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Abstract

3D human modeling has been widely used for
engaging interaction in gaming, film, and ani-
mation. The customization of these characters
is crucial for creativity and scalability, which
highlights the importance of controllability. In
this work, we introduce Text-guided 3D Human
Generation (T3H), where a model is to generate
a 3D human, guided by the fashion description.
There are two goals: 1) the 3D human should
render articulately, and 2) its outfit is controlled
by the given text. To address this T3H task, we
propose Compositional Cross-modal Human
(CCH). CCH adopts cross-modal attention to
fuse compositional human rendering with the
extracted fashion semantics. Each human body
part perceives relevant textual guidance as its
visual patterns. We incorporate the human prior
and semantic discrimination to enhance 3D ge-
ometry transformation and fine-grained consis-
tency, enabling this to learn from 2D collections
for data efficiency. We conduct evaluations on
DeepFashion and SHHQ with diverse fashion
attributes covering the shape, fabric, and color
of upper and lower clothing. Extensive experi-
ments demonstrate that CCH achieves superior
results for T3H with high efficiency.

1 Introduction

Our world is inherently three-dimensional, where
this nature highlights the importance of 3D applica-
tions in various fields, including architecture, prod-
uct design, and scientific simulation. The capability
of 3D content generation helps bridge the gap be-
tween physical and virtual domains, providing an
engaging interaction within digital media. Further-
more, realistic 3D humans have vast practical value,
especially in gaming, film, and animation. Despite
enhancing the user experience, the customization of
the character is crucial for creativity and scalability.
Language is the most direct way of communication.
If a system follows the description and establishes
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Figure 1: Text-guided 3D Human Generation (T3H).

the 3D human model, it will significantly improve
controllability and meet the considerable demand.

We thus introduce Text-guided 3D Human Gen-
eration (T3H) to generate a 3D human with the cus-
tomized outfit, guided via the fashion description.
Previous works (Kolotouros et al., 2019; Gao et al.,
2022) depend on multi-view videos to learn 3D hu-
man modeling, but these data are difficult to obtain
and are not language controllable. Text-to-3D (Jain
et al., 2022; Poole et al., 2023) has shown attractive
3D generation results through the success of neural
rendering (Mildenhall et al., 2020). However, these
methods apply iterative inference optimization by
external guidance, which is inefficient for usage.

To tackle these above issues, we propose Com-
positional Cross-modal Human (CCH) to learn T3H
from 2D collections. CCH divides the human body
into different parts and employs individual volume
rendering, inspired by EVA3D (Hong et al., 2023).
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We extract the fashion semantics from the descrip-
tion and adopt cross-modal attention to fuse body
volumes with textual features, where each part can
learn to perceive its correlated fashion patterns. To
support various angles of view, CCH leverages the
human prior (Bogo et al., 2016) to guide the geome-
try transformation for concrete human architecture.
Then these compositional volumes can jointly ren-
der a 3D human with the desired fashion efficiently.
The semantic discrimination further considers com-
positional distinguishment over each human part,
which improves the fine-grained alignment with its
description through adversarial training.

We perform experiments on DeepFashion (Liu
et al., 2016; Jiang et al., 2022) and SHHQ (Fu et al.,
2022a), which contain human images with diverse
fashion descriptions. The patterns include various
types of shapes (sleeveless, medium short, long,
etc.), fabrics (denim, cotton, furry, etc.), and colors
(floral, graphic, pure color, etc.) for the upper and
lower clothing. To study the performance of T3H,
we conduct a thorough evaluation from both visual
and semantic aspects. We treat overall realism, ge-
ometry measure, and pose correctness to assess the
quality of generated 3D humans. For the alignment
with the assigned fashion, we apply text-visual rel-
evance from CLIP and fine-grained accuracy by a
trained fashion classifier.

The experiments indicate that language is nec-
essary to make 3D human generation controllable.
Our proposed CCH adopts cross-modal attention
to fuse compositional neural rendering with textual
fashion as 3D humans, and semantic discrimination
further helps fine-grained consistency. In summary,
our contributions are three-fold:
• We introduce T3H to control 3D human genera-

tion via fashion description, learning from collec-
tions of 2D images.

• We propose CCH to extract fashion semantics in
the text and fuse with 3D rendering in one shot,
leading to an effective and efficient T3H.

