be seen, when
γ = 1/128, the framework achieves the highest
average accuracy for STS and transfer tasks and
the lowest average attack success rate under the
TextFooler attack. We employ γ = 1/128 for all
other experiments.
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Model STS Transfer TextFooler TextBugger BERTAttack
PGD 76.37 79.15 50.33 31.05 49.72
FreeLB 81.91 86.03 48.70 27.11 47.83
SMART 82.65 87.34 45.46 26.08 47.39
RobustEmbed 85.79 89.86 37.12 20.43 39.25

Table 7: Performance Comparison of Adversarial Training Methods

γ STS Transfer TextFooler
1/64 76.46 85.93 44.37

1/128 77.51 86.20 37.97
1/256 77.06 85.87 40.32
1/512 75.84 84.66 42.58

Table 8: Effect of Regularization Parameter (γ) on our
Framework Performance

E Text Classification Tasks

This section presents additional information on the
text classification tasks used to assess the gener-
alization and robustness capabilities of our frame-
work in comparison to various sentence embedding
methods. The MR (Movie Reviews) dataset (Pang
and Lee, 2005b) consists of sentence-level samples
with sentiment polarity, comprising 8,530 training
and 1,066 testing highly polar instances. The CR
dataset (Hu and Liu, 2004) is a customer review
dataset collected in three steps: extracting prod-
ucts with customer comments, identifying opin-
ion sentences, and labeling each sentence as posi-
tive or negative. The SUBJ dataset (Pang and Lee,
2004) contains 5,000 subjective and 5,000 objec-
tive sentences from movie reviews, labeled based
on subjectivity status and polarity. The MPQA
dataset (Wiebe et al., 2005) includes annotated doc-
uments from diverse news sources, categorizing
opinion states such as beliefs, emotions, sentiments,
and speculations. The SST2 dataset (Socher et al.,
2013) is a sentence-level dataset with 8,544 training
and 2,210 testing highly polar samples, extracted
from movie reviews and classified as negative or
positive. The MRPC dataset (Dolan and Brock-
ett, 2005) contains 5,801 sentence pairs from news
articles, labeled by human annotators to indicate
semantic equivalence relationships. The YELP Po-
larity Review (YELP) dataset (Zhang et al., 2015)
consists of document-level samples, with 560,000
training and 38,000 testing highly polar instances
classified as negative (1- and 2-star) or positive (4-
and 5-star) reviews. The Internet Movie Database

(IMDb) Review dataset (Maas et al., 2011) con-
tains 25,000 training and 25,000 testing highly
polar samples, with negative and positive classes
corresponding to review scores of ≤4 and ≥7 out
of 10, respectively. Rotten Tomatoes Movie Re-
views (MR) (Pang and Lee, 2005a) is a sentence-
level dataset consisting of 8,530 training and 1,066
testing highly polar samples, where negative and
positive classes are assigned based on calibration
among different critics. SNLI (Bowman et al.,
2015) (MNLI (Williams et al., 2018)) is a three-
class dataset comprising 550,152 (392,702) train-
ing and 10,000 (19,643) testing human-written sen-
tence pairs in English. Each set of three pairs in
SNLI (MNLI) is created using a different image
caption from the Flicker30K dataset (Young et al.,
2014) (ten sources of text), with the premise sen-
tence serving as the first sentence in each set. The
hypothesis sentence of the first, second, and third
pair is generated to be in entailment (category 1),
contradiction (category 2), and neutral (category
3) with the respective premise sentence. While
SNLI uses premise sentences from a relatively ho-
mogeneous image caption dataset, MNLI covers a
broader range of text styles. The MNLI testing sam-
ple pairs are divided into two categories: “Matched”
and “Mismatched,” where MNLI-Matched pairs
share similar context and resemblance to the train-
ing pairs compared to MNLI-Mismatched pairs.

F Adversarial Attack Methods

This section presents additional details on the di-
verse adversarial attack techniques employed to
assess the robustness of our sentence embedding
framework. The TextBugger method (Li et al.,
2019) identifies important words using the Jaco-
bian matrix of the target model and selects an op-
timal perturbation from five types of generated
perturbations. The PWWS method (Ren et al.,
2019) utilizes a synonym-swap technique based
on a combination of word saliency scores and max-
imum word-swap effectiveness. TextFooler (Jin
et al., 2020) identifies important words, gathers
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synonyms, and replaces each important word with
the most semantically similar and grammatically
correct synonym. The BAE method (Garg and Ra-
makrishnan, 2020) employs four adversarial attack
strategies involving word replacement or/and word
insertion operations, where a portion of the text is
masked and BERT MLM is used to generate substi-
tutions. The BERTAttack method (Li et al., 2020b)
consists of two steps: (a) searching for vulnera-
ble words/sub-words and (b) using BERT MLM
to generate semantic-preserving substitutes for the
vulnerable tokens.
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