• Extensive experiments show that CCH exhibits
sharp 3D humans with clear textual-related fash-
ion patterns. We advocate that T3H can become a
new field of vision-and-language research.

2 Related Work

Text-guided Visual Generation. Using human-
understandable language to guide visual generation
can enhance controllability and benefit creative vi-
sual design. Previous works built upon adversarial

training (Goodfellow et al., 2015; Reed et al., 2016)
to produce images (Xu et al., 2018; El-Nouby et al.,
2019; Fu et al., 2020, 2022c) or videos (Marwah
et al., 2017; Li et al., 2018b; Fu et al., 2022b) condi-
tioned on given descriptions. With sequential mod-
eling from Transformer, vector quantization (Esser
et al., 2021) can generate high-quality visual con-
tent as discrete tokens (Ramesh et al., 2021; Ding
et al., 2021; Fu et al., 2023). The denoising dif-
fusion framework (Ho et al., 2020; Ramesh et al.,
2022; Saharia et al., 2022; Feng et al., 2023) gains
much attention as its diversity and scalability via
large-scale text-visual pre-training. Beyond images
and videos, 3D content creation is more challeng-
ing due to the increasing complexity of the depth
dimension and spatial consistency. In this paper, we
consider text-guided 3D human generation (T3H),
which has vast applications in animated characters
and virtual assistants.

3D Generation. Different representations have
been explored for 3D shapes, such as mesh (Gao
et al., 2019; Nash et al., 2020; Henderson et al.,
2020), voxel grid (Tatarchenko et al., 2017; Li et al.,
2017), point cloud (Li et al., 2018a; Yang et al.,
2019; Luo et al., 2021), and implicit field (Chen
and Zhang, 2019; Park et al., 2019; Zheng et al.,
2022). Neural Radiance Field (NeRF) (Mildenhall
et al., 2020; Barron et al., 2022; Muller et al., 2022)
has shown remarkable results in novel view synthe-
sis (Schwarz et al., 2021; Chan et al., 2021; Sko-
rokhodov et al., 2023) and 3D reconstruction (Yariv
et al., 2021; Zhang et al., 2021). With the differ-
entiable neural rendering, NeRF can be guided by
various objectives. Text-to-3D draws appreciable
attraction these days, which adopts external text-
visual alignments (Jain et al., 2022; Khalid et al.,
2022; Michel et al., 2022; Wang et al., 2022a; Hong
et al., 2022) and pre-trained text-to-image (Wang
et al., 2022b; Nam et al., 2022; Poole et al., 2023;
Metzer et al., 2023; Tang et al., 2023; Seo et al.,
2023). However, existing methods take numerous
iterations to optimize a NeRF model, which is time-
consuming for practical usage. Our CCH learns to
extract fashion semantics with NeRF rendering and
incorporates the human prior for a concrete human
body, achieving effective and efficient T3H.

3D Human Representation. To reconstruct a 3D
human, early works (Collet et al., 2015; Guo et al.,
2019; Su et al., 2020) count on off-the-shelf tools to
predict the camera depth. As mitigating the costly
hardware requirement, they estimate a 3D human
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Figure 2: Compositional Cross-modal Human (CCH). CCH extracts fashion semantics from the description and
adopts cross-modal attention in compositional body volumes for controllable 3D human rendering. The human prior
(SMPL) provides robust geometry transformation, enabling CCH to learn from 2D collections for data efficiency.
The semantic discrimination further helps find-grained consistency through adversarial training.

texture (Xu and Loy, 2021; Gomes et al., 2022) via
the UV mapping (Shysheya et al., 2019; Yoon et al.,
2021). With the promising success of NeRF, recent
works (Peng et al., 2021b,a; Su et al., 2021) adopt
volume rendering for 3D humans from multi-view
videos (Weng et al., 2022; Chen et al., 2022). Since
the data are difficult to collect, the 3D-aware gener-
ation (Chan et al., 2022; Gu et al., 2022; Noguchi
et al., 2022) learns 3D modeling from the collection
of human images (Yang et al., 2022; Hong et al.,
2023). In place of arbitrary outputs, we introduce
the first controllable 3D human generation that also
learns from a 2D collection, and the presented fash-
ion patterns should align with the description.

3 Text-guided 3D Human Generation

3.1 Task Definition

We present text-guided 3D human generation (T3H)
to create 3D humans via fashion descriptions. For
data efficiency, a 2D collection D={V, T } is pro-
vided, where V is the human image, and T is its
fashion description. Our goal is to learn the neural
rendering that maps T into an articulate 3D human
with the fashion patterns of V .

3.2 Background

Neural Radiance Field (NeRF) (Mildenhall et al.,
2020) defines implicit 3D as {c, σ}=F (x, d). The
query point x in the viewing direction d holds the
emitted radiance c and the volume density σ. To get
the RGB value C(r) of certain rays r(t), volume
rendering is calculated along a ray r from the near

bound tn to the far bound tf:

T (t) = exp(−
∫ t

tn

σ(r(s))ds),

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt, (1)

where T (t) stands for their accumulated transmit-
tance. StyleSDF (Or-El et al., 2022) then replaces
σ with single distance field (SDF) d(x) for a better
surface, where σ(x) = α−1sigmoid(−d(x)

α ) and α
is a learnable scalar that controls the tightness of
the density around the surface boundary.

SMPL (Bogo et al., 2016) defines the human body
as {β, θ}, where β ∈ R10 and θ ∈ R3×23 control
its shape and pose. We consider Linear Blend Skin-
ning (LBS) as the transformation from the canon-
ical into the observation space for the point x to∑K

k=1 hkHk(θ, J)x, where hk ∈ R is the scalar of
the blend weight and Hk ∈ R4×4 is the transforma-
tion matrix of the kth joint. Inverse LBS transforms
the observation back to the canonical space as a
similar equation but with an inverted H .

3.3 Compositional Cross-modal Human
Following EVA3D (Hong et al., 2023), we split the
human body into 16 parts. As shown in Fig. 2, each
body part holds its own bounding box {obmin, o

b
max}.

To leverage the human prior for a target pose θ, we
transform these pre-defined bounding boxes with
SMPL’s transformation matrices Hk. Ray r(t) is
sampled for each pixel on the canvas. For a ray that
intersects bounding boxes, we pick up its near and
far bounds (tn and tf) and sample N points as fol-
lows: ti ∼ U

[
tn +

i−1
N (tf − tn), tn +

i
N (tf − tn)

]
.
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We then transform these sampled points back to the
canonical space with inverse LBS. For shape gener-
alization, we consider not only pose transformation
but also blend shapes (BP (θ) and BS(β)) (Zheng
et al., 2021). N contains K nearest vertices v of the
target SMPL mesh for the sample point ray r(ti):

gk =
1

||r(ti)− vk||
,

Mk =

(
K∑

k=1

gkHk

)[
I BP

k +BS
k

0 I

]
,

[
xi
1

]
=
∑

vk∈N

gk∑
vk∈N gk

(Mk)
−1

[
r(ti)
1

]
, (2)

where gk ∈ R is the inverse weight of the vertex vk
and Mk ∈ R4×4 is the transformation matrix. The
xi can be used for further volume rendering.

Cross-modal Attention. During rendering, if the
canonical point xi with the viewing direction di is
inside the bth bounding box, it will be treated as:

x̂bi =
2xi − (obmax + obmin)

obmax − obmin
,

f b
i = Linear(x̂bi , di), (3)

where a linear mapping is applied to acquire pre-
liminary features f b ∈ R16×8×128. To exhibit the
desired fashion in the final rendering, we extract the
word features by the text encoder as {wl ∈ R512}
from T . We then fuse the textual features with fk

i

via cross-modal attention:

pl =
exp(f b

i W b wT
l )∑L

ι=1 exp(f
b
i W b wT

ι )
,

CA(f b
i | {w}) =

L∑

l=1

plwl, (4)

where L is the length of T and W b is the learnable
matrix. In this way, each point can learn to perceive
relevant textual guidance for the bth human body
part and depict corresponding fashion patterns.

Each body part has its individual volume render-
ing F b, which consists of stacked multilayer per-
ceptrons (MLPs) with the SIREN activation (Sitz-
mann et al., 2020). Since the point xi may fall into
multiple boxes Bi, we follow EVA3D to apply the
mixture function (Lombardi et al., 2021):

{cbi , σb
i} = F b(CA(xbi , di | {w})),

ub = exp(−m(x̂bi(x)
n + x̂bi(y)

n + x̂bi(z)
n)),

{ci, σi} =
1∑

b∈B ub

∑

b∈B
ub{cbi , σb

i}, (5)

Algorithm 1 Compositional Cross-modal Human
1: D: 2D collection of human images / fashion descriptions
2:
3: G, D: the generator / discriminator model for T3H
4: while TRAIN_CCH do
5: V , T ← sampled human / description from D
6: {β, θ} ← estimated SMPL parameters of V
7: {xi} ← canonical points via inverse LBS ▷ Eq. 2
8: fb

i ← rendering features inside the bth box ▷ Eq. 3
9: {wl} ← extracted textual features of T

10: CA← fusion via cross-modal attention ▷ Eq. 4
11: {ci, σi} ← mixture radiance / density ▷ Eq. 5
12: R← final rendering human ▷ Eq. 1
13:
14: S ← segmentation map of V
15: Q← fashion map between S and T ▷ Eq. 6
16: Ladv ← adversarial loss from D ▷ Eq. 8
17: Loff, Leik ← offset and derivation loss ▷ Eq. 9
18: Lall ← overall training loss ▷ Eq. 10
19: Update G by minimizing Lall
20: Update D by maximizing Lall
21: end while

where m and n are hyperparameters. With {ci, σi},
we adopt Eq. 1 to render the RGB value of ray r(t).
Through all sampled rays r, we then have our final
human rendering R, where the overall process can
be simplified as R = G(β, θ | T ). To summarize,
CCH leverages the human prior and adopts inverse
LBS to acquire the canonical space for the target
pose. The human body is divided into 16 parts, and
each of them fuses its correlated fashion semantics
via cross-modal attention. Finally, compositional
bodies jointly render the target 3D human.

Semantic Discrimination. With the SMPL prior,
our CCH contains robust geometry transformation
for humans and can learn from 2D images without
actual 3D guidance. For a ground-truth {V, T }, we
parse the 2D human image as the segmentation S
(MMHuman3D, 2021), which provides the reliable
body architecture. To obtain its fashion map Q, we
apply cross-modal attention between S and T :

{ei,j} = Conv(S),

Qi,j =

L∑

l=1

exp(ei,jWwT
l )∑L

ι=1 exp(ei,jWwT
ι )

wl, (6)

where e is the same dimension as f , W is the learn-
able attention matrix, and Q perceives which hu-
man body part should showcase what fashion pat-
terns. We concatenate the rendered human R (or
the ground-truth V) with Q and feed them into our
discriminator D to perform binary classification:

D(R | T ) = BC([Conv(R), Q]). (7)

In consequence, D can provide alignments of both
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DeepFashion SHHQ

Method FID↓ Depth↓ PCK↑ CLIP-S↑ FA↑ FID↓ Depth↓ PCK↑ CLIP-S↑ FA↑
Latent-NeRF 69.654 0.0298 74.211 22.500 65.883 72.256 0.0381 73.401 22.210 67.427

TEXTure 37.058 0.0165 86.354 23.385 67.508 48.618 0.0216 85.502 24.456 68.233
CLIP-O 25.488 0.0133 87.892 21.887 61.964 34.212 0.0164 87.312 21.401 66.808

CCH 21.136 0.0121 88.355 25.023 72.038 32.858 0.0165 87.624 27.855 76.194

Table 1: Overall results of pose-guided T3H.

the human pose and fashion semantics, which im-
proves the fine-grained consistency of our CCH.

Learning of CCH. We include the non-saturating
loss with R1 regularization (Mescheder et al., 2018)
for adversarial learning over the ground-truth {V}:

U(u) = − log(1 + exp(−u)),

Ladv = U(G(β, θ | T ) | T ) (8)

+ U(−D(V | T )) + λ|∇D(V | T )|2.
Following EVA3D, we also append the minimum
offset loss Loff to maintain a plausible human shape
as the template mesh. Leik penalizes the derivation
of delta SDFs to zero and makes the estimated SDF
physically valid (Gropp et al., 2020):

Loff = ||∆d(x)||22,
Leik = ||∇(∆d(x))||22. (9)

The learning process of our CCH is also illustrated
as Algo. 1, where the overall optimization can be:

Lall = Ladv + 1.5 · Loff + 0.5 · Leik, (10)

min
G

max
D

Lall.

4 Experiemnts

4.1 Experimental Setup

Datasets. We coduct experiments on DeepFash-
ion (Jiang et al., 2022) and SHHQ (Fu et al., 2022a)
for T3H. DeepFashion contains 12K human images
with upper and lower clothing descriptions. Since
there are no annotations in SHHQ, we first fine-tune
GIT (Wang et al., 2022c) on DeepFashion and then
label for 40K text-human pairs. We follow Open-
Pose (Cao et al., 2019) and SMPLify-X (Pavlakos
et al., 2019) to estimate the human keypoints and
its SMPL parameters. The resolution is resized into
512x256 in our experiments. Note that all faces in
datasets are blurred prior to training, and the model
is not able to generate human faces.

Evaluation Metrics. We apply metrics from both
visual and semantic prospects. Following EVA3D,
we adopt Frechet Inception Distance (FID) (Heusel
et al., 2017) and Depth (Ranftl et al., 2020) to cal-

culate visual and geometry similarity, compared to
the ground-truth image. We treat Percentage of Cor-
rect Keypoints (PCK@0.5) (Andriluka et al., 2014)
as the correctness of the generated pose. To investi-
gate the textual relevance of T3H results, we follow
CLIP Score (CLIP-S) (Hessel et al., 2021) for the
text-visual similarity. We fine-tune CLIP (Radford
et al., 2021) on DeepFashion for a more accurate
alignment in this specific domain. To have the fine-
grained evaluation, we train a fashion classifier on
DeepFashion labels1 and assess Fashion Accuracy
(FA) of the generated human.

Baselines. As a new task, we consider the follow-
ing methods as the compared baselines.
• Latent-NeRF (Metzer et al., 2023) brings NeRF

to the latent space and guides its generation by
the given object and a text-to-image prior.

• TEXTure (Richardson et al., 2023) paints a 3D
object from different viewpoints via leveraging
the pre-trained depth-to-image diffusion model.

• CLIP-O is inspired by AvatarCLIP (Hong et al.,
2022), which customizes a human avatar from the
description with CLIP text-visual alignment. We
apply the guided loss to optimize a pre-trained
EVA3D (Hong et al., 2023) for faster inference.

• Texformer (Xu and Loy, 2021) estimates the hu-
man texture from an image. Text2Human (Jiang
et al., 2022) predicts the target human image, and
we treat Texformer to further build its 3D model.

For a fair comparison, all baselines are re-trained
on face-blurred datasets and cannot produce identi-
fiable human faces.

Implementation Detail. We divide a human body
into 16 parts and deploy individual StyleSDF (Or-
El et al., 2022) for each volume rendering, and two
following MLPs then estimate SDF and RGB val-
ues. We adopt the same discriminator as StyleSDF
over fashion maps to distinguish between fake ren-
dered humans and real images. We sample N=28
points for each ray and set (m, n) to (4, 8) for mix-

1There are six targets for FA, including the shape, fabric,
and color of the upper and lower clothing. The fashion classi-
fier has +95% accuracy, which provides a precise evaluation.
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DeepFashion

Method FID↓ CLIP-S↑ FA↑
Texformer 45.844 20.546 66.679
CLIP-O 25.579 20.112 61.298

CCH 21.355 24.920 70.771

Table 2: Overall results of pose-free T3H.

Ablation Settings DeepFashion

Text CA SD FID↓ CLIP-S↑ FA↑
✗ ✗ ✗ 25.671 9.632 36.634
✓ ✗ ✗ 24.624 21.079 69.173
✓ ✓ ✗ 21.966 24.103 80.028
✓ ✓ ✓ 21.275 25.211 80.776

Table 3: Ablation study (256x128) of Cross-modal At-
tention (CA) and Semantic Discrimination (SD).

ture rendering. The text encoder is initialized from
CLIP and subsequently trained with CCH. We treat
Adam (Kingma and Ba, 2015) with a batch size of
1, where the learning rates are 2e-5 for G and 2e-4
for D. We apply visual augmentations by randomly
panning, scaling, and rotating within small ranges.
All trainings are done using PyTorch (Paszke et al.,
2017) on 8 NVIDIA A100 GPUs for 1M iterations.

4.2 Quantitative Results
Table 1 shows the pose-guided T3H results on Deep-
Fashion and SHHQ, where we feed the estimated
human mesh as the input object into Latent-NeRF
and TEXTure. Although Latent-NeRF can portray
body shapes in multiple angles from its latent NeRF
space, the rendering is clearly counterfeit (higher
FID and Depth). For TEXTure, the human architec-
ture is constructed well by the given mesh (higher
PCK). However, the estimated texture is still spa-
tially inconsistent and contains inevitable artifacts
(still higher FID). From the semantic aspect, Latent-
NeRF and TEXTure borrow those trained diffusion
models and depict the assigned appearance in the
description (higher CLIP-S than CLIP-O). CLIP-O
relies on EVA3D to produce feasible 3D humans
(lower FID). While the external CLIP loss attempts
to guide the fashion, the global alignment is insuf-
ficient to demonstrate detailed patterns (lower FA).
Without those above drawbacks, our CCH learns to
extract fashion semantics along with the composi-
tional human generation, leading to comprehensive
superiority across all metrics.

A similar trend can be found on SHHQ. Latent-
NeRF and TEXTure exhibit related fashion patterns
but are hard to present realistic humans (higher FID
and Depth). CLIP-O produces a sharp human body

DeepFashion

Train FT. R1 R5 R10

OpenAI-400M ✗ 4.2 20.4 28.0
LAION-2B ✗ 13.4 33.4 46.4
LAION-2B ✓ 45.0 83.0 93.8

Table 4: Text-to-Fashion retrieval (sample 500 pairs) by
CLIP with different fine-tunings (FT.).

DeepFashion

Method Quality Relevance

Latent-NeRF 1.82 2.37
TEXTure 2.38 2.51
CLIP-O 2.93 2.20

CCH 2.87 2.92

Table 5: Human evaluation for T3H with aspects of 3D
quality and fashion relevance.

with the correct pose, but not the assigned fashion
(lower CLIP-S and FA) by the inexplicit alignment
from CLIP. Table 2 presents the pose-free results.
With the guided 2D image, Texformer contains the
assigned clothing in the text (higher FA than CLIP-
O). But the 3D reconstruction is unable to handle
spatial rendering, resulting in low-quality humans
(higher FID). With cross-modal attention and se-
mantic discrimination, CCH exceeds baselines in
both visual and textual relevance, making concrete
human rendering with the corresponding fashion.

4.3 Ablation Study

We study each component effect of CCH in Table 3.
Without the guided description, the model lacks the
target fashion and results in a poor FA. This further
highlights the importance of textual guidance for
controllable human generation. When applying the
traditional training (Reed et al., 2016), conditional
GAN is insufficient to extract fashion semantics for
effective T3H (not good enough CLIP-S). On the
other hand, our cross-modal attention constructs a
better fusion between fashion patterns and volume
rendering, facilitating a significant improvement in
depicting the desired human appearance. Moreover,
semantic discrimination benefits fine-grained align-
ment and leads to comprehensive advancement.

Fine-tune CLIP-S as Evaluator. CLIP has shown
promising text-visual alignment, which can calcu-
late feature similarity between the generated human
and the given text as CLIP-S (Hessel et al., 2021).
Since our T3H is in a specific fashion domain, we
consider the larger-scaled trained checkpoint from
OpenCLIP (Ilharco et al., 2021) and fine-tune it as
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Figure 3: Qualitative comparison of pose-guided T3H.

Method Time (sec) GPU (MB)

Latent-NeRF 755.7 11250
TEXTure 103.7 12530
CLIP-O 181.6 15988

CCH 0.372 6258

Table 6: Time and GPU cost to perform T3H.

a more precise evaluator. Table 4 presents text-to-
fashion retrieval results, where a higher recall leads
to a better alignment. Whether the original CLIP or
OpenCLIP, both result in poor performance and is
insufficient for our evaluation. By perceiving Deep-
Fashion, fine-tuning helps bring reliable alignment
and is treated as the final evaluator.

Human Evaluation. Apart from automatic met-
rics, we conduct the human evaluation with aspects
of 3D quality and fashion relevance. We randomly
sample 75 T3H results and consider MTurk2 to rank
over baselines and our CCH. To avoid the potential
ranking bias, we hire 3 MTurkers for each example.
Table 5 shows the mean ranking score (from 1 to 4,
the higher is the better). CLIP-O and CCH are built
upon EVA3D, which provides an articulate human
body for superior 3D quality. Even if Latent-NeRF
and TEXTure take pre-trained diffusion models to
acquire visual guidance, CCH exhibits more corre-
sponding fashion via cross-modal fusion. This per-
formance trend is similar to our evaluation, which
supports the usage of CLIP-S and FA as metrics.

Inference Efficiency. In addition to T3H quality,

2Amazon MTurk: https://www.mturk.com

Figure 4: Qualitative comparison of pose-free T3H.

our CCH also contains a higher efficiency. Table 6
shows the inference time and GPU cost on a single
NVIDIA TITAN RTX. All baselines take more than
100 seconds since they require multiple iterations to
optimize the 3D model from an external alignment.
In contrast, we extract fashion semantics and carry
out T3H in one shot. Without updating the model,
we save the most GPU memory. In summary, CCH
surpasses baselines on both quality and efficiency,
leading to an effective and practical T3H.

4.4 Qualitative Results.

We demonstrate the qualitative comparison of pose-
guided T3H in Fig. 3. Although Latent-NeRF can
portray the 3D human based on the given mesh, it
only presents inauthentic rendering. TEXTure gen-
erates concrete humans, but there are still obvious
cracks and inconsistent textures from different an-
gles of view. Moreover, both of them fail to capture
“three-point”, where the rendered lower clothing is
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Figure 5: Qualitative examples of animatable T3H, where the motion is also controlled by the text.

Figure 6: Qualitative examples of pose-control T3H.

incorrectly depicted as long pants. Because CLIP
provides an overall but inexplicit alignment to the
description, CLIP-O is limited and exhibits vague
“denim” or “long-sleeved”. This observation fur-
ther indicates the flaw of CLIP in detailed fashion
patterns, even if it has been fine-tuned on the target
dataset. In contrast, our CCH adopts cross-modal
attention with NeRF, contributing to high-quality
T3H with fine-grained fashion controllability. Fig. 4
shows the pose-free results. Texformer relies on a
2D image to estimate its 3D texture. Despite con-
taining the assigned fashion, it is still restricted by
the capability of 3D reconstruction, resulting in a
low-resolution rendering. By learning text-to-3D
directly, CCH can produce textual-related humans
from random poses with clear visual patterns.

Pose-control T3H. Since our CCH is generating
3D humans from given SMPL parameters, as illus-
trated in Fig. 6, we can further control T3H with a
specific pose. Different fashion descriptions make a

Figure 7: Qualitative examples of our fashion classifier,
which provides fine-grained labels for real/fake humans.

human body present diverse appearances; different
poses then guide the character to express rich body
language. This flexibility in controlling appearance
and pose allows for better practical customization.

Animatable T3H. In addition to static poses, CCH
can benefit from dynamic motions to achieve ani-
matable T3H. Fig. 5 adopts MotionDiffuse (Zhang
et al., 2022) to create the assigned action also from
the text and apply it to our produced 3D models. In
this way, we prompt them to “raise arms” or “walk”
for favorable dynamic scenarios.

5 Conclusion

We present text-guided 3D human generation (T3H)
to create a 3D human by a fashion description. To
learn this from 2D collections, we introduce Com-
positional Cross-modal Human (CCH). With cross-
modal attention, CCH fuses compositional human
rendering and textual semantics to build a concrete
body architecture with the corresponding fashion.
Experiments across various fashion attributes show
that CCH effectively carries out T3H with high effi-
ciency. We believe T3H helps advance a new field
toward vision-and-language research.

Ethics Discussion and Limitation. Our work en-
hances the controllability of 3D human generation.
To prevent identity leakage, we blur out faces prior
to training and avoid risks similar to DeepFake (Ko-
rshunov and Marcel, 2018). Because we depend on
SMPL parameters, an inaccurate estimation causes

4515



a distribution shift and quality degradation. For the
datasets, they reveal narrow viewing angles, which
results in visible artifacts of 3D consistency.
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